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Abstract 

In order to increase the reliability and efficiency of the kineto-static analysis of complex robot systems, the corresponding vector bond 

graph procedure is proposed. From the algebraic relations of input and output vectors in the basic fields, junction structure and Euler-

junction structure of system vector bond graph model, the unified formulae of driving moment (or force) and constraint forces at joints 

are derived, which are easily derived on a computer in a complete form. For the algebraic difficulties brought by differential causality 

and nonlinear junction structure in system automatic modelling and kineto-static analysis, the effective bond graph augment method 

is proposed. Based on the kinematic constraint relations, the vector bond graph model of the spatial robot mechanism with five degrees 

of freedom can be made. As a result, the automatic modelling and kineto-static analysis of complex robot system on a computer is 
realized, its validity is illustrated. 

Keywords: robot mechanism, kineto-static analysis, vector bond graph, causality, joint constrain 

 

1 Introduction 

 
The kineto-static analysis is very important for the control, 

static and dynamic strength check of robot system. For 

complex robot systems, e.g. the spatial robot systems 

containing different constraint joints, determining driving 

moment (or force) and the constraint forces at joints is a 

very tedious and error-prone task on account of the 

nonlinearities and couplings involved. The Newton-Euler 

technique and Lagrange technique are two of the well 

known methods used for the dynamic analysis of a robot 

system [1, 2]. These techniques however, are only suitable 

for a single energy domain systems, e.g. mechanical 

systems, and cannot be used to tackle systems that 

simultaneously include various physical domains in a 

unified manner. 

The bond graph technique developed since the 1960’s 

has potential applications in analysing such complex 

systems and has been used successfully in many areas [3, 

4]. It is a pictorial representation of the dynamics of the 

system and clearly depicts the interaction between 

elements, it can also model multi-energy domains, for 

example, the actuator systems, which may be electrical, 

electro-magnetic, pneumatic, hydraulic or mechanical. But 

for spatial multibody systems such as spatial robot 

mechanism with different constraint joints, the kinematic 

and geometric constraints between bodies result in 

differential causality loop, and the nonlinear velocity 

relationship between the mass centre and an arbitrary point 

on a body leads to the nonlinear junction structure. The 

bond graph procedures mentioned above were found to be 

very difficult algebraically in automatic modelling and 

kineto-static analysis of system on a computer. To solve 
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this problem, the Lagrange multiplier approach and 

Karnopp-Margolis approach can be employed to model 

multibody systems based on scalar bond graph concept [5, 

6]. 

For spatial multibody systems, the scalar bond graph 

technique is found to be complex and difficult. To address 

this problem, the vector bond graph techniques were 

proposed [7-9]. In vector bond graphs, single power bonds 

are replaced by multi-power bonds, this makes it posses 

more concise presentation manner and be more suitable for 

modelling spatial multibody systems. But some problems 

should be studied further, such as modelling spatial robot 

mechanism with different constraint joints by vector bond 

graphs, augmenting the vector bond model to avoid 

differential causality, developing the generic algorithm for 

automatic kineto-static analysis of spatial robot 

mechanism. To solve above problems, a more efficient and 

practical computer aided kineto-static analysis procedure 

for spatial robot mechanism based on vector bond graph is 

proposed here. 

 

2 The vector bond graph model of spatial cylindrical 

joint 

 

The diagram of spatial cylindrical joint is shown in Figure 

1. This joint allows only a straight displacement and one 

direction rotation between its joined body Bα
 and Bβ , 

fixing the remaining two translational and two rotational 

degrees of freedom. Therefore, only two generalized 

coordinates are free to change. Joint point P and Q are 

fixed on rigid body Bα
and Bβ  respectively, vector 

αh  is 

used to describe the relative motion of the two rigid bodies, 
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P Q

α α βh r r  . Where P

αr and Q

βr  represent the position 

vector of joint point P and Q in global coordinates 

respectively, 
T

P P P P

α α α αr x y z    , 
T

Q Q Q Q

βr x y z  
    . 

1

βd  and 2

βd  are two unit vectors fixed on rigid body Bβ , 

which are all orthogonal  to slide axis,  and  orthogonal to 

each other. 
αd  is the unit vector fixed on rigid body Bα

 

along slide axis, '

αd , '1

βd  and 2'

βd  are the corresponding 

vectors in body frame. From the kinematic constraint 

condition of spatial cylindrical joint [1], we have  

 
FIGURE 1 The diagram of spatial cylindrical joint 
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where A and A  are the direction cosine matrices of 

body Bα
and body Bβ  respectively. 

The corresponding velocity and angular velocity 

constraint equations can be written as: 

 
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where α  and β  represent the angular velocity vectors 

of the rigid body Bα
 and Bβ  determined in global 

coordinates, b

α  and b

β  are the corresponding angular 

velocity vectors of the rigid body determined in body 

frame. 

0

0

0

i i

βz βy

i i i

β βz βx

i i

βy βx

-d d

d d -d

-d d

 
 

  
 
 

, (i=1,2). 

The velocity and angular velocity constraint equations 

shown as Equations (3) and (4) can be presented by vector 

bond model shown in Figure 2. 

 
FIGURE 2 The vector bond graph model of spatial cylindrical joint 

 

3 The unified formulae of driving moment and 

constraint forces for spatial robot systems 

 

The basic fields and junction structure of system bond 

graph is shown in Figure 3 [3], where Euler-junction 

structure (EJS) [9, 10] is added. 
1i

X  represents energy 

vector variable of independent storage energy field 

corresponding to independent motion, 
2i

X  represents 

energy vector variable of independent storage energy field 

corresponding to dependent motion, 
1i

Z and 
2i

Z  are the 

corresponding coenergy vector variables. 
inD  and 

outD  

represent input and output vector variables in resistive 

field, U and V represent input and output vector variables 

of source field respectively,  
T

1 2 3U U U U , 

 
T

1 2 3V V V V . Where 
1U  is driving moment (or force) 

vector, 
2U  is the constraint force vector of joint and 

3U  is 

known source vector. 
inE  and 

outE  are the input and 

output vector variables in Euler-junction structure(EJS). 

 
FIGURE 3 The basic field and junction structure of system 
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For independent energy storage field, we have: 

1 1 1i i iZ F X , (5) 

2 2 2i i iZ F X , (6) 

where 
1i

F  and 
2i

F  are 
1 1m m  and 

2 2m m  matrices 

respectively. 

For resistive field, we have: 

out inD RD , (7) 

where R is L L  matrix. 

For Euler-junction structure (EJS), we have 

out E inE R E , (8) 

where 
ER  is 

E EL L  matrix [9-11]. 

The corresponding junction structure equations can be 

written as: 

1 1 1 1 1 2 2 1

1 1 1 2 1 3 11 2 3 ,

i i i i i i i i L out

i u i u i u i E out

X J Z J Z J D

J U J U J U J E

   

  
 (9) 

2 2 1 1 2 2 2 2 2 1

2 2 2 3 2

1

2 3 ,

i i i i i i i i L out i u

i u i u i E out

X J Z J Z J D J U

J U J U J E

    

 
 (10) 

1 1 2 2 1

2 3

1

2 3 ,

in Li i Li i LL out Lu

Lu Lu LE out

D J Z J Z J D J U

J U J Z J D

    

 
 (11) 

1 1 2 2 1

2 3

1

2 3 .

in Ei i Ei i EL out Eu

Eu Eu EE out

E J Z J Z J D J U

J U J U J E

    

 
 (12) 

From the flow summation of 0-junctions 

corresponding to 
2m  constraint force vectors in system 

vector bond graph model, we have: 

1 1 2 2 3 30 Ci i Ci i CL out Cu CE outJ Z J Z J F J U J E     . (13) 

By the algebraic manipulation from Equations (5)-(13), 

the system driving moment and constraint force equations 

can be written as: 

If 0CLJ  , 0CEJ  : 

1 1 1 1 1 1 2 2 1 3

1 1 1 1 1 1 2 3

1 2

3

1

1 3

T T 1

4 3

1

2 4 1 2 3 1

5 3 3

(

) ( )

( ) (

) ( )

u u u i i u i i u u

i u i i u i u cu

i i

cu

U S S X S X S U

T X T T H J U a

U H H X H X H U

H U J U b







   


 


     


 

, (14)  

where: 

1 1

1 2 1[ ( ) ]EL LL LE E EE EA I J R I J R J R J R     , 

1 1 1 1

1

2 1( )Ei i EL LL Li iA J F J R I J R J F   , 

2 2 2

1

3 1( )
2Ei i EL LL Li iA J F J R I J R J F   , 

1 1

1

4 1( )Lu EL LL LuA J J R I J R J   , 

2 2

1

5 1( )Eu EL LL LuA J J R I J R J   , 

3 3

1

6 1( )Eu EL LL LuA J J R I J R J   , 

1 1

1

1 1 1 2( ) ( )LL Li i LE EB I J R J F J R A A   , 

2 2

1

2 1 1 3( ) ( )LL Li i LE EB I J R J F J R A A   , 

1

1

3 1 1 4( ) ( )LL Lu LE EB I J R J J R A A   , 

2

1

4 1 1 5( ) ( )LL Lu LE EB I J R J J R A A   , 

3

1

5 1 1 6( ) ( )LL Lu LE EB I J R J J R A A   , 

1 1 1 1 1 1 11 1 2i i i i i i L i E ET J F J RB J R A A   , 

1 2 1 2 2 1 12 1 3i i i i i i L i E ET J F J RB J R A A   , 

1 1 1 1 1 13 1 4i u i L i u i E ET J RB J J T A A   , 

1 2 1 1 2 14 1 5i u i L i u i E ET J RB J J T A A   , 

1 3 1 1 3 15 1 6i u i L i u i E ET J RB J J T A A   , 

1 1 1 1 1 1 2 2 2 11 Ci i Ci i i i Ci i i iH J F J F T J F T   , 

2 2 1 1 1 2 2 2 2 22 Ci i Ci i i i Ci i i iH J F J F T J F T   , 

1 1 1 1 2 2 2 13 Ci i i u Ci i i uH J F T J F T  , 

1 1 1 2 2 2 2 24 Ci i i u Ci i i uH J F T J F T  , 

3 1 1 1 3 2 2 35 2Cu Ci i i u Ci i i uH J J F T J F T   , 

1 1 1 1 1 1 1 2

T 1

4 3[ ( ) ]u u i u i u i uS T T T H H   , 

1 1 1 1 1 2 1 1

T 1

4 1( )u i i u i u i iS T T H H T  , 

1 2 1 1 1 2 1 2

T 1

4 2( )u i i u i u i iS T T H H T  , 

1 3 1 2 1 3

T 1

4 5( )
1 1u u i u i u i uS T T H H T  , 

If 0CLJ   or 0CEJ  : 

1 1 1 1 1 1 2 2 1 3

1 1 1

2 1 1 2 2 1

3

1

1 3

T

1

2 1

3

(

) ( )

( ) (

) ( )

u u u i i u i i u u

i u i

Cu Ci i Ci i Cu

Cu

U D D X D X D U

T X a

U T T X T X T U

T U b





   




    



, (15) 

where: 

1 1 1 1 1 2Ci Ci i CL CE ET J F J RB J R A A   , 

2 2 2 2 1 3Ci Ci i CL CE ET J F J RB J T A A   , 

1 3 1 4Cu CL CE ET J RB J T A A  , 

2 4 1 5Cu CL CE ET J RB J R A A  , 

3 35 1 6Cu CL Cu CE ET J RB J J R A A   , 

1 1 1 1 1 1 1 2 2 1

T 1[ ( ) ]u u i u i u i u Cu CuD T T T T T   , 

1 1 1 1 1 2 2 1 1 1

T 1( )u i i u i u Cu Ci i iD T T T T T  , 

1 2 1 2 2 2 1 2

T 1( )
1 1u i i u i u Cu Ci i iD T T T T T  , 

1 3 1 1 1 2 2 3 1 3

T 1( )u u i u i u Cu Cu i uD T T T T T  . 
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Giving the system independent moving state variable 

vector 
1i

X  and its derivative 
1i

X , the corresponding 

system driving moment (or force) vector 
1U  and 

constraint force vector 
2U  can be determined from 

Equations (14) or (15) directly. 

 

4 Example System 

 

A robot mechanism with five degrees of freedom is shown 

in Figure 4, global coordinates O0X0Y0Z0 is located at the 

point O0, and the body frame CiXiYiZi ( i =1,2,3,4 ) is 

located at the centre of mass. 
1T , 

2T  and 
3T  are the driving 

moments, 
1F  and 

2F  are the driving forces along 
1Z  axis 

and 
2Y  axis respectively. The structure parameters of the 

robot mechanism are shown in Table 1, c = 0.05m, 

L=0.50m. The system input motion are as following, 

 
1

cosCZ t ,  1 sin t  ,  
2

cos 2CY t , 

 2 sin 2 t  ,  3 sin 3 t  . 

 
FIGURE 4 The robot system with five degrees of freedom 

TABLE 1 The structural parameters of robot mechanism 

Body i Mass（kg） 
Moment of inertia（Kgm2） 

X Y Z 

1 250 90 10 90 

2 150 13 0.75 13 
3 100 4 1 4.3 

The components for this example are four rigid bodies, 

which are joined by two cylindrical joints and one revolute 

joint, shown as Figure 5. For revolute joint, the constraint 

limits the relative translation of the two bodies Bα
 and 

Bβ  along three directions, and limits the relative rotation 

of the two bodies Bα
 and Bβ along two directions, 

leaving only one rotation degree of freedom free. From the 

kinematic constraint condition, its vector bond graph can 

be obtained [11]. By the procedures mentioned above, the 

vector bond graph model of cylindrical joints can be 

made. By assembling the vector bond graph models of a 

single space moving rigid body [9, 11], the revolute joint, 

and the cylindrical joints, the overall robot system vector 

bond graph model can be obtained and shown as Figure 6, 

where part I represents the cylindrical joint between body 

1 and body 2, and part II is the revolute joint between body 

2 and body 3. 
Here, the constraint force vectors of joints can be 

considered as unknown source vectors, such as 
3Se , 

7 ,Se  
12Se , 

14Se  in Figure 6 and added to the 

corresponding 0-junctions to eliminate differential 
causality. As a result, all differential causalities in this 
system vector bond graph can be eliminated, thus the 
procedure presented here can be used directly. 
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FIGURE 5 The jointing structure diagram of robot system 

 
FIGURE 6 The vector bond graph model of robot mechanism system 

Z 11 Z[I ]J  , 
2 2 2X Y Zdiag(I I I )b

2J  , 

3 3 3

b

3 X Y Zdiag(I I I )J  . 
2Cr , 

3Cr are the mass centre 

velocity vector of body 2 and body 3 in global 

coordinates, 1

b , 2

b  and 3

b  are the angular velocity 

vector of body 1, body 2 and body 3 in body frame 

respectively, 
1 1

b θ  . 
1 , 

2  and 
3  are the angular 

velocity vector of body 1, body 2 and body 3 in global 

coordinates. The mass of body i is 
iCm , 

11 CM m , 

2 2 22 diag( )C C CmM m m , 
3 3 33 diag( ).C C Cm mM m  

Inputting the physical parameters of the robot 
mechanism, the coefficient matrices of Equations (5)-

(13), known source vector 
3U , system independent 

moving state variable vector 
1i

X , and its derivative 
1i

X  

into the program associated with the procedure presented 
here based on MATLAB [12], the system driving 
moment (or force) and constraint force equations in the 
form of Equation (15) can be derived on a computer. The 
corresponding driving moment (or force) and constraint 
forces can be determined. Some of results are shown in 
Figures 7-10. 

 

  
FIGURE 7 The driving force of body 1 FIGURE 8 The driving moment of body 1 
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FIGURE 9 Resultant constraint force between body 1 and body 2 FIGURE 10 Resultant constraint force between body 2 and body 3 

 

5 Conclusions 

 
The vector bond graph procedure presented here is very 
suitable for dealing with computer aided kineto-static 
analysis of complex robot systems with the coupling of 
multi-energy domains. Compared with traditional scalar 
bond graph method, this vector bond graph procedure is 
more suitable for complex spatial robot mechanism 
because of its more compact and concise representation 
manner. The differential causalities in the vector bond 
graph model of spatial robot mechanisms can be avoided 
by the bond graph augment method proposed here, thus 
the algebraic difficulties in system automatic modelling 
and kineto-static analysis can be overcome. In the case of 
considering EJS, the unified formulae of system driving 
moment and constraint force equations are derived, which 

are easily derived on a computer in a complete form. 
These lead to a more efficient and practical automated 
procedure for kineto-static analysis of complex robot 
systems over a multi-energy domains in a unified manner. 
The validity of the procedure is illustrated by successful 
application to the kineto-static analysis of spatial robot 
systems with five degrees of freedom. 
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