

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing

224
Information and Computer Technologies

CUBPT: Lock-free bulk insertions to B+ tree on GPU
architecture

Yulong Huang1*, Benyue Su1, Jianqing Xi2
1School of computer & information, Anqing Normal University, Anqing 246401, China

2School of Software Engineering, South China University of Technology, Guangzhou 510006, China

Received 15 June 2014, www.cmnt.lv

Abstract

B+-tree is one of the most widely-used index structures. To improve insertion process, several batch algorithms are proposed, which

all use one thread to complete one node insertion and cannot make full use of GPU’s parallel throughput. So, a batch building and

insertion method on GPU named CUBPT is proposed in this paper. During the process of bulk building and insertion, CUBPT use

one thread to insert one key, which can maximize the performance by GPU. The experimental results show that when build a 10M

tree, the overall performance of CUBPT improved 25.03 times compare with four threads PBI. When insert 10M uniform keys into a

10M tree, the overall performance of CUBPT improved 13.38 times compare with four threads PALM; when insert 10M highly
skewed keys into tree with same size, the overall performance of CUBPT improved 15.23 times compare with four threads PALM.

Keywords: in-memory B+-tree, bulk build, Lock-free batch insertion, GPGPU

* Corresponding author e-mail p3vsea2002@126.com

1 Introduction

Recently, the performance of single-core CPU is

suffering a bottleneck and traditional architecture cannot

promote the performance of multi-core CPU rapidly.

Existing research result [1] shows that eight-core or above

CPU cannot obtain any breakthrough on computing

performance. Meanwhile, with the rapid development of

GPU technology, it is ideal for high-performance

computing task. Especially for the task which handles

large-scale single-instruction and multiple data streams,

the performance of GPU far beyond multi-core CPU.

Hence, there has been a growing trend in leveraging the

high parallel throughput of GPU for general purpose

computing in parallel computing field. CUDA [2] is a

programming tool, which allows programmers to write

programs run on GPU rapidly. So, a large number of

researchers use GPU to accelerate database operations

such as sort, scan and achieved great results [3].

As memory capacity has increased dramatically,

many database tables and related indices can reside in

main memory completely now. So, more and more

researchers devoted to improve operational performance

of in-memory indices [4, 5]. The B+ tree is one of the

most widely-used indexes. To improve its insertion,

several batch algorithms are proposed [6, 7, 8]. These

algorithms attempt to utilize different architecture

processor to optimize the insertion process. Meanwhile,

they cannot utilize parallel throughput of GPU. So, an

experimental method on GPU is proposed [9]. However,

this method just inserts one record at one time, which

cannot make full use of the parallel throughput too. For

this reason, a novel lock-free batch insertion algorithm on

GPU called CUBPT is proposed in this paper. It utilizes

one thread to handle one key’s insertion, which can take

full advantage of the parallel throughput of GPU.

2 Related Works

In this section, the structure of B+-tree and serial

insertion method are described firstly. On this basis,

several batch algorithms are reviewed.

2.1 THE STRUCTURE AND SERIAL INSERTION OF

B+ TREE

B+ tree is a balanced search tree consists of internal and

leaf nodes. To improve efficiency, a modified structure is

proposed [10]. Here, each internal node contains the

maximum key of its sub-trees and the pointers to these

sub-trees. All leaf nodes are located on same layer and

contain the keys and pointers to corresponding records.

Leaf nodes are linked by order of the keys which makes it

convenience to retrieve. To an internal node in B+ tree

with order m, its structure is as follows:

(P0,K0,P1,K1,…,Pi,Ki) 0≤i<n, where, Ki represents the ith

key and Ki-1<Ki. Pi is the pointer to the root node of ith

sub-tree in which all the keys are lower than Ki. n is the

number of keys stored in the node. For root node, the

range of n is [2,m). For internal nodes, the range of n is

[⌈m/2⌉, m). The structure of leaf node is similar with

internal node. It contains n(⌈m/2⌉≤n≤m) keys and pointers

to corresponding records and also a pointer to adjacent

node. A B+ tree with order 3 is as follows.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing

225
Information and Computer Technologies

27 63 99

9 18 27 33 50 63 79 88 99

4 7 9 10 15 18 20 23 27 28 31 33 37 43 50 55 58 63 67 73 79 82 85 88 90 96 99

root

S

a

b c d

e f g h i j k l m

FIGURE 1 The structure of a 3-order B+ tree

As we all know, traditional B+ tree is constructed with

one by one insertion, which start from an empty tree. So,

only serial insertion algorithm with above B+ tree is

described as an example. The insertion process of key 16

is as follows: First, compare 16 with a. Because 16<27,

then compare 16 with b. Because 9<16<18, 16 should

insert into f. Because there is no enough space, f should

split into f and f’, where f contains keys {10, 15} and f’

contains keys {16, 18}. Meanwhile, key 15 should insert

into b. Similarly, b should split. Repeat such process until

a split.

2.1 THE STRUCTURE AND SERIAL INSERTION OF

B+ TREE

In traditional algorithm, the insertion process of each

record needs to visit a path from root to leaf. If the size of

records is very large, this process needs to execute

frequently. So, a batch construction algorithm on single-

core CPU is proposed [6]. Here, sort the records firstly

and then build them bottom-up, once a layer from leaves

to root. Because the path traversal times are reduced

largely, the performance has improved greatly. However,

this method cannot utilize the parallel throughput of

multi-core CPU. So, another batch construction and

insertion algorithm for B-link tree is proposed [7].

Similar with above algorithm, B-link tree is constructed

with same way. But, this algorithm uses one thread to

handle the construction process of one node. In batch

insertion process, it also uses one thread complete one

node insertion because the data contention. To leverage

the parallel performance of many-core CPU, a new latch-

free modifications algorithm called PALM is proposed

[8]. Combined with BSP model [11] and auxiliary

structures, PALM divides the insertion process into three

stages. In every stage, it uses one thread to handle the

insertion process of one node. To reduce synchronization

cost, a point-to-point strategy is applied. For leveraging

parallel throughput of GPU, an experimental insertion

method is proposed [9], which can improve insertion

efficiency with thread block. However, it only inserts one

record by one time. In this basis, A B+ tree batch

insertion algorithm on GPU is further proposed [14].Due

to the requirement of this algorithm, it use many arrays to

store the leaf nodes and internal nodes. So, the

management of data structure is very complex. At the

same time, since the space cost is very expensive, it

cannot complete batch insertion process in GPU when the

scale of records is very large.

3 CUBPT lock-free batch insertion algorithm

3.1 THE STORAGE STRUCTURE OF CUBPT

As we all know, the design of data structure is one of the

key problems for GPGPU programming and the array of

structures is most suitable for GPU. So, we use array of

nodes to store B+ tree. To optimize tree storage, we

observe that all nodes have similar structure. Let m

denote the order of tree. For every node, the size of array

keys is m and array ptrs is m+1. In ptrs, the first m

elements store the index of relevant nodes and the last has

different usages. For leaf nodes, it is used to store the

index of next node. For other nodes, it is used to store the

first address of new storage space which generated in

node split that can accelerate key insertion. All nodes

contain a type to identify different type node. For our

algorithm, a parent for parent node’s location and a kNum

for keys number in node are required. So, the size of

every node is 2*(m+2) in device memory. The device

memory structure of B+ tree described in Figure 1 is as

follows.

4

-1

7

-1

9

-1

3

1

0

9

10

-1

15

-1

18

-1

3

2

0

9

20

-1

23

-1

27

-1

3

3

0

9

28

-1

31

-1

33

-1

3

4

0

10

37

-1

43

-1

50

-1

3

5

0

10

55

-1

58

-1

63

-1

3

6

0

10

67

-1

73

-1

79

-1

3

7

0

11

82

-1

85

-1

88

-1

3

8

0

11

90

-1

96

-1

99

-1

3

9

0

11

9

0

18

1

27

2

3 1

12

33

3

50

4

63

5

3 1

12

79

6

88

7

99

8

3 1

12

27

9

66

10

99

11

3 2

-1

type

parent

keys

ptrs

Unused

 Offset index

of node array

0

2

4

6

8

10

12

node
kNum

FIGURE 2 The storage structure of B+ tree in GPU

For B+ tree, the number of nodes increases by record

insertion, which makes the expansion of nodes array

necessary. However, CUDA does not support dynamic

expansion. So, we adopt the following two-level structure

to implement dynamic expansion.

………

0 1 2 n

node0

node1

…
…

nodek

node0

node1

…
…

nodek

node0

node1

…
…

nodek

node0

node1

…
…

nodek

SEGMENT

list

FIGURE 3 Two-level structure of nodes array

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing

226
Information and Computer Technologies

Here, nodes array is divided into several segments

with fixed size and an array list is used to store every

segment’s address. Hence, only list needs to be expanded

statically. So, the cost is very small. Expansion needs

three stages: (i) create new segments; (ii) expand list; (iii)

add address of new segments into list.

3.2 THE DESCRIPTION OF CUBPT ALGORITHM

To leverage parallel throughput of GPU to accelerate

insertion process, a lock-free batch algorithm on GPU

called CUBPT is proposed in here, which can improve

this process very largely. The main idea is as follows:

Firstly, allocate a buffer in main memory to store records

to be inserted. When the number of records reaches

threshold α, copy them from host to device. Then, use

parallel primitive [12] to sort them. At last, batch insert

these records into B+ tree in device memory. The details

are shown in Figure 4.

FIGURE 4 The flow chart of CUBPT

As depicted in Figure 4, when insert first batch

records, we need to batch construct tree because B+ tree

is null. After that, we may continue batch insertion

process. So, our method consist of two parts which are

batch construction and batch insertion. The detail of these

two parts is as follows.

3.2.1 The process of batch construction

For an ordered keys set K, there are two stages to

construct tree. Firstly, use |K| threads to divide K into n

leaf nodes. Then, use n threads to insert maximum key of

every leaf node into its parent. Repeat this process until

root node constructed. To distribute the keys more

uniformly, we utilize the following Formula 1 and 2 to

compute the number of nodes to build in every layer and

the number of keys to stored in every node.

node_num←(|K|+m-1)/m, (1)

(1)

| | (1)

ave_keynum | K |+node_num - / node_num

h K -node_num* ave_keynum -

. (2)

With above formulas, K is inserted into node_num

leaf nodes, in which the first h leaf nodes contain

ave_keynum keys and the others contain ave_keynum-1

keys. The internal nodes are constructed by the same

way. The detail of batch build process of CUBPT is as

follows.

__
Batch_build: bulk building b+ tree in global memory

Input: an ordered key set K

Output: b+ tree in global memory Tdm

Begin //starting from the leaf layer and construct every layer of Tdm

iteratively
1. nodeNum←(|K|+m-1)/m;//compute the number of leaf nodes. m is the

order of Tdm

2. For each tid∈[0, nodeNum) parallel do

3. set the value of kNum and prts[m]of leaf node Tdm->node[tid];

4. End for

5. For each tid∈[0,|K|) parallel do //bulk inserts the keys into the leaf nodes
6. calculate index node_index and insert location node_loc of the leaf node

that K[tid] should be inserted;

7. Tdm->node[node_index].keys[insert_loc]←K[tid];

8. End for
9. If(nodeNum==1) return Tdm;

10.While(nodeNum>1)

11. cur_num←(nodeNum+m-1);//compute the number of nodes to be

constructed in current layer

12. Parallel set kNum of the nodes in current layer by using |cur_num|

threads;

13. For each tid∈[0,nodeNum) parallel do

14. get the maximum key max_key of node[tid] in preceding layer;
15. with formula 1 and 2, get the index node_index of the node that

max_key should be inserted;

16. insert max_key into Tdm->node[node_index] and set the related

pointer of child and parent node;

17. End for

18. nodeNum←cur_num;
19.End while

20.Set the root pointer of Tdm and return;

End

As mentioned above, the difference between our

algorithm and existing algorithms is that our algorithm

uses one thread to handle one key's insertion, which can

leverage the parallel throughput of GPU fully.

3.2.2 The process of batch insertion

In above process, CUBPT can maximally accelerate the

construction process of b+ tree by using the parallel

throughput of GPU. Similarly, to accelerate insertion

process, a large-scale batch insert algorithm on GPU is

proposed in here. It consists of the following stages:

(i) Search: find out the index of leaf nodes to be

inserted.

(ii) Batch insert leaf nodes layer: According to the

search results, batch insert the records into leaf nodes. If

overflow, then split it.

(iii) Batch insert internal nodes layer: In previous

stage, if leaf nodes split, then the maximum keys of

newly increase nodes need to be inserted into parent

nodes layer. During this process, if the nodes also split,

continue insert into the next layer. If necessary, perform

this process iteratively until the root node split.

(iv) Create root node: In 3rd stage, if root node split,

then create a new one and insert related keys into it.

The details of these stages are as follows:

Search: according to the ordered keys set K, search

the index of leaf nodes to be inserted by |K| threads.

bulk build tree

start

first insertion?

Pre-compute the

Number of New

Nodes to be Bulk

Inserted

Enough Space?

Expand the Space

Pre-allocate the

Storage Space

Bulk Insert

Records

End

yes

No

Yes

No

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing

227
Information and Computer Technologies

Starting from the root node, every thread uses binary

search method to match the key to be inserted with

current node, and then the next search node is obtained.

Repeat this process until the index of leaf nodes to be

inserted is found. Different with existing algorithms, this

stage does not need to search leaf nodes. Hence, this

reduced somewhat search cost.

Before batch insert K, we should ensure that there has

enough space to accomplish current insertion, the total

number of increase nodes in current batch insertion

should be pre-counted. If no enough space, expand it with

the way described in 3.1.The pre-count process consists

of two steps: Firstly, parallel reduce the search result to

array mNodeIndex and mNode_keynum. Then, use the

following algorithm to count the total number of newly

increase nodes.

__
CountAddNodeNum: Parallel count the number of newly increase nodes in

current batch insertion

Input: index array mNodeIndex and increase keys number array

mNode_keyNum of the leaf nodes to be inserted

Output: The total number of newly increase nodes totalAddNum

Begin

1. mNode_keyNum← get total keys number in related node after inserted

 by mNodeIndex and mNode_keyNum;

2. parallelly count the newly increase nodes number by formula 1 and

 reduce the result to addNodeNum;

3. if the newly increase nodes number in leaf layer is greater than 0,then
iteratively count every internal layer with similar way.

4. If root node splits, then count the number of newly increased nodes

5. Reduce the results of above steps to totalAddNum

End

After the nodes array expanded, the following

describe how to batch insert K into leaf nodes layer. The

detail of this process is as follows:

Batch insert leaf nodes: If there has enough space,

then batch insert K into the leaf nodes layer. This stage

contains five steps as follows.

Step 1: According to the search result mNodeIndex,

obtain original keys and indices of related leaf nodes with

braid parallel method [5]. Then store them in array

ori_keys and ori_index. Here, every thread block contains

m threads. So, we can use one thread to get one key.

Step 2: Use following merge_by_key algorithm to

merge ori_keys, ori_index, K and mNodeIndex into array

tmp_keys and tmp_index by order of keys. For simplicity,

we use Thrust
[11]

 to implement which as follows.

__
merge_by_key: parallel merge four ordered arrays into two arrays
Input: K; index array mNodeIndex, original keys ori_keys and indices

ori_index of leaf nodes to be inserted

Output: temporary keys array tmp_index and index array tmp_index

Begins

1. construct a virtual <key, index> pair array part1 with K and
mNodeIndex;

2. use similar method to construct a virtual <key, index> pair array part2

with ori_keys and ori_index;
3. parallel merge part1 and part2 into tmp_keys and tmp_index

respectively;
End

Step 3: according to tmp_index, use above allocation

strategy to get the increase nodes number of every leaf

node, and store them in addnode_num. Figure 5 shows

the details of step3 with a 3-order B+ tree.

0 0 0 1 1 1 3 3tmp_index

addnode_num

3 7

1 0

3 300 3 3 3

5

2

FIGURE 5 The details of Step 3

Step 4: with addnode_num, use ∑addnode_num[i]

(0≤i<|addnode_num|) threads to allocate continuous

space for newly increase nodes. Here, every thread need

to set some values such as ptrs[m], kNum and parent.

Step5: After that, according to tmp_index, use

|tmp_keys| threads to parallel insert tmp_keys into the leaf

nodes .In here, use tmp_index to split tmp_keys and store

the result in array partition_index. Then, assign a thread

for one key in tmp_keys to calculate index (insert_index)

and insert location (insert_loc) of leaf node that the key

to be inserted. Finally, batch inserts tmp_keys into the

leaf nodes. The detail of perform this step on a 3 order b+

tree is as Figure 6.

Now, K is inserted into leaf nodes. The following

shows how to batch inserts into internal nodes layer.

Batch insert internal nodes: Similar with previous

stage, this stage also consists of five steps as follows:

Step 1: Obtain index and maximum key of newly

increase nodes in previous level and Store them in array

addnode_index and addnode_maxkey.

Step 2: According to addnode_index, the index of

corresponding parent nodes are parallel obtained and

store in array parent_index .On this basis, braid parallel

method [5] is used to obtain index and maximum key of

child nodes and store in array ori_index and ori_maxkey.

Step 3: Use the same way with step 2 in previous

stage to merge ori_maxkey, ori_index, addnode_index

and addnode_maxkey into array tmp_keys and tmp_keys.

Step 4 & Step 5: The process of these two steps is

similar with the last two steps in previous stage. The only

difference is that every thread in here also needs to

modify the related child and parent node pointer.

At this point, all internal nodes split completely. If

necessary, a new root node needs to be created.

Create a new root node: obtain the maximum key

and index of newly increase nodes in the root node level

and store in array ori_maxkey and ori_index. Then, use

merge_by_key algorithm to merge ori_maxkey, ori_index,

the maximum key and index of original root node into

array tmp_maxkey and tmp_index. Finally use the same

way with our batch construction algorithm to create a

new root node.

In summary, according to the split situation of current

nodes layer, our algorithm can use different number of

threads to handle batch insertion process, which can

make full use of the high parallel throughout to further

accelerate the insertion process of B+-tree.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing

228
Information and Computer Technologies

3 4 7 9 28 30 31 33

0 0 0 0 3 3 3 3

tmp_keys

tmp_index

partition_index 0 4

0 0 9 9 3 3 10 10

0 1 0 1 0 1 0 1

27 63 99

9 18 27 33 50 63

3 4 10 15 18 28 30 55 58 6320 23 27 37 43 507 9 31 33

0 9 1 2 3 10 4 5

6 7

8

insert_index

insert_loc

node index

FIGURE 6 The details of Step 5 in stage of batch insert leaf nodes

4 Experimental results and analysis

To prove the effectiveness of our algorithm, we have

implemented and tested on a PC with a NVIDIA

GTX570 GPU and a recently-released Intel Corei7 Quad-

core processor. The hardware configuration is shown in

Table1 and software configuration is as follows: The

operation system is WindowsXP professional sp3 and

IDE is VS2008 with CUDA4.0; the detailed analysis of

our algorithm is as follows.

TABLE 1 Hardware configuration

Hardware GPU CPU(quad-core)

Processors 780MHz *15 * 32 2.9GHz x*4
DRAM(GB) 1.25 6

4.1 BATCH CONSTRUCTION PROCESS ANALYSIS

OF CUBPT

Here, randomly generate a group of datasets which size

are 5M, 10M, 15M, and 20M respectively. To prove the

effectiveness of our algorithm, three batch construction

algorithms are selected to compare:(1) Kim’s single-core

CPU algorithm SingleBuild;(2)Liao’s multi-core CPU

algorithm PBI;(3)our GPU algorithm CUBPTBuild; For

analysing the impact of different number of threads on

PBI ,we use two (PBITwo) and four threads(PBIFour) to

perform. As mentioned before, these algorithms all

consist of sort and batch insertion stage. CUBPTBuild

also contains data transfer stage. In sort stage, singleBuild

use the sort function in STL[15], PBI use parallel_sort in

TBB [13] and CUBPTBuild use a sort primitive in Thrust

[12]. Meanwhile, the transfer stage is optimized by

pinned memory. Figure 7 shows the elapsed time of

above algorithms in batch construction stage when the

order of B+-tree is 512.

From Figure 7 we know that, with the size of keys set

increases, the performance speedup of PBITwo and

PBIFour almost no changes, which are approximately

1.68 and 2.16. Meanwhile, our algorithm’s speedup

increase from 26.79 to 29.66. The reason is that PBI use

one thread to complete one node’s construction. When

the size of keys set is very large, it needs more iterations.

On the contrary, our algorithm uses one thread to handle

one key’s insertion and construct one layer by one time.

So, with increasing scale of keys set, our advantage will

further increase.

5M 10M 15M 20M

0

40

80

120

 The size of bulk build keys array

E
l
a
p
s
e
d

t
i
m
e
(
/
m
s
)

 SingleBuild
 PBITwo
 PBIFour
 CUBPTBuild

FIGURE 7. The build performance of above comparison algorithms

As above analysis, these comparison algorithms also

contain other stages such as sort and transfer stage etc.

So, we need to compare the overall performance which

shows as Figure 8.

5M 10M 15M 20M

0

1000

2000

3000

4000

E
la

p
s
e

d
 t

im
e

 (
/m

s
)

The size of bulk build keys array

 SingleBuild

 PBITwo

 PBIFour

 CUBPTBuild

FIGURE 8 The overall performance of above comparison algorithms

As we can see from Figure 8, with the size of keys set

increases, the overall speedup of PBITwo and PBIFour

also no change, which are approximately 1.99 and 3.37.

The overall speedup of our algorithm increases from

73.34 to 84.36. The reason is that GPU is more suitable

for sorting than multi-core CPU, which brings a

significant gain for our algorithm.

In summary, compare with singleBuild and PBI, our

algorithm has distinct advantage in construction stage and

overall performance. With the size of keys set increases,

our algorithm’s advantage continues to expand.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing

229
Information and Computer Technologies

4.2 BATCH INSERTION PROCESS ANALYSIS OF

CUBPT

Similarly, to prove effectiveness of the insertion process

of our algorithm, three algorithms are selected to

compare:(1) Liao’s batch insertion algorithm on single-

core CPU PBIInsert;(2) Jason’s batch modification

algorithm PALM;(3) our batch insertion algorithm

CUBPTInsert. To analyse impact of the number of

threads on PALM, two (PALMTwo) and four threads

(PALMFour) are used to perform. These algorithms also

consist of sort and insertion stage. In addition, our

algorithm also contains transfer stage. In sort stage, these

algorithms use the same method with above. We also

optimize transfer with pinned memory. From section

3.2.2, we know that the impact of keys distribution is

very large on our algorithm. So, we compare performance

with different distribution.

4.2.1 Uniform distribution

Here, generate four uniform data sets. In them, use 5M,

10M, 15M and 20M to build tree respectively. On this

basis, batch insert 2M, 4M, 6M, 8M and 10M into the

tree, which constructed in front respectively. In this

process, all leaf nodes need to be inserted. For above

algorithms, we also compare the insertion performance

and overall performance. When batch insert keys with

different size into a 5M B+-tree, the elapsed time of

above comparison algorithms in insertion stage shows as

Figure 9.

2M 4M 6M 8M 10M

0

50

100

150

E
la

p
s
e
d
 t
im

e
(/

m
s
)

the size of batch insert keys array

 PBIInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+-tree is 5M

FIRURE 9 The insertion stage performance of above algorithms when

insert uniform keys into a 5M B+-tree

When batch insert keys with different size into a10M

B+-tree, the elapsed time of above comparison

algorithms in insertion stage shows as Figure 10.

2M 4M 6M 8M 10M

0

100

200

E
la

p
s
e

d
 t
im

e
(/

m
s
)

The size of batch insert keys array

 SingleInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+ tree is 10M

FIRURE 10 The insertion stage performance of above algorithms when

insert uniform keys into a 10M B+-tree

In here, the elapsed time of all algorithm do not

contain the search time. From figure 9 and figure 10 , we

know that when the tree size is 5M, with the size of keys

set increases, the speedup of PALMTwo and PALMFour

in insertion stage are almost no change which are

approximately 1.8 and 2.9. Meanwhile, our algorithm’s

speedup increases from 5.5 to 7.5.When the tree size is

10M, the speedup of PALMTwo and PALMFour almost

no change too which are approximately 1.8 and 3.1.

Meanwhile, the speedup of our algorithm increases from

4.76 to 8.43. According to this, we know that with the

size of B+ tree increases, our algorithm’s speedup

increases by a small margin. The reason is that our

algorithm use one thread to complete one key’s insertion.

So, it is more suitable to batch insert larger scale keys.

Here, we also compared the overall performance of above

comparison algorithms. When batch insert keys with

different size into a 5M B+-tree, the overall performance

of above comparison algorithms shows as Figure 11.

2M 4M 6M 8M 10M

0

1000

2000

T
o
ta

l
E

la
p
s
e
d
 T

im
e
(/

m
s
)

The size of batch insert keys array

 SingleInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+ tree is 5M

FIGURE 11 The overall performance of above algorithms when insert

uniform keys into a 5M B+_tree

When batch insert keys with different size into a 10M

B+-tree, the overall performance of above comparison

algorithms shows as Figure 12.

From figure 11 and figure 12, we know that when tree

size is 5M, with the size of keys set increases, the overall

speedup of PALMTwo and PALMFour are almost no

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing

230
Information and Computer Technologies

change which approximately 1.95 and 3.2.However, our

overall speedup increases from 24.4 to 47.4; when tree is

10M,the overall speedup of PALMTwo and PALMFour

are almost no change too which approximately equals to

above. Meanwhile, our speedup increases from 18.5 to

42.8. By analyzing the insertion and overall

performance,we know that overall speedup is far more

than the speedup of insertion stage for our algorithm.

This is because performance gains in search and sorting

stage far more than transfer cost.

2M 4M 6M 8M 10M

0

1000

2000

T
o

ta
l
e

la
p

s
e

d
 t

im
e

 (
/m

s
)

The size of batch insert keys array

 SingleInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+ tree is 10M

FIGURE 12 The overall performance of above algorithms when insert

uniform keys into a 10M B+_tree

4.2.2 Highly skewed

Here, the size and usage of data sets is similar with

uniform distribution. The difference is that the number of

leaf nodes which to be inserted are less than 5% and 80%

or more keys are inserted to one leaf node. In the same

way, we also focus on insertion stage and overall

performance of above algorithms. Next, we analyse the

elapsed time of above algorithms in insertion stage firstly.

When batch insert highly skewed keys with different size

into a 5M B+-tree, the elapsed time of above comparison

algorithms in insertion stage shows as Figure 13.

2M 4M 6M 8M 10M

0

20

40

60

E
la

p
se

d
 t

im
e

 (
/m

s)

The size of batch insert keys array

 SingleInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+-tree is 5M

FIRURE 13 The insertion stage performance of above algorithms when

insert highly skewed keys into a 5M B+-tree

When batch insert different scale highly skewed keys

into a 10M B+-tree, the elapsed time of above

comparison algorithms in insertion stage shows as Figure

14.

Here, all of the above comparison algorithms do not

contains the search time too. With the size of keys set

increases, the performance of PALM Two and PALMFour

have received almost no improvement. The reason is that

Performance gains, which obtained from multiple threads

execution are offset by cost of threads creation and

synchronization. On the contrary, our speedup increases

very obvious; when tree size is 5M, the performance

speedup of our algorithm increases from 3.8 to 5.91.

When tree size is 10M, the performance speedup of our

algorithm increases from 3.7 to 6.1.The reason is same

with uniform distribution. However, the performance

promotion effect of our algorithm has a little decline.

This is because the amount of data which processed by

GPU is reduced slightly.

2M 4M 6M 8M 10M

0

20

40

60

E
la

p
se

d
 t

im
e

(/
m

s)

The size of batch insert keys array

 SingleInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+-tree is 10M

FIRURE 14 The insertion stage performance of above algorithms when

insert highly skewed keys into a 10M B+-tree

To compare the overall performance of above

algorithms, the total elapsed time when batch insert

highly skewed keys with different size into a 5M B+-tree

is described in Figure 15.

2M 4M 6M 8M 10M

0

500

1000

1500

2000

T
o
ta

l
e
la

p
s
e
d
 t
im

e
 (

/m
s
)

The size of batch insert keys array

 SingleInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+-tree is 5M

FIGURE 15 The overall performance of above algorithms when insert

highly skewed keys into a 5M B+_tree

When batch insert highly skewed keys with different

size into a 10M B+-tree, the total elapsed time of above

comparison algorithms is described in Figure 16.

In figure 15 and figure 16, our algorithm contains

transfer time. From them, we know that when the size of

keys set increases, the overall performance speedup of

PALMTwo and PALMFour remain unchanged which

approximately 1.9 and 3.1. Meanwhile, our overall

speedup continues to increase. If tree size is 5M, our

overall speedup increases from 30.5 to 47.1. If the tree

size is 10M, our overall speedup increases from 28.9 to

47.2. However, from above analysis, PALM can not get

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing

231
Information and Computer Technologies

any performance gains in insertion stage. Here,the overall

speedup is mainly obtained by sort and search stages.For

the same reason, our overall speedup is far more than the

speedup of insertion stage.

2M 4M 6M 8M 10M

0

500

1000

1500

2000

T
o

ta
l
e

la
p

s
e

d
 t

im
e

 (
/m

s
)

The size of batch insert keys array

 SingleInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+-tree is 10M

FIGURE 16 The overall performance of above algorithms when insert

highly skewed keys into a 5M B+_tree

All in all, our algorithm has obvious performance

advantage in both stages. Meanwhile, our speedup

increases with the size of keys set which different with

PALM. Especially, if keys distribution is highly skewed,

our speedup is more obvious. So, our algorithm is more

suitable for highly skewed keys insertion.

5 Conclusion and future research

B+-tree is one of the widely used index structures. To

improve the process of keys insertion, several batch

algorithms are proposed. Meanwhile, they cannot make

full use of the parallel throughout of current GPU. So, a

lock-free batch Insertion algorithm on GPU is proposed

in here, which consists of two stages. The experimental

results show that when batch construct tree, the total

speedup of our algorithm can achieve 73.34 ~ 84.36.

When batch insert keys, the total speedup of our

algorithm can achieve 18.5 ~ 47.4. Here, we only

research on batch construction and insertion algorithm. In

the future, we will focus on batch search and deletion

algorithm on GPU.

Acknowledgments

We would like to thank the financial supports of the

National Science Foundation of China (No.61340016)

and Strategic Emerging Industry projects of Guangdong

Province, China (No.2011A010801008).

References

[1] Moore S K 2008 Multi-core is bad news for supercomputer IEEE

Spectrum 15
[2] NVIDIA Corporation. NVIDIA CUDA Programming Guide, version

2.3 2009 7-15
[3] BingSheng He, Ke Yang, Rui Fang, etc. 2008 Relational Joins on

Graphics Processors Proceedings of the 2008 ACM SIGMOD

international conference on Management of data 511-24
[4] Changkyu Kim, etc. 2010 FAST: Fast Architecture Sensitive Tree

Search on Modern CPUs and GPUs Proceedings of the 2010

international conference on Management of data 339-50
[5] Fix J, Wilkes A, Skadron K 2011 Accelerating Braided B+ Tree

Searches on a GPU with CUDA Proceedings of the 2nd Workshop
on Applications for Multi and Many Core Processors: Analysis,

Implementation, and Performance

[6] Sang-Wook Kim, Hee-Sun Won 2001 Batch Construction of B+-
Trees Proceedings of the 2001 ACM symposium on Applied

computing 231-5
[7] Jiangmiao Liao, Hu Chen, Yixia Yuan, et al. 2010 Parallel Batch

B+-tree Insertion on Multi-core Architectures Fifth International

Conference on Frontier of Computer Science and Technology 30-5
[8] Sewall J, Jatin Chhugani, et al. 2011 PALM: Parallel Architecture

Friendly Latch-Free Modifications to B+ Trees on Many Core
Processors 37th International Conference onVLDB 795-806

[9] Kaczmarski K 2011 Experimental B+-tree for GPU ADBIS2011

Research Communications, Austrian Computer Society 232-40
[10] Yan Weiming, Wu Weimin 2007 Data Structures Tsinghua

University Press 238-47

[11] Vliant L G 1990 A bridging model for parallel computation
Communications of the ACM 33(8) 103-11

[12] Hoverock J, Bell N 2011 Thrust: A parallel template library
[13] Reinders J 2007 Intel Threading Building Blocks: Outfitting C++

for Multi-core Processor Parallelism O'Reilly Media 78-9

[14] Kaczmarski K 2012 B-Tree Optimized for GPGPU In Proceeding
of OTM Conferences 843-54

[15] Josuttis N M 2011 The C++ Standard Library Addison-Wesley

Authors

Yulong Huang, born in 1979, in Jian city, Jiangxi Province, China

Current position, grades: a lecturer of Computer Science and technology in School of Computer and information, Anqing Normal University.
University studies: He has received B.S degree in Computer Scicence and Technology from Wuhan University in 2002, received MSc and PhD in
computer application technology from Guizhou University and South China University in 2005, 2013 respectivly.
Scientific interest: Parallel Computing, Internet of Things, Database Technology and Distributed System.

Benyue Su

Current position, grades: Professor and the Chair of the School of Computer and Information, Anqing Normal University in China. He is the senior
member of China Computer Federation (CCF) and council member of Technical Committee of Geometric Design and Computing, CSIAM. He is also a
senior member of the ACM.
University studies: Ph.D. in Computer Science from the Hefei University of Technology (HFUT), China, in 2007.
Scientific interest: visual computing, data analysis techniques, computer aided geometric design, computer graphics and digital image processing.
Publications: more than 60 refereed journal and conference papers in these areas.

Jianqing Xi

Current position, grades: a professor of software engineering in South China University of Technology.
University studies: MSc in software engineering and PhD in computer architecture from National University of Defense Technology in 1988 and
1992 respectively.
Scientific interest: Database and Data Warehouse, Distributed system based on P2P technology, Chinese information process, Data management
and Software Development technology.

