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Abstract 

This paper proposes a target tracking algorithm based on 2-dimensional PCA (principal component analysis), which can solve the difficulty 
of current target tracking algorithm to adapt to the appearance change of target caused by the illumination, shield and position change. First 
of all, the 2-dimensional PCA method A and sparse representation are used to build the target appearance model, which can reduce the 
dimension of target; then, by introducing the update method of increment subspace to conduct online update of the target template, it can 
reduce the algorithm’s requirement of memory space and increase the accuracy of target appearance description; finally, the simulation 
experiment is conducted. The simulation result shows that compared to other tracking algorithm for moving target, the algorithm proposed 
in this paper can more accurately track the moving target in the video image, which also shows great robustness to the illumination and 
position change, and it has significant advantages for the target tracking with serious shield. 
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1 Introduction  

Visual object tracking is a hot spot in current computer vi-
sion studies, covering video monitoring, human-machine 
interface, robot perception, behaviour understanding and 
motion recognition, etc. As the tracking process would be 
affected by such factors as the rotation, deformation, shiel-
ding and the changes of lighting, visual tracking technology 
has always been worth further researches [1]. 

Current object tracking methods mainly include: template 
matching-based tracking methods [2], filtering theory-based 
tracking methods [3] and classification-based tracking me-
thods [4]. The template matching-based methods have the ad-
vantages of being simple and high matching accuracy, but are 
sensitive to shielding and deformation. Filtering theory-based 
tracking methods include two major types, Kalman Filter [5-
6] and Particle Filter [7-8]. Kalman Filter can only deal with 
linear, Gaussian and single mode conditions. Particle Filter is 
suitable for non-linear and non-Gaussian object tracking. The 
classification-based methods is to consider object tracking as 
a binary classification problem [9], applying classification 
treatment to the foreground and background, using classifier 
to classify the tracking area and realize accurate positioning 
of the object. However, constructing a classifier needs massi-
ve positive and negative samples and it is not suitable for the 
requirement on high real-time capability. In recent years, the 
sparse representation theory effectively solves the object re-
cognition issue under changes of lighting and gestures and 
under shielding, and is gradually applied in object tracking. 
Mei, et al [10] were the first to introduce sparse representation 
in the frame of Particle Filter and in object tracking. They 
used L1 minimization to solve the sparse representation coef-
ficient, settling the issue of object shielding in a very satisfac-
tory manner. However, when the appearance of the objects 
has major changes, this algorithm could not track the objects 
stably, entailing high complicity and massive computing 
amount. 

Based on the analysis above, under the framework of Par-
ticle Filter, this paper uses 2DPCA method and sparse repre-
sentation to establish the model of object appearance, reduces 
the number of dimensions of the object template. Through 
introducing the incremental subspace updating method to 
conduct online update of the object template, reducing the 
requirement of the algorithm on storage space and increasing 
the accuracy of the description of the object appearance. 

2 Sparse representation-based object tracking 

Two-dimension principal component analysis (2D-PCA) is 
a forward image processing techniques of image characte-
ristics extraction, which directly use two-dimension image 
data as the analysis object to construct covariance matrix. 
The calculation of 2D-PCA is easy, and feature extraction 
time is short, which especially fits the image feature extrac-
tion of facial image. This method has successful application 
in the fields of facial identification and so on. Compared 
with traditional PCA method, 2D-PCA directly use two di-
mension image matrix as the analysis object, it doesn’t need 
to transfer image into one dimension vector quantity first 
and calculate then as traditional PCA, so this method prefe-
rably stores the two dimension space information of image. 
At the same time, 2D-PCA directly use original image mat-
rix to construct it while constructing image covariance mat-
rix, compared with traditional PCA covariance matrix, di-
mension number of image covariance matrix in 2D-PCA is 
much smaller, which not only reduces calculation quantity, 
but also avoids matrix singular problem of PCA from hap-
pening when the training sample number are relatively few. 

2.1 2DPCA EIGENSPACE 

Assuming that 
1 2{ , ,... }t nY y y y  represents the observa-

tion sample set of the object on t  frames, where 
*d d

iy R  
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denotes No. i  Observation sample, 
1

1 n

t i

i

I y
n 

   denotes 

the mean image of the observation sample set to 
tY . To lo-

wer down the storage cost and the computing time of the 

computer, the object image is applied with 2DPCA. Com-

pared with PCA, 2DPCA is a method based on images and 

there is no need for a vector transformation. The calculation 

of the co-variance matrix is direct and simple and needs less 

time to calculate the eigenvector. 2DPCA algorithm is 

described below: 
(1) Calculating the total scatter of the observation 

sample set 
tY  

1

1 1
( )( )

n
T T

t i t i t t

i

S y I y I Y Y
n n

     

(2) Calculating the eigenvalues of the scatter matrix 

1 2... n    . 
(3) Calculating the unit orthogonal eigenvectors 

corresponding to the eigenvalues
1 2, ,..., nu u u  

(4) Reserve the eigenvectors corresponding to the first 
k  eigenvalues to establish the eigenspace 1U {u } |ki i .  

2.2 SPARSE REPRESENTATION  

Given that the object template set and its eigenspace

1 2{u ,u , u } R ( )d k

kU d k   contain k  object temp-
lates, then the tracking result 

dy R  could be approxi-
mately denoted with the eigenspace 1U {u } |ki i  below:  

1 1 2 2y k kUa a u a u a u     , (1) 

where: 1 2( , ,..., )T k

ka a a a R   denotes the coefficient 
vector of the object. As in the tracking process, the object is 
frequently shielded or interfered by noises and errors are 
often produced, an error term is introduced below: 

Y Ua   , (2) 

where: dR   represents the error term introduced by 
noises and shielding,  ’s non-zero elements denote the 
noises or shielding of the object. We could use a unit matrix 

1 2[ , ,..., ]T d d

dE e e e R    to locate the position of distur-
bance. So Equation (2) could be rewritten as: 

 , ]
a

y U E Dc
b

 
  

 
, (3) 

where, 1 2( , ,... )T d

db b b b R   represents the noise coeffi-
cient,  ,D U E  is the super-complete dictionary estab-
lished in this paper,  Tc a b  represents the coefficient 
vector. The sparse solutions of Equation (3) are obtained 
through solving the minimization problem of 

1l :  

2

2 1
min y Dc c  . (4) 

We could obtain the sparse solutions of the coefficient 
vector  Tc a b : 

2

2 1
* arg min

c
c y Dc c   , (5) 

where: 
1

and
2

represent the norms 
1l  of 

2l  and, 

respectively. By solving  Tc a b  through the equation 

above, the reconstruction error between the sample and the 

object template can be defined as: 

2

2
RE y Ua  . (6)  

We use RE  to evaluate the similarity between the 
sample and the object template. 

2.3 THE UPGRADING OF THE SUBSPACE OF THE 
INCREMENTAL LEARNING-BASED OBJECT 

Assuming that the image of the first n  frames 

 1 2, ,..., nA I I I  with a mean value of 
1

1 n

A i

i

I I
n 

   and a 

centralized matrix of 1 ,...,A n AA I I I I   
 

. Apply SVD 

(Singular Value Decomposition) to A to obtain a unitary 

matrix 
AU  and a diagonal matrix 

A . Each array of Matrix 

A  would be the basic vector of its subspace. Make 

 1 2, ,...,n n n mB I I I    to be the new image of m  frames 

with a corresponding mean value of 
1

1 n m

B i

i n

I I
m



 

   and 

   1, ,... ,...n n mC A B I I I   , then what needs to be solved 

is Matrix C ’s unitary matrix 
CU  and diagonal matrix 

C . 

See below for concrete algorithms: 

(1) Calculating the mean value of Matrix C :

c A B

fn m
I I I

fn m fn m
 

 
. f , the forgetting factor, is a 

non-negative number no more than 1; 
(2) Calculating B ’s augmented central matrix: 

1( ),..., ( ), ( )n B n m B B A

nm
B I I I I I I

n m



 

 
    

 
 

(3) Calculating ( )TB UU B  ’s orthogonalized mat-
rix B and matrix  

0 ( )

T

T

f U B
R

B B UU B



 

 
 
  

 

(4) Apply SVD to R  and obtain 
RU  and 

R , then

C A RU U B U
 

   
, 

C R   . 

3 Particle filter frame 

Suppose the status of the object at time t is tx , the object 
observation is 

ty . According to the state transition proba-
bility 

1( | )t tp x x 
 and the observation probability ( | )t tp y x , 

the posterior probability 1:( | )t tp x y  could be derived in two 
steps of forecasting and updating: 

1: 1 1 1: 1 1( | ) ( | ) ( | )t t t t t t tp x y p x x p x y dx     , (7) 
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1 1: 1

1:

1 1: 1

( | ) ( | )
( | )

( | )

t t t t

t t

t t

p y x p x y
p x y

p x y

 

 

 . (8) 

Equations (7) and (8) constitute the optimal Bayesian 
estimation and represent the Particle Filter algorithm requi-
red posterior probability density through and the weighted 
sum of a series of random samples. 

Assuming that the particle on-time is 1{ }i N

t ix   with the 

corresponding normalized weight of 1{ }i N

t iw  , i.e., 
1

1
N

i

t

i

w


 . 

The Particle Filter would use to describe the posterior 

probability:  

1:

1

( | ) ( )
N

i i

t t t t t

i

p x y w x x


  . (9) 

The updating method of the particle’s weight value i

tw  is: 

1

1

1 1:

( | ) ( | )

( | , )

i i i

i i t t t t

t t i i

t t t

p y x p x x
w w

q x x y







 , (10) 

where: ( )  is a Dirac function, ( )q  is an important den-
sity function; usually 

1: 1 1: 1( | , ) ( | )t t t t tq x x y p x x   is used 
as the important density function, when the observation 
likelihood ( | )t tp y x  is the weight value. Then the optimal 
state of the object could be obtained through a maximum a 
posteriori estimation: 

1:arg max ( | )t t tx p x y


 . (11) 

3.1 MOTION MODEL 

In the Particle Filter-based tracking frame, the motion model 
is used to forecast the possible state of the object in two adja-
cent frames. Usually the object is located by a rectangular box 
and its rotation, shift and scaling and other moving changes 
are described with the affine transformation of the rectangular 
box. This paper defines the state vector of the object as: 

 , , , , ,t t t t t t tX x y     , (12) 

where, the 6 parameters are corresponding to 6 affine trans-
formation parameters of the corresponding rectangular in 
turn, namely the shift on x  and y  directions, the dimen-
sional changes, the width/height ratio, the rotation angle and 
the gradient. Supposing that the probability mode of the 
object’s state transition follows Gaussian distribution, i.e.: 

1 1( | ) ( ; , )t t t tp x x N X X   , (13) 

where: ( )N  is Gaussian distribution;   is the co-variance 
matrix. In normal status, assuming that various parameters 
are mutually independent of each other, and   is a diagonal 
matrix whose elements are the variances of each affine 
parameter 2 2 2 2 2 2, , , , ,x y          . 

3.2 THE OBSERVATION MODEL  

The observation model describes the similarity between the 
candidate region of the object and the object model. In 
Bayesian inference frame, the observation model plays an 
important role on disposing of unknown status. Using the 

reconstruction error, the observation likelihood function 
could be defined as 

( | ) exp( )p y x RE  . (14) 

From Equation (14) we can see that the smaller the 
reconstruction error between the sample and the object 
template is the more the sample’s corresponding weight 
value would be, and the sample would be more reliable. 

3.3 WORK PROCEDURES OF THIS PAPER’S 
TRACKING ALGORITHM  

Import: video image sequence { }( 1,..., )tF t T , with the 
quantity of particles of N . 

Export: the position of the object obtained through 
tracking each frame { }( 1,..., )tx t T . 

(1) Initialization: manually select the initial object 
template and disturb several pixels to generate n  templates; 
use affine transformation to transform the n  images with 
centralized templates into 32 32  window images and 
apply 2DPCA algorithm to generate the template set’s 
2DPCA eigenspace U , i.e., the object template set. 

(2) Constructing the super-complete dictionary. This 
paper’s super-complete dictionary  ,D U E  is construc-
ted with eigenspaces U  and E . 

(3) Particle generation. Use the affine transformation 
matrix obtained through initialization to generate N  partic-
les (the affine transformation parameter of the candidate ob-
ject template) as per Gaussian distribution. 

(4) Calculate the sparse representation coefficient. Use 
minimized 

1l  to solve the sparse representation coefficient 
of the template space corresponding to each particle. Cal-
culate the affine coordinates of the tracking object of the 
current frame with the coefficient. 

(5) Re-sampling of particles. Apply re-sampling to the 
particle set according to the size of weight values and 
generate N particles of tracked in the next frame. 

(6) Update the object template. Use maximum a poste-

riori estimation to obtain particle tx


 with the maximum 

weight value and reserve the observation sample correspon-

ding to tx


. For every 5 frames, use the updating algorithm 

to update the object template. 
(7) Export the results. Show the tracking results of the 

current frame and return to Procedure 3. 

4 Simulation test 

4.1 SIMULATION ENVIRONMENT 

On a PC with Intel double cores and a memory of 2.50GHz 
and 4G, use MATLAB R2012a to complete the simulation. 
Select Incremental Visual Tracking (IVT), L1tracker (L1) 
and Multiple Instance Learning (MIL) methods for compa-
rison with this paper’s method. During the concrete tracking 
test process, the position of the object image in the first 
frame video is manually decided. The sampling number of 
particles is 600, with a dimensional number of 12 for the 
object subspace. The updating frequency of the subspace is 
set to be 5 frames. The observation image used by the 
tracking algorithm is window images of 32 32 . 
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4.2 RESULTS AND ANALYSIS 

4.2.1 Qualitative analysis 

Fig. 1 uses David Indoor video sequence to evaluate the tra-
cking algorithm’s performance under lighting and gesture 
changes. In the David Indoor sequence, the object would 
experience two times of significant changes of lighting 
intensity and the changes of gestures caused by removing 
glasses and wearing glasses. In the whole tracking process, 
this paper’s algorithm is not very sensitive to the changes of 
lighting and gestures, while L1, IVT and MIL algorithms 
show different extent of deviations. Of the three algorithms, 
MIL is the most sensitive to these influences. 
 

    
#001                             #068 

     
#159                             #302 

     
#595                             #660 

 
FIGURE 1 Tracking results of each algorithm on the David Indoor 

sequence 

In the Deer video sequence in Fig. 2, this paper’s tra-

cking algorithm and the MIL algorithm both show very 

good performance. Although the MIL algorithm gave a 

wrong tracking in #052 frame under shielding, correct tra-

cking was soon resumed. LI and IVT algorithms showed 

poor tracking performance on these fast-moving objects. 

      
#001                           #028 

      
#036                             #050 

      
#052                             #071 

FIGURE 2 Tracking results of each algorithm on Deer sequence 

      
#001                              #160 

   
#200                          #230 

   
#250                             #659 

 
FIGURE 3 Tracking results of each algorithm on Car 4 sequence 
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#001                           #090 

       
#115                              #125 

      
#150                              #182 

 
FIGURE 4 Tracking results of different algorithms on Caviar1 sequence 

For Car 4 video sequence in Fig. 3, the IVT algorithm 
and this paper’s algorithm showed good performance, while 
L1 algorithm showed some deviation when the car passed 
through the bridge. MIL algorithm showed so big deviation 
that the object was lost. 

Fig. 4 is the Caviar1 video sequence, showing the wo-
men in the monitoring video walking through the corridor. 
When the shielding of a similar object happened, the MIL 
algorithm performed poorly, and the L1 and IVT algorithms 
also presented deviations to different extent, while this 
paper’s algorithm showed quite good performance against 
partial shielding and the disturbance of similar objects. 

4.2.2 Quantitative analysis 

Besides, we used location error - the Euclidean distance 
between the central location of the tracking result and the 
test video sequence for the quantitative analysis of the per-
formance of this paper’s tracker and the referential tracker, 
as shown in Fig. 5. The maximum value, mean value and 
the standard deviation of each tracker are shown in Table 2. 
Table 2 shows that in the David Indoor video sequence, this 
paper’s tracker and L1 tracker obtained similar optimal re-
sults; while for the Deer sequence, the MIL tracker and this 
paper’s tracker showed stable tracking performance upon 
shielding; compared with other three trackers, this paper’s 
tracker showed the best tracker for Deer sequence and Car4 
sequence; in the Caviar1 sequence, this paper’s tracker 
obtained the minimum mean value and standard deviation. 
Considering the overall performance, this paper’s tracker 
showed the best performance in the tracking process. 
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(a) Location error of the David Indoor sequence 
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(b) Location error of the Deer sequence 
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(c) Location error of the Car4 sequence 

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

Frame

L
o
c
a
t
io

n
 
e
r
r
o
r

 

 

Our Tracker

IVT

MIL

L1

 
(d) Location error of the Caviar1 sequence 

FIGURE 5 Comparison of tracking errors of the algorithm on video 

sequences 
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From Figure 6, we can find that the algorithm in this 
paper has a better tracking performance compared with the 
moving target tracking algorithm in the literature [15], 

especially that it maintains a stable tracking performance 
when there are occlusions. 

  
(a) David motion sequences (b) Deer motion sequences 

  
(c) Car4 motion sequences (d) Faceocc motion sequences 

FIGURE 6 Comparison of tracking errors between this algorithm and the contrast algorithm 

TABLE 1 Numerical analysis of location error 

 
David 

Indoor 
Deer Car4 Caviar1 

IVT Tracker 
Max 28.55 102.34 22.36 15.20 
Mean 9.18 59.10 8.39 7.50 

Std 4.45 32.82 4.22 3.16 

MIL Tracker 
Max 98.88 9.24 103.21 78.43 
Mean 45.25 5.46 42.46 38.61 

Std 27.22 2.09 24.38 21.82 

L1 Tracker 
Max 20.02 97.88 72.44 22.58 
Mean 6.77 44.01 10.72 8.15 

Std 3.35 34.63 10.91 4.48 

Our Tracker 

Max 21.23 6.35 18.21 15.32 

Mean 7.30 3.57 7.37 7.48 

Std 3.64 1.28 3.45 3.13 

5 Conclusion 

This paper proposes the object tracking algorithm of 2DPCA 
and sparse representation and uses 2DPCA and sparse rep-
resentation to establish the object appearance model, avoiding 

the computation of high-dimensional data. Using the incre-
mental subspace learning algorithm, this paper updates the 
object appearance model in a self-adaptive manner, reducing 
the algorithm’s requirement on the storage space and impro-
ving the accuracy of appearance description. Experiment 
results showed that, compared with IVT, MIL and L1 algo-
rithms, this paper’s algorithm could track the moving objects 
in sequence images and show good robustness to the appea-
rance changes of the object out of lighting or gesture changes 
in the tracking process. However, this paper’s algorithm only 
uses the images’ overall characteristics and fails to settle all 
of the shielding issues of the object. Therefore, the focus of 
further studies would be developing more efficient algorithm 
to describe the object better combining its overall and local 
characteristics. 
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