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Abstract 

The incomplete data travel time tomography with sparse rays can result in the ill-posed inverse problem in practical engineering, so 

the inversion strategy is very important in order to obtain reasonable inversion result. In this paper, the generalized inverse theory is 

taken and the influences are discussed which the system layout, initial model and prior information will impose on the inversion. The 

indexes of system optimal layout, the selection principle of initial model and regularization methods are presented in this paper. A 

velocity model of explosion is imitated and the inversion results are compared. A conclusion can be gained that system optimal layout, 

initial model rational selection and regularization methods utilization can help to improve inversion precision farthest in practical 
project.  
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1 Introduction 

 

Computerized tomography is one of the non-destructive 

testing methods [1]. We can achieve the distribution of phy-

sics parameter existing in detected target by laying sensors 

outside the detected target and resolve the engineering and 

technology problems [2-4]. Computerized tomography tech-

nology has already used in medical and industrial fields 

widely.  

Elastic wave travel time tomography is one of the im-

portant methods of engineering physics survey, it has played 

an important role in industry testing and resources prospec-

ting [5]. It is necessary that there are enough detecting rays 

through the target in order to achieve high accuracy image 

information inside the target, however, which will increase 

the practical project difficulty and improve the cost. The da-

ta of elastic wave computerized tomography in practical 

project is usually incomplete owing to the insufficient dri-

ving sources and detectors. This engineering problem re-

sults in the incomplete tomography data inevitably.  

Incomplete data tomography has the problems of sparse 

inverse data and low inversion accuracy and the inversion 

result is determined by a good many factors [6]. This paper 

aiming at the problems of travel time tomography with spar-

se rays, analyses the influences that the system layout, initial 

model and prior information imposed on the inversion by 

numerical experiment. In practical project, we can improve 

inversion accuracy by system optimal layout, initial model 

rational selection and utilization of regularization methods. 

 

2 Inversion strategy analysis 

 

For travel time tomography, there is the equation below: 

DS T , (1) 
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where 
1 2( , ) 'mT t t t  is the m-dimension column vector 

of travel time; 
1 2( , ) 'nS s s s  is an unknown n-dimen-

sional column vector, it expresses unknown discrete ele-

ment slowness value in discrete cell; D is the distance matrix 

of m n  and its element is dij. 

 

2.1 SYSTEM LAYOUT OPTIMIZATION 

 

2.1.1 Mesh generation 

 

The tested area is divided into numbers of regular meshes 

and each mesh has a uniform wave velocity. The more 

meshes are generated, the higher resolution of computed 

tomography will be achieved and the more uncertain solu-

tions will be achieved too. Mesh generation should accord 

to the tested area size, the prior information (such as velocity 

distribution characteristic, abnormal body size, sampling 

position etc.), reconstruction accuracy, the number of dri-

ving sources and detectors. 

 

2.1.2 Optimal distribution of sensors and judgment 

indexes 

 

When designing sensors position, we should meet the follo-

wing principles: extensive coverage and uniform distribu-

tion of rays, reduced number of zero elements in distance 

matrix. In order to make the tested area covered by rays as 

much as possible and achieve the effective detection, we 

should have a rational distribution of the sensors according 

to the follow factors: the ray density, orthogonality and the 

condition number of matrix D.  

The ray density represents the number of rays passing 

through each mesh. The ray orthogonality is measured by 

maximal sine value of angle between rays [7]. The greater 
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the ray density is and the better the orthogonality is, the 

smaller inversion error will be achieved. 

The tomography inversion is to solve the ill - posed 

Equation (1). The inversion stability is determined by the 

condition number of matrix D. The bigger condition number 

can result in poor inversion stability. Supposing that 

observed data T has a minor change, the variation of solution 

is S  Equation (1) has the relation: 

( )D S S T T    . (2) 

Then: 

1S D T  . (3) 

According to the property of subordinate norm, there is 

the relation: TD  1S   and SDT  , so

T
T

D

SD

S



1

 . That is: 

T

T
Dcond

S

S 
)(

. (4) 

Then, 

1( )cond D D D , (5) 

where )(Dcond  is the condition number of matrix D. 

Rational distribution of the sensors can reduce the condition 

number and we can receive the more stable solutions. 

 

2.2 THE INITIAL MODEL SELECTION 

 

When the rays through the target are sparse, the inverse 

results depend on the initial model severely. If the deviation 

of initial model and true model is small, we can obtain better 

results, otherwise, the results aren’t true. 

This paper calculates the correlation degree of initial 

model and true model by correlation coefficient; analyses 

the change trend of correlation coefficient with inversion 

error and obtains the dependence degree of inversion result 

on initial model. 

For two groups data of ix  and iy , ni ,2,1 , the 

correlation coefficient is defined as[8]: 

1

2 2

1 1

( )( )

( ) ( )

n

i i
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i i i
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r

x x y y



 

 



 



 

. (6) 

The absolute value of r is closer to 1, the two groups data 

have higher correlation degree. We can set reasonable initial 

model by prior information and experience. We should 

analyse the character of model according to prior 

information before inversion. Experience formula is also a 

good way to set initial model. In a word, we should improve 

the correlation degree of initial model and true model as far 

as possible, only thus can we improve the inversion 

accuracy. 

 

2.3 APPLICATION OF REGULARIZATION 

METHODS 

 

Incomplete data travel time tomography with sparse rays 

makes the n > m in Equation (1) and represents 

underdetermined problem in mathematics. In this condition, 

the inversion results have multiple solutions and credibility 

is poor. An effective way to resolve the underdetermined 

inversion problem of multiple solutions is adopting 

regularization methods to constrain the inversion process 

and the inversion results by prior information. At the same 

time, regularization methods make an important role in 

perfecting ill-conditioned problem. 

The application of regularization methods includes: 

damping the asymmetrical covering of rays, damping the 

inaccuracy of observed data, tight constraint for true data, 

setting the value range of some parameters in the iterative 

procedure and so on. The ways of regularization adding 

have addition and multiplication. This paper presents some 

regularization methods as described below. 

 

2.3.1 Damping the asymmetrical covering of rays 

 

The ray coverage will affect the inverse results. The 

damping regularization methods aiming at the asymmetrical 

covering of rays is model covariance matrix, which weights 

different value in different mesh according to ray coverage. 

Generally, rays is denser, the inversion results are more 

accurate. Therefore, the meshes through by more rays have 

more information and should weight a larger value. 

 

2.3.2 Damping the inaccuracy of observed data 

 

The observed data contains noises. The data in different 

acquisition channel has different noises and the noises will 

be amplified in inversion. So, the data should have different 

weighting according to its accuracy. The damping matrix is 

data covariance matrix. For travel time tomography, the 

waveform signal is weakening with the transmission 

distance. The ray path is shorter, the signal to noise ratio is 

higher, so the smaller travel time should weight a larger 

value. 

 

2.3.3 Tight constraint of true data 

 

In practical application, we can measure the velocity of this 

position by individual sampling point in interested area and 

treat it as the prior information. Equivalent to increase the 

constraint equations in the linear Equation (1) with: 

'WS S , (7) 

where W is a h n  matrix. h is the number of sampling 

point. And the ]10000[ iw , the position of constrained 

parameter is 1, others are 0. 'S is the observed data of samp-

ling points. So the Equation (1) is rewritten as: 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 18(11) 1362-1367 Guo Yali, Han Yan, Liu Linmao 

1364 
NATURE PHENOMENA AND INNOVATIVE ENGINEERING 

 

0 0

'

D T
S

W S

   
    

   
, (8) 

where 0D , 0T  are the distance matrix and travel time mat-

rix without prior information. Rewrite above equation beco-

ming TDS   and make calculation. 

 

2.3.4 Setting the value range of some parameters 

 

We can obtain the value range of some parameters by the 

prior information sometimes. Constraining the results by the 

value range of some parameters in the iterative procedure 

helps to improve the inversion precision. 

 

3 Weighted generalized inversion algorithm 

 
Solving the discrete inversion Equation (1) by matrix is the 
same as solving inverse matrix of D. However, in practical 
project, the problem of incomplete data owing to the insuf-
ficient number of driving sources and detectors makes 
Equation (1) become into a sparse, morbid, underdeter-
mined, incompatible linear equation set [9]. The coefficient 
matrix-D in general is a singular matrix and its inverse mat-
rix does not exist obviously. So it is necessary to adopt the 
generalized inverse theory to solve matrix-D.  

Thinking of the regularization methods, we adopt model 
covariance matrix and data covariance matrix to damp the 
asymmetrical covering of rays and the inaccuracy of obser-
ved data. The weighted generalized inversion method is the 
generalized inversion algorithm combining with the regula-
rization methods. 

Given nmCA  , P and Q are positive definite matrix of 

m m  and nn  respectively. If mnCX  , satisfying: 

,

( )

( )

T

T

AXA A XAX X

PAX PAX

QXA QXA

 



 

. (9) 

Then X is defined as weighted generalized inverse of A: 

mnA , 

mnA  is expressed as [10]:  

1 1( )mnA Q PAQ P    . (10) 

The data covariance matrix and model covariance 
matrix are P and Q, the diagonal element of P and Q is 
defined as: 

1{ }diag P T  , (11) 

KQdiag }{ . (12) 

T is the M-dimension vector of travel time of current model, 

the element of which is 



n

j

jiji sdt
1

, mi ,,3,2,1  . K is 

the N-dimension vector, the element of K is 



m

i

jijj vdk
1

( nj ,,3,2,1  ). jv  is velocity in mesh of No. j. 

Consequently, travel time tomography based on weigh-

ted generalized inverse is rewritten as: 

1 1( )S Q PDQ P T    . (13) 

 

4 Numerical simulation experiments 

 

4.1 TESTING MODEL 

 

The model is a velocity model of explosion field as shown 

in Figure1. The tested area is divided into 10×10 meshes, 

and bomb is placed in the centre of test area as shown in 

Figure 2. With the principle of symmetry, we only need 

make velocity inversion in the 1/4 area. The sensor number 

is no more than 20. This is a typical model of travel time 

tomography with single driving sources and sparse rays. 

 
FIGURE 1 The velocity model of explosion field 

detectors explosive sampling points  
FIGURE 2 The tested area layout 

Defining, the number of regular meshes is n, The relative 

velocity error in the No. j mesh is defined: 

'

'

j j

j

j

v v

v



 , (14) 

where 
'
jv  is the true velocity value in No. j grid , jv  is the 

inversion result. 

The average relative error in all meshes is defined: 

'

'
1 1

1 1N N
j j

j

j j j

v v

N N v
 

 


   . (15) 

 

4.2 SIMULATION OF SENSORS DISTRIBUTION 

 

We select the sensors number is 13; two different sensor 

layouts are presented in Figure 3. The first sensor layout is 

symmetrical as shown in Figure 3a, the second is optimized 

layout by the judgment indexes in this paper as shown in 

Figure 3b. 
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The ray density and orthogonality distribution in the 
whole tested area in the two layouts are in Figure 4 and 
Figure 5. The condition number of matrix D in the two lay-
outs are 161074.2   and 35.61 respectively. We can see that 
the second layout has more reasonable ray distribution, the 
better orthogonality and smaller condition number. The ini-
tial model is in Figure 6. We make velocity inversion and 
the relative errors in each mesh are in Figure 7, the average 
relative errors are 8.47% and 3.32%. The inversion results 
are in Figure 8. We can see that the inversion errors are 
smaller and inversion result is approaching the true model 
with the optimized sensors layout in this paper. 
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FIGURE 3a The first layout 
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FIGURE 3b The second layout 

 
FIGURE 4a The first density distribution 

 
FIGURE 4b The second density distribution 

 
FIGURE 5a The first orthogonality distribution 

 
FIGURE 5b The second orthogonality distribution 

 
FIGURE 6 The initial model 

 
FIGURE 7 The relative error in each mesh 

 
FIGURE 8a The first inversion results 

 
FIGURE 8b The second inversion results 
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4.3 INFLUENCE OF INITIAL MODEL 

 

We generate the initial model by adding a certain proportion 

of random noise to true model and make the correlation 

coefficient of initial model and true model change from 0 to 

1. We adopt the same weighted generalized inverse algo-

rithm to simulate above model with different initial model. 

The relationship curve of correlation coefficient with inver-

se average relative error is in Figure 9. We can see that the 

correlation coefficient of initial model and true model is 

closer to 1, the inverse average relative error is smaller. Fi-

gure 10 is the relative error in each mesh when the correla-

tion coefficient is 0.97, 0.75, 0.54 and the initial model is 

even velocity. 

 
FIGURE 9The relationship curve of correlation coefficient with inverse 

average relative error 

 
FIGURE 10 The relative error in each mesh with different correlation 

coefficient 

From above analysis, we can conclude that inverse re-

sults depend on the initial model severely in the same condi-

tion. Selection reasonable initial model is very important for 

incomplete data travel time tomography with sparse rays. 

 

4.4 INFLUENCE OF PRIOR INFORMATION 

 

We make velocity inversion by generalized inversion algo-

rithm with regularization methods. Figure 11 shows the dif-

ferent results of generalized inversion algorithm with regu-

larization methods and without regularization methods. The 

average relative errors in all meshes are 4.2% and 19.81% 

respectively. 

Figure 12 shows the influence of tight constraint of true 

data on inversion. When the number of sampling points is 

respectively 3, 5, 6, the relative errors in each meshes are 

shown in Figure 12. We can see that the relative error de-

creases with the number increase of sampling points. 

 
FIGURE 11 Inversion relative error in each mesh 

 
FIGURE 12The influence of tight constraint of true data on inversion 

 

5 Conclusions 

 

The particularity and complexity of the detected target result 

in the incomplete distribution of sensors. The travel time to-

mography owing to the insufficient driving sources and de-

tectors is an incomplete data travel time tomography with 

sparse rays. This paper aiming at the problems of travel time 

tomography with sparse rays, analyses the influences that 

the system layout, initial model and prior information impo-

sed on the inversion. We obtain the conclusions as follows: 

In the condition of sparse rays, system optimal layout 

helps to improve the inversion accuracy. The indexes of sys-

tem optimal layout are presents; 

When the rays through the target are sparse, the corre-

lation degree of initial model and true model is higher, the 

results are more accurate. We can set reasonable initial mo-

del by prior information and experience. 

We can adopt regularization methods by prior informa-

tion to overcome the underdetermined inversion problem of 

multiple solutions. 

In practical project we can improve inversion accuracy 

by system optimal layout, initial model rational selection 

and utilization of regularization methods. 
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