
COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(4) 22-27 Gupta A K, Swaroop V 

22 
MATHEMATICAL AND COMPUTER MODELLING 

CCRTRD-A concurrency control technique in real time replicated 
databases 

Anil Kumar Gupta*1, Vishnu Swaroop2 
1Computer Sc. and Eng. Department, Bhagwant University, Ajmer, India 

2Computer Sc. & Eng. Department, M. M. M. University of Technology, Gorakhpur, India 

*Corresponding author e-mail: anilgupta129@gmail.com 

Received 25 November 2017, www.cmnt.lv 

Abstract 

Data Replication is the process of using multiple copies of data located at multiple servers to help database 
systems to meet the stringent temporal constraints of time-critical applications, especially Internet-based 
services to resource for superior availability Each copy of the data is called a replica. These aspects encourage 
the researchers to study the requirement for realizing the benefits of replication. Current applications such as 
Web-based services, electronic commerce, mobile telecommunication system use the concept of replication for 
their functioning. The main goal of replication [5] is to improve availability and consistency. This helps mission 
critical services, such as many financial systems or reservation systems, where even a short outage can be very 
disruptive and expensive. Therefore, the major issue is to develop efficient replica concurrency control protocols 
that can tolerate the overload of the distributed system. Here, a new Concurrency Control protocol (CCRTRD) 
has been proposed for High Priority point and firm real-time database system using Static Two-Phase Locking 
(S2PL) for being deadlock free. It also includes High Priority given to a cohort after receiving PREPARE 
message from its coordinator. Proposed protocol shows significant performance improvement over O2PL and 
MIRROR in decreasing execution time of the current transaction and waiting time of transactions in queue. 

Keywords: 

Replicated database, 

Distributed real time 

databases systems, 

two-phase commit, 

Concurrency control 

 

1 Introduction 

The Existing applications such as web-based services, 
electronic commerce, mobile telecommunication system, 
etc. are distributed in nature and manipulate time-critical 
databases. To enhance the performance and availability of 
such applications, one of the main techniques used is to 
replicate data on multiple sites of the network. The major 
issue is to develop efficient concurrency control protocols 
for replica that can tolerate the overload of the distributed 
system. If the system is not designed to handle overloads 
then it may lead to catastrophic results and some primordial 
transactions of the application can miss their deadlines. 
Although, many efforts have been made in the management 
of transactions for replicated databases in the real-time 
context [5, 6, 7]. No work deals with protocols that manage 
distributed real-time databases and simultaneously control 
the overload of the system. Some researchers have dealt 
with the scheduling of tasks under overload conditions when 
the real-time system is centralized such as in [5, 37] 
distributed as in [2, 39]. 

A distributed database is a single logical database that is 
spread physically across computers in multiple locations 
that are connected by a data communications network. The 
network must allow the users to share the data i.e. user at 
location A must be able to access the data at location B. 
Distributed real time database systems )DRTDBSs( can be 
defined as database systems that support real time 
transactions. They are used for a wide spectrum of 
applications such as air traffic control, stock market trading, 
banking, telemedicine etc. In DRTDBS, prior to, they have 

resulted in schemes wherein either the standard notions of 
database correctness are not fully supported or the 
maintenance of multiple historical versions of the data is 
required, or the real-time transaction semantics and 
performance metrics pose practical problems. Further, none 
of these studies have considered the optimistic two-phase 
locking )O2PL( protocol ]4, 40[. Although, it is the best-
performing algorithm in conventional )non-real time( 
replicated database systems ]4, 38[. Transactions in a real-
time database are classified into three types, viz. hard, soft 
and firm. The classification is based on how the application 
is affected by the violation of transaction time constraints. 
This paper reports efficient solutions for some of the issues 
important to the performance of replicated firm deadline 
based DRTDBS ]9, 10, 41[. The performance of DRTDBS 
depends on several factors such as specification of 
transaction’s deadline, priority assignment policy, 
scheduling transactions with deadlines, time conscious 
buffer and locks management, commit procedure etc. One 
of the primary performance determinants is the policy used 
to schedule transactions for the system resources. The 
resources that are typically scheduled are processors, main 
memory, disks and the data items stored in database. One 
possible goal of replication is to have replicas, which 
behaves functionally like no replicated servers. This goal 
can be stated precisely by the concept of one-copy 
serializability, which extends the concept of serializability 
to a system where multiple replica are present. An execution 
is one-copy serializable if it has the same effect as a serial 
execution on a one-copy database. We would like a system 
to ensure that its executions are one-copy serializable. In 



COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(4) 22-27 Gupta A K, Swaroop V 

23 
MATHEMATICAL AND COMPUTER MODELLING 

such a system, the user is unaware that data is replicated. 
There are two approaches to sending a transaction’s updates 
to replicas: synchronous and asynchronous. In the 
synchronous approach, when a transaction updates a data 
item, say x, the update is sent to all replicas of x. These 
updates of the replicas execute within the context of the 
transaction [16, 17, 18, 19]. This is called synchronous 
because all replicas are, in effect, updated at the same time. 
Although sometimes this is feasible, often it is not, because 
it produces a heavy distributed transaction load. It implies 
that all transactions that update replicated data must use two-
phase commit, which entails significant communications 
cost. Fortunately, looser synchronization can be used which 
allows replicas to be updated independently. This is called 
asynchronous replication, where a transaction directly 
updates one replica and the update is propagated to other 
replicas later. In a replicated environment means when there 
is more than one copy of a data item distributed on different 
sites then there is one major issue how to update replicas of 
data item on different site with efficient concurrency control 
mechanism. While few works have been done in area of 
replica concurrency control like 2PL, O2PL and OCC but 
they are not up to the standard of present requirement.  

In this paper, we focus on development of concurrency 
control protocol and one copy serializability in replicated 
firm real-time database system. In firm real-time system, the 
major issue is deadline of completion means if the 
transaction misses its deadline then the transaction is of no 
usage, hence it is killed if the transaction misses its deadline. 
Our work retains the standard one-copy-serializability as the 
correctness criterion and focuses on removal of the 
disadvantages of locking and OCC based concurrency 
control protocols. Finally, we also include an investigation 
of the O2PL algorithm, which has not been studied before 
in the real-time context. 

The rest of this paper is organised as follow. Section II enlists 
the related work. Section III discusses about the CCRTRD 
protocols. Section IV provides performance evaluation of the 
proposed protocol. Section V concludes the paper.  

2 Related work 

Concurrency control algorithms and real-time conflict 
resolution mechanisms for RTDBS have been studied 
extensively (e.g. [9, 10, 11, 25]). However, concurrency 
control for replicated DRTDBS has only been studied in [21, 
22, 23, 25]. An algorithm for maintaining consistency and 
improving the performance of replicated DRTDBS is 
proposed in [21]. In this algorithm, a multi version technique 
is used to increase the degree of concurrency. Replication 
control algorithms, that integrate real time scheduling and 
replication control, are proposed in [22, 23]. These algorithms 
employ Epsilon-serializability (ESR) [26] which is less 
stringent than conventional one copy-serializability. 

The performance of the classical distributed 2PL locking 
protocol (augmented with the priority abort (PA) and 
priority inheritance (PI) conflict resolution mechanisms) 
and of OCC algorithms in replicated DRTDBS was studied 
in [25, 27] for real-time applications with “soft” deadlines. 
The results indicate that 2PL-PA outperforms 2PLPI only 
when the update transaction ratio and the level of data 
replication are both low. Similarly, the performance of OCC 

is good only under light transaction loads. Making clear-cut 
recommendations on the performance of protocols in the 
soft deadline environment is rendered difficult. However, by 
the following points it is clear. 

1. There are two metrics – Missed Deadlines and Mean 
Tardiness, and protocols which improve one metric 
usually degrade the other. 

2. The choice of the post-deadline value function has 
considerable impact on relative protocol performance. 

Concurrency control algorithms and real-time conflict 
resolution mechanisms for RTDBS have been studied 
extensively )e.g. ]10, 11[. An algorithm for maintaining 
consistency and improving the performance of replicated 
DRTDBS is proposed in ]20[. In this algorithm, a multi 
version technique is used to increase the degree of 
concurrency. Replication control algorithms that integrate 
real-time scheduling and replication control are proposed in 
]6, 7, 30, 31[. These algorithms employ Epsilon-
serializability )ESR( which is less stringent than conventional 
one-copy-serializability. The performance of the classical 
distributed 2PL locking protocol )augmented with the priority 
abort )PA( and priority inheritance)PI( conflict resolution 
mechanisms( and validation-based algorithms was studied in 
for real time applications with “soft” deadlines operating on 
replicated DRTDBS ]6,32[. The performance of OCC is good 
only under light transaction loads. In ]4, 33[, a conditional 
priority inheritance mechanism is proposed to handle priority 
inversion. This mechanism capitalizes on the advantages of 
both priority abort and priority inheritance in real-time data 
conflict resolution. It outperforms both priority abort and 
priority inheritance when integrated with two phase locking 
in centralized real-time databases. However, the protocol 
assumes that the length )in terms of the number of data 
accesses( of transactions is known in advance, which may not 
be practical in general, especially for distributed applications. 
In contrast, our state-conscious priority blocking and state-
conscious priority inheritance protocols resolve real-time data 
conflicts based on the states of transactions rather than their 
lengths. ROWA )“read one copy, write all copies”( category 
with respect to their treatment of replicated data is another 
approach in the following description; we assume that the 
reader is familiar with the standard concepts of distributed 
transaction execution ]4, 8,[. 

A Real-Time Database Systems (RTDBS) processes 
transactions with timing constraints (deadlines) [12, 28, 29]. 
Its primary performance criterion is timeliness, not average 
response time or throughput. The scheduling of transactions 
is driven by priority order. Given these challenges, 
considerable research has recently been devoted to 
designing concurrency control methods for RTDBSs and to 
evaluating their performance. Most of these methods are 
based on one of the two basic concurrency control 
mechanisms: locking or optimistic concurrency control 
(OCC). In real-time systems transactions are scheduled 
according to their priorities. Therefore, high priority 
transactions are executed before lower priority transactions. 
This is true only if a high priority transaction has some 
database operation ready for execution. If no operation from 
a higher priority transaction is ready for execution, then an 
operation from a lower priority transaction can execute its 
database operation. Therefore, the operation of the higher 
priority transaction may conflict with the already executed 



COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(4) 22-27 Gupta A K, Swaroop V 

24 
MATHEMATICAL AND COMPUTER MODELLING 

operation of the lower priority transaction. In traditional 
methods, a higher priority transaction must wait for the 
release of the resource. This is the priority inversion 
problem presented earlier. Therefore, data conflicts in 
concurrency control should also be based on transaction 
priorities or criticalness or both. Hence, numerous 
traditional concurrency control methods have been extended 
to the real-time database systems.  

In classical two-phase locking protocol, transactions set 

read locks on objects that they read, and these locks are later 

upgraded to write locks for the data objects that are updated. 

If a lock requested is denied, the requesting transaction is 

blocked until the lock is released. Read locks call is shared. 

While write locks are exclusive. For real-time database 

Systems, two phase locking needs to be augmented with a 

priority based conflict resolution scheme to ensure that 

higher priority transactions are not delayed by lower priority 

transactions. In High Priority scheme, all data conflicts are 

resolved in favour of the transaction with the higher priority. 

In distributed Two Phase Locking as described in [1] when 

a transaction arrives at a site in distributed system, it is 

divided in sub transactions known as cohorts and processes, 

which update replicas of data item, are known as replica 

updaters. If a request by a cohort is a read lock on a data 

item, then any lock is not required on the replicas at remote 

sites but if the request is a write lock then write locks are 

required on all the replicas of the data item. In this protocol 

write locks are obtained as the transaction executes with the 

transaction blocking on a write request until all the copies of 

the data items to be updated have been successfully locked 

by a local cohort and its remote updaters on replicas. Only 

the data locked by a local cohort is updated in the data 

processing phase of transaction. Remote copies locked by 

updaters are updated after those updaters have received list 

of items to be updated with the PREPARE message during 

the first phase of commit protocol. Write locks are only 

released after they are committed or aborted.  

In distributed optimistic two-phase locking as described 

in distributed environment for replica concurrency control 

is termed as O2PL. In this algorithm when a cohort requests 

for a write lock, it is immediately given to it if lock is 

available. However, it defers requesting write locks on 

replicas at remote site in the second phase of commit 

protocol. In this protocol, when a cohort updates a data item 

it requests for write locks on replicas after it has received 

PREPARE message from its master site. What happens that 

after getting PREPARE message from its coordinator the 

cohort sends a PREPARE message to all of its remote 

updaters of the corresponding data item. With the 

PREPARE message, it also sends list of the data items to be 

updated and the processes used in updating the data items. 

After that, remote updaters obtain the locks on data item to 

be updated and sends COMMIT message to the cohort after 

completing the updating. Now after getting COMMIT 

message from replica updaters, the cohort sends 

PREPARED message to its coordinator. Since the locks are 

deferred to the second phase of commit protocol, there is a 

chance of both block and abort also due to arriving of higher 

priority transaction than the executing one. 

3 The CCRTRD protocol 

We now present our new replica concurrency control 
protocol called CCRTRD augments. The O2PL protocol 
with a novel, simple to implement, state based conflict 
resolution mechanism called state-conscious priority 
blocking. In this scheme, the choice of conflict resolution 
method is a dynamic function of the states of the distributed 
transactions involved in the conflict. A feature of the design 
is that acquiring the state knowledge does not require inter-
site communication or synchronization, nor does it require 
modifications of the two-phase commit protocol. Two real-
time conflict resolution mechanisms are used in CCRTRD. 
Even though S2PL [4, 35, 36] is a deadlock free mechanism 
but it slows down the concurrent processing of multi 
transactions. This is due to locking of all the data until the 
end of the commit phase. Also, if a higher transaction arrives 
at a site than executing one then current transaction is 
aborted and lock is made available to higher priority one. 
This makes the wastage of consumed resources. Hence, we 
propose here a new mechanism with augmentation of S2PL. 
In classical two-phase locking protocol [14,15], transactions 
set read locks on objects that they read, and these locks are 
later upgraded to write locks for the data objects that are 
updated. If a lock requested is denied, the requesting 
transaction is blocked until the lock is released. Read locks 
can be shared, while write locks are exclusive. For real-time 
database systems, two-phase locking needs to be augmented 
with a priority-based conflict resolution scheme to ensure 
that higher priority transactions are not delayed by lower 
priority transactions. In High Priority scheme [13], all data 
conflicts are resolved in favor of the transaction with the 
higher priority. When a transaction requests a lock on an 
object held by other transactions in a conflicting lock mode, 
if the requester’s priority is higher than that of all the lock 
holders, the holders are restarted, and the requester is 
granted the lock; if the requester’s priority is lower, it waits 
for the lock holders to release the lock. In addition, a new 
read lock requester can join a group of read lock holders 
only if its priority is higher than that of all waiting write lock 
operations. This protocol is referred to as 2PL-HP [13]. It is 
important to note that 2PL-HP loses some of the basic 2PL 
algorithm’s blocking factor due to the partially restart-based 
nature of the High Priority scheme. We will use here a term 
High Priority point(HPP) with Block(BK)/ Do not 
Abort(DAB) which means if a cohort reaches its High 
Priority point (HPP) than it will not be aborted against a 
higher priority transaction at that site. It means DAB is used 
here. And if a lower priority transaction demands a lock then 
it will be blocked against a higher priority executing one. It 
means BK is used here. The proposed mechanism is: 

HPP of a cohort: A cohort reaches its HPP after sending 
a PREPARE message to its replica updaters in its execution 
phase i.e. in first phase of 2PC. 

HPP of a replica updater: A replica updater reaches HPP 
after gaining locks on needed data items. By this mechanism 
some significant improvements can be noted in S2PL. Since 
after HPP a cohort has a less probability of abortion hence a 
blocked transaction can borrow data from executing one. It 
means waiting and executing time of blocked transaction 



COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(4) 22-27 Gupta A K, Swaroop V 

25 
MATHEMATICAL AND COMPUTER MODELLING 

will get reduced and less probability to access which is very 
needed in a firm RTDBMS. Also by sending PREPARE 
message to its replica updaters as shown in the waiting time 
of a cohort between sending PREPARE message to its 
updaters and receiving COMMIT message from them will 
get reduced. Hence, over all time of execution of transaction 
will get reduced.  

Algorithm  
For a cohort: HPP=F; 

EXTfinish (execution finished) =f; 
if (message=INITIATE COHORT) 

{ 
Start execution of cohort; 
EXTfinish=T; 

} 
else if (EXTfinish=T) 

{ 

Send PREPARE message to its replica updaters; 
HPP=T; 

HPP Send WORK DONE message to its coordinator; 
} 

For a replica updater: 
if (message=PREPARE && lock obtained=T) 

{ 
HPP=T; 

After execution send COMMIT message to its cohort; 
} 

4 Performance evaluation of ccrtrd 

We have addressed the problem of managing firm-real time 
database system that access replicated data in a distributed 
system that may be replicated. The main ideas of the 
protocol are to associate an importance value to each 
submitted transaction. The contributions are given below. 

1. Proposed mechanism provides a deadlock free 
environment. 

2. The waiting time of blocked transaction is reduced. 
3. The execution time of current transaction is reduced. 
4. Wasting of resources is minimized. 
5. Easy implementation and integration with S2PL and 

2PC. 
6. Decreases the waiting time of transactions in wait 

queue.  
To evaluate the performance of the CCRTRD protocol, 

we have developed a detailed simulation model of a 
distributed real-time database system )DRTDBS(. Our 
model is based on the distributed database model presented 
in ]3[, which has also been used in several other studies of 
distributed database system behaviour. 

The database is modelled as a collection of DBSize 
pages that are distributed over NumSites sites. The number 
of replicas of each page, that is, the “replication degree”, is 
decided by the ReplDegree parameter. The physical 
resources at each site consist of NumCPUs CPUs, 
NumDataDisks data disks and NumLogDisks log disks. At 
each site, there is a single common queue for the CPUs and 
the scheduling policy is pre-emptive Highest- Priority-First. 
Each of the disks has its own queue and is scheduled 
according to a Head-on-Line policy, with the request queue 
being ordered by transaction priority. The PageCPU and 
PageDisk parameters capture the CPU and disk processing 
times per data page, respectively. The parameter 
InitWriteCPU models the CPU overhead associated with 

initiating a disk write for an updated page. When a 
transaction makes a request for accessing a data page, the 
data page may be found in the buffer pool, or it may have to 
be accessed from the disk. The BufHitRatio parameter gives 
the probability of finding a requested page already resident 
in the buffer pool. The communication network is simply 
modelled as a switch that routes messages and the CPU 
overhead of message transfer is taken into account at both 
the sending and receiving sites and its value is determined 
by the MsgCPU parameter – the network delays are 
subsumed in this parameter. This means that there are two 
classes of CPU requests local data processing requests and 
message processing requests. Transactions arrive in a 
Poisson stream with rate ArrivalRate, and each transaction 
has an associated firm deadline, assigned as described below. 
Each transaction randomly chooses a site in the system to be 
the site where the transaction originates and then forks off 
cohorts at all the sites where it must access data. 
Transactions in a distributed system can execute in either 
sequential or parallel fashion. The distinction is that cohorts 
in a sequential transaction execute one after another, 
whereas cohorts in a parallel transaction are started together 
and execute independently until commit processing is 
initiated. We consider only sequential transactions in this 
study. Note, however, that the execution of replica updaters 
belonging to the same cohort is always in parallel. A 
summary of the parameters used in the simulation model are 
presented in Table 1 given below. 

Parameter Meaning Setting 

NumSites Number of sites 4 

DbSize Number of Pages in the databases 1000 pages 

ReplDegree Degree of Replication 4 

NumCpus Number of CPUs per site 2 

NumDataDisks Number of data disks per site 4 

NumLogDisks Number of log disks per site 1 

BufHitRatio Buffer hit ratio on a site 0.1 

ArrivalRate Transaction arrival rate (Trans./Second) Varied 

SlackFactor Slack factor in deadline assignment 6.0 

TranSize No. of pages accessed per trans. 16 pages 

UpdateFreq Update frequency 0.25 

PageCpu CPU page processing time 10 ms 

InitWriteCpu Time to initiate a disk write 2 ms 

PageDisk Disk page access time 20 ms 

LogDisk Log force time 5 ms 

Msgcpu CPU message send/receive time 1 ms 

 
The total number of pages accessed by a transaction, 

ignoring replicas, varies uniformly between 0.5 and 1.5 
times TransSize. These pages are chosen uniformly 
(without replacement) from the entire database. The 
proportion of accessed pages that are also updated is 
determined by UpdateFreq Upon arrival, each transaction 
Tis assigned a firm completion deadline using the formula. 

Deadline (T) =Arrival Time (t)+ Slack Factor*RT, 

where Deadline(T), ArrivalTime(T), and RT are the 
deadline, arrival time, and resource time, respectively, of 
transaction T, while SlackFactor is a slack factor that 
provides control of the tightness/slackness of transaction 
deadlines. The resource time is the total service time at the 
resources at all sites that the transaction requires for its 
execution in the absence of data replication. 

Figures 1 and 2 present the missed deadline percentages 
of transactions for the O2PL, MIRROR and CCRTRD 



COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(4) 22-27 Gupta A K, Swaroop V 

26 
MATHEMATICAL AND COMPUTER MODELLING 

protocols under normal loads and heavy loads, respectively. 
To help isolate the performance degradation arising out of 
concurrency control, we also show the performance of 
CCRTRD that is, a protocol that processes read and write 

requests like O2PL, but ignores any data conflicts that arise 
in this process and instead grants all data requests 
immediately. It is important to note that CCRTRD is only 
used as an artificial baseline in our experiments. 

 

 
FIGURE 1 Miss rate under normal load FIGURE 2 Miss rate under heavy load 

We observe that CCRTRD protocol has the best 
performance among all the protocols. 

5 Conclusion 

At this point, we have exploited the difficulty of accessing the 
replicated data in firm RTDBS mainly concurrent execution 
of transaction in real time replicated database problem in 
conflict mode. This proposed mechanism can be easily 

integrated and implemented in current systems. This 
proposed CCRTRD protocol outperform other protocols like 
O2PL, OCC and MIRROR. Also in this paper, it is ssaid that 
a blocked transaction can borrow data item after reaching the 
High Priority point by the executing transaction, in this way 
the waiting time of transaction in queue will be decreased.  

As a part of future work, an exhaustive real-life 
implementation work is required to establish this approach 
as a value-based commercial product. 

 

References 

[1] Gray J 1979 Notes On Database Operating Systems,”in Operating 

Systems: An Advanced Course R. Bayer, R. Graham, G. Seegmuller, 

eds., Springer-Verlag 

[2] M Valduriez P 1991 Principles of Distributed Database Systems 

Prentice-Hall. P. Bernstein, V. Hadzilacos and N. Goodman 

[3] Xiong M et al. 1999 MIRROR: A State-Conscious Concurrency 

Control Protocol for Replicated Real-Time Databases Computer 

Science Department Faculty Publication Series 

[4] Shanker U et al 2006 The SWIFT-Real Time Commit Protocol 

International Journal of Distributed and Parallel Databases, Springer 

Verlag 20(1) 29-56 

[5] Abbadi A, Toueg S 1989 Maintaining availability I partitioned 

replicated databases ACM Trans. Database Syst 14)2( 264–90 

[6] Ramamritham Son S H, Di Pippo L 2004 Real-Time Databases and 

Data Services Real-Time Systems J 28 179-216 

[7] Robert A, Garcia-Molina H 1992 Scheduling Real-Time Transactions 

ACM Trans. on Database Systems 17)3( 

[8] Levy E, Korth H, Silberschatz 1991 An optimistic commit protocol for 

distributed transaction management Proceedings of ACM SIGMOD 

Conference 

[9] Jayant H, Carey M, Livney 1992 Data Access Scheduling in Firm Real 

Time Database Systems Real Time Systems Journal 4)3( 

[10] Singh Jayanta, Mehrotra S C 2006 Performance analysis of a Real Time 

Distributed Database System through simulation 15th IASTED 

International Conf. on APPLIED SIMULATION & MODELLING, Greece 

[11] Singh Jayanta, Mehrotra S C 2009 A study on transaction scheduling 

in a real-time distributed system EUROSIS’s Annual Industrial 

Simulation Conference, UK 

[12] Ramamritham K, Son S H, DiPippo L 2004 Real-Time Databases and 

Data Services Real-Time Systems J 28 179-216 

[13] Abbott R, Garcia-Molina H 1988 Scheduling Real-Time Transactions: 

A Performance Evaluation Proceedings of the 14th VLDB Conference, 

August 

[14] Abbott R, Garcia-Molina H 1989 Scheduling Real-Time Transactions 

with Disk Resident Data Proceedings of the 15th VLDB Conference, 

August 1989. IRACST – International Journal of Computer Networks 

and Wireless Communications )IJCNWC(, ISSN: 2250-3501 2(3), June 

2012 401 

[15] Eswaran K P, Gray J N, Lorie R A, Traiger I L 1976 The Notionsof 

Consistency and Predicate Locks in a Database System 

Communications of the ACM 19)11(  

[16] Son S 1987 Using Replication for High Performance Database Support 

in Distributed Real-Time Systems Proceedings of the 8th IEEE Real- 

Time Systems Symposium 79-86 

[17] Ahamad M, Ammar M H 1989 Performance Characterization of 

Quorum- Consensus Algorithms for Replicated Data IEEE TSE 15)4( 

492–6 

[18] Peleg D, Wool A 1995 The Availability of Quorum Systems 

Information and Computation 123)2( 210–23 

[19] Thomas R H 1979 A Majority Consensus Approach to Concurrency 

Control for Multiple Copy Databases ACM Transactions on Database 

Systems 4)9( 180–209 

[20] Nicola M, Jarke M 2000 Performance Modeling of Distributed and 

Replicated Databases IEEE Trans. on Knowledge and Data 



COMPUTER MODELLING & NEW TECHNOLOGIES 2017 21(4) 22-27 Gupta A K, Swaroop V 

27 
MATHEMATICAL AND COMPUTER MODELLING 

Engineering 12)4( 645–72 

[21] Guerraoui R, Felber P, Garbinato B, Mazouni K R 1998 System 

support for object groups ACM OOPSLA’98 

[22] Kemme B, Alonso G 2000 Don’t be lazy, be consistent: Postgres-R, A 

new way to implement Database Replication In Proc. of VLDB’01 

[23] Naor M, Wool A 1998 The Load, Capacity, and Availability of 

Quorum Systems SIAM Journal of Computing 27)2( 423–47 

[24] Nicola M, Jarke M 2000 Performance Modeling of Distributed and 

Replicated Databases IEEE Trans. on Knowledge and Data 

Engineering 12)4( 645–72 

[25] Patino Martinez M, Jimenez Peris R, Kemme B, Alonso G 2000 

Scalable Replication in Database Clusters In Proc. of Int. Conf. on 

Distributed Computing, DISC’00, LNCS-1914. Toledo, Spain 315–29 

[26] Peleg D, Wool A 1995 The Availability of Quorum Systems 

Information and Computation 123)2( 210–23 

[27] Saha D, Rangarajan S, Tripathi S K 1996 An analysis of the average 

message overhead in replica control protocols IEEE Trans. on Paral. 

and Dist. Syst. 7)10( 

[28] Theel O, Pagnia H 1998 Optimal Replica Control Protocols Exhibit 

Symmetric Operation Availabilities In Proc. Of Symp. on Fault-

Tolerant Computing )FTCS( 

[29] Thomas R 1979 A Majority Consensus Approach to Concurrency 

Control for Multiple Copy Databases ACM Transactions on Database 

Systems 4)9( 180–209 

[30] Agrawal D, Abbadi A E 1990 The Tree Quorum Protocol: An Efficient 

Approach for Managing Replicated Data In Proc. Of the 16th VLDB 

Conf., Brisbane, Australia 

[31] Ahamad M, Ammar M H 1989 Performance Characterization of Quorum- 

Consensus Algorithms for Replicated Data IEEE TSE 15)4( 492–6 

[32] Alonso G, Bausch W, Pautasso C, Hallett M, Kahn A 2000 Dependable 

Computing in Virtual Laboratories 

[33] Cachopo J, Rito-Silva A 2006 Versioned boxes as the basis for memory 

transactions Sci. Comput. Program. 63)2( 172–85  

[34] Couceiro M, Romano P, Carvalho N, Rodrigues L 2009 D2STM: 

Dependable Distributed Software Transactional Memory In Proc. 

International Symposium on Dependable Computing )PRDC(. IEEE 

Computer Society Press 

[35] Defago X, Schiper A, Urban P 2004 Total order broadcast and 

multicast algorithms: Taxonomy and survey ACM Computing Surveys 

36)4( 372–421 

[36] Ekwall R, Schiper A 2007 Modeling and validating the performance of 

atomic broadcast algorithms in high-latency networks In Proc. Euro-

Par 2007, Parallel Processing, Lecture Notes in Computer Science 

574–86 Springer  

[37] Srivastava A, Shanker U, Tiwari S K 2012 A Replication Protocol for 

Real Time Database System International Journal of Electronics and 

Computer Science Engineering (IJECSE) 1(3) 1602-8 

[38] Srivastava A, Shanker U, Tiwari S K 2012 Transaction Processing in 

Replicated Data in DDBMS International Journal of Modern 

Engineering Research (IJMER) 2(4) 2409-16 

[39] Srivastava A, Shanker U, Tiwari S K 2012 Transaction Management 

in Homogeneous Distributed Real Time Replicated Database Systems 

International Journal of Advanced Research in Computer Science and 

Software Engineering 2(6) 190-6 

[40] Srivastava A, Shanker U, Tiwari S K 2012 A Protocol for Concurrency 

in Distributed Real Time Replicated Database System International 

Journal of Computer Networks and Wireless Communication 

(IJCNWC) 2(3) 398-401 

[41] Srivastava A, Shanker U, Tiwari S K 2012 Data Freshness in 

Distributed Real Time Replicated Database Systems Global Journal 

Computing and Technology (GJCAT) 2(2) 1254-63 

 
AUTHORS  

 

Anil Kumar Gupta, 06/11/1983, Gorakhpur, India 

 
Current position: Pursuing Ph.D in Computer Science from Bhagwant University, Ajmer, Rajasthan 

University studies: Master in Computer Application from Indira Gandhi National Open University, Delhi 

Scientific interest: Replicated Real Time Database 

Publications: 1 paper in National conferences 

 

Dr. Vishnu Swaroop, 01/06/1964, Gorakhpur, India 

 
University studies: Ph.D Computer Science from Uttar Pradesh Rajarshi Tandon Open University, Allahabad, 2002 

Scientific interest: Real Time Database 

Publications: 19 paper International and 7 Paper National conference 

Experience: since 14 year as Computer professional in M.M.M University of Technology, Gorakhpur, India 

 


