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Abstract 

B+-tree is one of the most widely-used index structures. To improve insertion process, several batch algorithms are proposed, which 

all use one thread to complete one node insertion and cannot make full use of GPU’s parallel throughput. So, a batch building and 

insertion method on GPU named CUBPT is proposed in this paper. During the process of bulk building and insertion, CUBPT use 

one thread to insert one key, which can maximize the performance by GPU. The experimental results show that when build a 10M 

tree, the overall performance of CUBPT improved 25.03 times compare with four threads PBI. When insert 10M uniform keys into a 

10M tree, the overall performance of CUBPT improved 13.38 times compare with four threads PALM; when insert 10M highly 
skewed keys into tree with same size, the overall performance of CUBPT improved 15.23 times compare with four threads PALM. 
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1 Introduction 

 
Recently, the performance of single-core CPU is 

suffering a bottleneck and traditional architecture cannot 

promote the performance of multi-core CPU rapidly. 

Existing research result [1] shows that eight-core or above 

CPU cannot obtain any breakthrough on computing 

performance. Meanwhile, with the rapid development of 

GPU technology, it is ideal for high-performance 

computing task. Especially for the task which handles 

large-scale single-instruction and multiple data streams, 

the performance of GPU far beyond multi-core CPU. 

Hence, there has been a growing trend in leveraging the 

high parallel throughput of GPU for general purpose 

computing in parallel computing field. CUDA [2] is a 

programming tool, which allows programmers to write 

programs run on GPU rapidly. So, a large number of 

researchers use GPU to accelerate database operations 

such as sort, scan and achieved great results [3]. 

As memory capacity has increased dramatically, 

many database tables and related indices can reside in 

main memory completely now. So, more and more 

researchers devoted to improve operational performance 

of in-memory indices [4, 5]. The B+ tree is one of the 

most widely-used indexes. To improve its insertion, 

several batch algorithms are proposed [6, 7, 8]. These 

algorithms attempt to utilize different architecture 

processor to optimize the insertion process. Meanwhile, 

they cannot utilize parallel throughput of GPU. So, an 

experimental method on GPU is proposed [9]. However, 

this method just inserts one record at one time, which 

cannot make full use of the parallel throughput too. For 

this reason, a novel lock-free batch insertion algorithm on 

GPU called CUBPT is proposed in this paper. It utilizes 

one thread to handle one key’s insertion, which can take 

full advantage of the parallel throughput of GPU. 

 

2 Related Works 

 

In this section, the structure of B+-tree and serial 

insertion method are described firstly. On this basis, 

several batch algorithms are reviewed.  

 

2.1 THE STRUCTURE AND SERIAL INSERTION OF 

B+ TREE 

 

B+ tree is a balanced search tree consists of internal and 

leaf nodes. To improve efficiency, a modified structure is 

proposed [10]. Here, each internal node contains the 

maximum key of its sub-trees and the pointers to these 

sub-trees. All leaf nodes are located on same layer and 

contain the keys and pointers to corresponding records. 

Leaf nodes are linked by order of the keys which makes it 

convenience to retrieve. To an internal node in B+ tree 

with order m, its structure is as follows: 

(P0,K0,P1,K1,…,Pi,Ki ) 0≤i<n, where, Ki represents the ith 

key and Ki-1<Ki. Pi is the pointer to the root node of ith 

sub-tree in which all the keys are lower than Ki. n is the 

number of keys stored in the node. For root node, the 

range of n is [2,m). For internal nodes, the range of n is 

[⌈m/2⌉, m). The structure of leaf node is similar with 

internal node. It contains n(⌈m/2⌉≤n≤m) keys and pointers 

to corresponding records and also a pointer to adjacent 

node. A B+ tree with order 3 is as follows. 
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FIGURE 1 The structure of a 3-order B+ tree 

As we all know, traditional B+ tree is constructed with 

one by one insertion, which start from an empty tree. So, 

only serial insertion algorithm with above B+ tree is 

described as an example. The insertion process of key 16 

is as follows: First, compare 16 with a. Because 16<27, 

then compare 16 with b. Because 9<16<18, 16 should 

insert into f. Because there is no enough space, f should 

split into f and f’, where f contains keys {10, 15} and f’ 

contains keys {16, 18}. Meanwhile, key 15 should insert 

into b. Similarly, b should split. Repeat such process until 

a split. 

 

2.1 THE STRUCTURE AND SERIAL INSERTION OF 

B+ TREE 

 

In traditional algorithm, the insertion process of each 

record needs to visit a path from root to leaf. If the size of 

records is very large, this process needs to execute 

frequently. So, a batch construction algorithm on single-

core CPU is proposed [6]. Here, sort the records firstly 

and then build them bottom-up, once a layer from leaves 

to root. Because the path traversal times are reduced 

largely, the performance has improved greatly. However, 

this method cannot utilize the parallel throughput of 

multi-core CPU. So, another batch construction and 

insertion algorithm for B-link tree is proposed [7]. 

Similar with above algorithm, B-link tree is constructed 

with same way. But, this algorithm uses one thread to 

handle the construction process of one node. In batch 

insertion process, it also uses one thread complete one 

node insertion because the data contention. To leverage 

the parallel performance of many-core CPU, a new latch-

free modifications algorithm called PALM is proposed 

[8]. Combined with BSP model [11] and auxiliary 

structures, PALM divides the insertion process into three 

stages. In every stage, it uses one thread to handle the 

insertion process of one node. To reduce synchronization 

cost, a point-to-point strategy is applied. For leveraging 

parallel throughput of GPU, an experimental insertion 

method is proposed [9], which can improve insertion 

efficiency with thread block. However, it only inserts one 

record by one time. In this basis, A B+ tree batch 

insertion algorithm on GPU is further proposed [14].Due 

to the requirement of this algorithm, it use many arrays to 

store the leaf nodes and internal nodes. So, the 

management of data structure is very complex. At the 

same time, since the space cost is very expensive, it 

cannot complete batch insertion process in GPU when the 

scale of records is very large.  

 

3 CUBPT lock-free batch insertion algorithm 

 

3.1 THE STORAGE STRUCTURE OF CUBPT 

 

As we all know, the design of data structure is one of the 

key problems for GPGPU programming and the array of 

structures is most suitable for GPU. So, we use array of 

nodes to store B+ tree. To optimize tree storage, we 

observe that all nodes have similar structure. Let m 

denote the order of tree. For every node, the size of array 

keys is m and array ptrs is m+1. In ptrs, the first m 

elements store the index of relevant nodes and the last has 

different usages. For leaf nodes, it is used to store the 

index of next node. For other nodes, it is used to store the 

first address of new storage space which generated in 

node split that can accelerate key insertion. All nodes 

contain a type to identify different type node. For our 

algorithm, a parent for parent node’s location and a kNum 

for keys number in node are required. So, the size of 

every node is 2*(m+2) in device memory. The device 

memory structure of B+ tree described in Figure 1 is as 

follows. 
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FIGURE 2 The storage structure of B+ tree in GPU 

For B+ tree, the number of nodes increases by record 

insertion, which makes the expansion of nodes array 

necessary. However, CUDA does not support dynamic 

expansion. So, we adopt the following two-level structure 

to implement dynamic expansion. 
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FIGURE 3 Two-level structure of nodes array 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing 

226 
Information and Computer Technologies 

 

Here, nodes array is divided into several segments 

with fixed size and an array list is used to store every 

segment’s address. Hence, only list needs to be expanded 

statically. So, the cost is very small. Expansion needs 

three stages: (i) create new segments; (ii) expand list; (iii) 

add address of new segments into list. 

 

3.2 THE DESCRIPTION OF CUBPT ALGORITHM 

 

To leverage parallel throughput of GPU to accelerate 

insertion process, a lock-free batch algorithm on GPU 

called CUBPT is proposed in here, which can improve 

this process very largely. The main idea is as follows: 

Firstly, allocate a buffer in main memory to store records 

to be inserted. When the number of records reaches 

threshold α, copy them from host to device. Then, use 

parallel primitive [12] to sort them. At last, batch insert 

these records into B+ tree in device memory. The details 

are shown in Figure 4. 

FIGURE 4 The flow chart of CUBPT 

As depicted in Figure 4, when insert first batch 

records, we need to batch construct tree because B+ tree 

is null. After that, we may continue batch insertion 

process. So, our method consist of two parts which are 

batch construction and batch insertion. The detail of these 

two parts is as follows.  

 

3.2.1 The process of batch construction  

 

For an ordered keys set K, there are two stages to 

construct tree. Firstly, use |K| threads to divide K into n 

leaf nodes. Then, use n threads to insert maximum key of 

every leaf node into its parent. Repeat this process until 

root node constructed. To distribute the keys more 

uniformly, we utilize the following Formula 1 and 2 to 

compute the number of nodes to build in every layer and 

the number of keys to stored in every node. 

node_num←(|K|+m-1)/m, (1) 

( 1)

| | ( 1)

ave_keynum | K |+node_num - / node_num

h K -node_num* ave_keynum -





. (2) 

With above formulas, K is inserted into node_num 

leaf nodes, in which the first h leaf nodes contain 

ave_keynum keys and the others contain ave_keynum-1 

keys. The internal nodes are constructed by the same 

way. The detail of batch build process of CUBPT is as 

follows. 

____________________________________________ 
Batch_build: bulk building b+ tree in global memory  

Input: an ordered key set K 

Output: b+ tree in global memory Tdm 

Begin //starting from the leaf layer and construct every layer of Tdm 

iteratively 
1. nodeNum←(|K|+m-1)/m;//compute the number of leaf nodes. m is the 

order of Tdm 

2. For each tid∈[0, nodeNum) parallel do 

3.   set the value of kNum and prts[m]of leaf node Tdm->node[tid]; 

4. End for 

5. For each tid∈[0,|K|) parallel do //bulk inserts the keys into the leaf nodes 
6.    calculate index node_index and insert location node_loc of the leaf node 

that K[tid] should be inserted;  

7.    Tdm->node[node_index].keys[insert_loc]←K[tid]; 

8. End for 
9. If(nodeNum==1) return Tdm; 

10.While(nodeNum>1)  

11.   cur_num←(nodeNum+m-1);//compute the number of nodes to be 

constructed in current layer 

12.   Parallel set kNum of the nodes in current layer by using |cur_num| 

threads; 

13.   For each tid∈[0,nodeNum) parallel do      

14.       get the maximum key max_key of node[tid] in preceding layer; 
15.       with formula 1 and 2, get the index node_index of the node that 

max_key should be inserted; 

16.       insert max_key into Tdm->node[node_index] and set the related 

pointer of child and parent node;  

17.   End for 

18.   nodeNum←cur_num; 
19.End while 

20.Set the root pointer of Tdm and return;  

End 

 

As mentioned above, the difference between our 

algorithm and existing algorithms is that our algorithm 

uses one thread to handle one key's insertion, which can 

leverage the parallel throughput of GPU fully. 

 

3.2.2 The process of batch insertion  

 

In above process, CUBPT can maximally accelerate the 

construction process of b+ tree by using the parallel 

throughput of GPU. Similarly, to accelerate insertion 

process, a large-scale batch insert algorithm on GPU is 

proposed in here. It consists of the following stages: 

(i) Search: find out the index of leaf nodes to be 

inserted. 

(ii) Batch insert leaf nodes layer: According to the 

search results, batch insert the records into leaf nodes. If 

overflow, then split it. 

(iii) Batch insert internal nodes layer: In previous 

stage, if leaf nodes split, then the maximum keys of 

newly increase nodes need to be inserted into parent 

nodes layer. During this process, if the nodes also split, 

continue insert into the next layer. If necessary, perform 

this process iteratively until the root node split. 

(iv) Create root node: In 3rd stage, if root node split, 

then create a new one and insert related keys into it. 

The details of these stages are as follows: 

Search: according to the ordered keys set K, search 

the index of leaf nodes to be inserted by |K| threads. 

bulk build  tree

start

first insertion?

Pre-compute the 

Number of New 
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Inserted

Enough Space?

Expand the Space

Pre-allocate the 

Storage Space

Bulk Insert 

Records

End

yes

No

Yes

No



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 224-231 Huang Yulong, Su Benyue, Xi Jianqing 

227 
Information and Computer Technologies 

 

Starting from the root node, every thread uses binary 

search method to match the key to be inserted with 

current node, and then the next search node is obtained. 

Repeat this process until the index of leaf nodes to be 

inserted is found. Different with existing algorithms, this 

stage does not need to search leaf nodes. Hence, this 

reduced somewhat search cost. 

Before batch insert K, we should ensure that there has 

enough space to accomplish current insertion, the total 

number of increase nodes in current batch insertion 

should be pre-counted. If no enough space, expand it with 

the way described in 3.1.The pre-count process consists 

of two steps: Firstly, parallel reduce the search result to 

array mNodeIndex and mNode_keynum. Then, use the 

following algorithm to count the total number of newly 

increase nodes. 

____________________________________________ 
CountAddNodeNum: Parallel count the number of newly increase nodes in 

current batch insertion 

Input: index array mNodeIndex and increase keys number array 

mNode_keyNum of the leaf nodes to be inserted 

Output: The total number of newly increase nodes totalAddNum 

Begin 

1. mNode_keyNum← get total keys number in related node after inserted  

   by  mNodeIndex and mNode_keyNum; 

2. parallelly count the newly increase nodes number by formula 1 and  

    reduce the result to addNodeNum;  

3. if the newly increase nodes number in leaf layer is greater than 0,then 
iteratively count every internal layer with similar way. 

4. If root node splits, then count the number of newly increased nodes 

5. Reduce the results of above steps to totalAddNum 

End 

 

After the nodes array expanded, the following 

describe how to batch insert K into leaf nodes layer. The 

detail of this process is as follows: 

Batch insert leaf nodes: If there has enough space, 

then batch insert K into the leaf nodes layer. This stage 

contains five steps as follows. 

Step 1: According to the search result mNodeIndex, 

obtain original keys and indices of related leaf nodes with 

braid parallel method [5]. Then store them in array 

ori_keys and ori_index. Here, every thread block contains 

m threads. So, we can use one thread to get one key. 

Step 2: Use following merge_by_key algorithm to 

merge ori_keys, ori_index, K and mNodeIndex into array 

tmp_keys and tmp_index by order of keys. For simplicity, 

we use Thrust 
[11]

 to implement which as follows. 

____________________________________________ 
merge_by_key: parallel merge four ordered arrays into two arrays 
Input: K; index array mNodeIndex, original keys ori_keys and indices 

ori_index of leaf nodes to be inserted 

Output: temporary keys array tmp_index and index array tmp_index 

Begins 

1. construct a virtual <key, index> pair array part1 with K and 
mNodeIndex; 

2. use similar method to construct a virtual <key, index> pair array part2 

with ori_keys and ori_index;  
3. parallel merge part1 and part2 into tmp_keys and tmp_index 

respectively; 
End 

 

Step 3: according to tmp_index, use above allocation 

strategy to get the increase nodes number of every leaf 

node, and store them in addnode_num. Figure 5 shows 

the details of step3 with a 3-order B+ tree. 

0 0 0 1 1 1 3 3tmp_index

addnode_num

3 7

1 0

3 300 3 3 3

5

2

 
FIGURE 5 The details of Step 3 

Step 4: with addnode_num, use ∑addnode_num[i] 

(0≤i<|addnode_num|) threads to allocate continuous 

space for newly increase nodes. Here, every thread need 

to set some values such as ptrs[m], kNum and parent. 

Step5: After that, according to tmp_index, use 

|tmp_keys| threads to parallel insert tmp_keys into the leaf 

nodes .In here, use tmp_index to split tmp_keys and store 

the result in array partition_index. Then, assign a thread 

for one key in tmp_keys to calculate index (insert_index) 

and insert location (insert_loc) of leaf node that the key 

to be inserted. Finally, batch inserts tmp_keys into the 

leaf nodes. The detail of perform this step on a 3 order b+ 

tree is as Figure 6. 

Now, K is inserted into leaf nodes. The following 

shows how to batch inserts into internal nodes layer. 

Batch insert internal nodes: Similar with previous 

stage, this stage also consists of five steps as follows: 

Step 1: Obtain index and maximum key of newly 

increase nodes in previous level and Store them in array 

addnode_index and addnode_maxkey. 

Step 2: According to addnode_index, the index of 

corresponding parent nodes are parallel obtained and 

store in array parent_index .On this basis, braid parallel 

method [5] is used to obtain index and maximum key of 

child nodes and store in array ori_index and ori_maxkey. 

Step 3: Use the same way with step 2 in previous 

stage to merge ori_maxkey, ori_index, addnode_index 

and addnode_maxkey into array tmp_keys and tmp_keys. 

Step 4 & Step 5: The process of these two steps is 

similar with the last two steps in previous stage. The only 

difference is that every thread in here also needs to 

modify the related child and parent node pointer. 

At this point, all internal nodes split completely. If 

necessary, a new root node needs to be created. 

Create a new root node: obtain the maximum key 

and index of newly increase nodes in the root node level 

and store in array ori_maxkey and ori_index. Then, use 

merge_by_key algorithm to merge ori_maxkey, ori_index, 

the maximum key and index of original root node into 

array tmp_maxkey and tmp_index. Finally use the same 

way with our batch construction algorithm to create a 

new root node. 

In summary, according to the split situation of current 

nodes layer, our algorithm can use different number of 

threads to handle batch insertion process, which can 

make full use of the high parallel throughout to further 

accelerate the insertion process of B+-tree. 
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FIGURE 6 The details of Step 5 in stage of batch insert leaf nodes 

4 Experimental results and analysis 

 

To prove the effectiveness of our algorithm, we have 

implemented and tested on a PC with a NVIDIA 

GTX570 GPU and a recently-released Intel Corei7 Quad-

core processor. The hardware configuration is shown in 

Table1 and software configuration is as follows: The 

operation system is WindowsXP professional sp3 and 

IDE is VS2008 with CUDA4.0; the detailed analysis of 

our algorithm is as follows. 

 
TABLE 1 Hardware configuration 

Hardware GPU CPU(quad-core) 

Processors 780MHz *15 * 32 2.9GHz x*4 
DRAM(GB) 1.25 6 

 

4.1 BATCH CONSTRUCTION PROCESS ANALYSIS 

OF CUBPT 

 

Here, randomly generate a group of datasets which size 

are 5M, 10M, 15M, and 20M respectively. To prove the 

effectiveness of our algorithm, three batch construction 

algorithms are selected to compare:(1) Kim’s single-core 

CPU algorithm SingleBuild;(2)Liao’s multi-core CPU 

algorithm PBI;(3)our GPU algorithm CUBPTBuild; For 

analysing the impact of different number of threads on 

PBI ,we use two (PBITwo) and four threads(PBIFour) to 

perform. As mentioned before, these algorithms all 

consist of sort and batch insertion stage. CUBPTBuild 

also contains data transfer stage. In sort stage, singleBuild 

use the sort function in STL[15], PBI use parallel_sort in 

TBB [13] and CUBPTBuild use a sort primitive in Thrust 

[12]. Meanwhile, the transfer stage is optimized by 

pinned memory. Figure 7 shows the elapsed time of 

above algorithms in batch construction stage when the 

order of B+-tree is 512. 

From Figure 7 we know that, with the size of keys set 

increases, the performance speedup of PBITwo and 

PBIFour almost no changes, which are approximately 

1.68 and 2.16. Meanwhile, our algorithm’s speedup 

increase from 26.79 to 29.66. The reason is that PBI use 

one thread to complete one node’s construction. When 

the size of keys set is very large, it needs more iterations. 

On the contrary, our algorithm uses one thread to handle 

one key’s insertion and construct one layer by one time. 

So, with increasing scale of keys set, our advantage will 

further increase. 
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FIGURE 7. The build performance of above comparison algorithms 

 

As above analysis, these comparison algorithms also 

contain other stages such as sort and transfer stage etc. 

So, we need to compare the overall performance which 

shows as Figure 8. 
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FIGURE 8 The overall performance of above comparison algorithms 

 

As we can see from Figure 8, with the size of keys set 

increases, the overall speedup of PBITwo and PBIFour 

also no change, which are approximately 1.99 and 3.37. 

The overall speedup of our algorithm increases from 

73.34 to 84.36. The reason is that GPU is more suitable 

for sorting than multi-core CPU, which brings a 

significant gain for our algorithm. 

In summary, compare with singleBuild and PBI, our 

algorithm has distinct advantage in construction stage and 

overall performance. With the size of keys set increases, 

our algorithm’s advantage continues to expand. 
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4.2 BATCH INSERTION PROCESS ANALYSIS OF 

CUBPT  

 

Similarly, to prove effectiveness of the insertion process 

of our algorithm, three algorithms are selected to 

compare:(1) Liao’s batch insertion algorithm on single-

core CPU PBIInsert;(2) Jason’s batch modification 

algorithm PALM;(3) our batch insertion algorithm 

CUBPTInsert. To analyse impact of the number of 

threads on PALM, two (PALMTwo) and four threads 

(PALMFour) are used to perform. These algorithms also 

consist of sort and insertion stage. In addition, our 

algorithm also contains transfer stage. In sort stage, these 

algorithms use the same method with above. We also 

optimize transfer with pinned memory. From section 

3.2.2, we know that the impact of keys distribution is 

very large on our algorithm. So, we compare performance 

with different distribution. 

 

4.2.1 Uniform distribution  

 

Here, generate four uniform data sets. In them, use 5M, 

10M, 15M and 20M to build tree respectively. On this 

basis, batch insert 2M, 4M, 6M, 8M and 10M into the 

tree, which constructed in front respectively. In this 

process, all leaf nodes need to be inserted. For above 

algorithms, we also compare the insertion performance 

and overall performance. When batch insert keys with 

different size into a 5M B+-tree, the elapsed time of 

above comparison algorithms in insertion stage shows as 

Figure 9. 
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FIRURE 9 The insertion stage performance of above algorithms when 

insert uniform keys into a 5M B+-tree 
 

When batch insert keys with different size into a10M 

B+-tree, the elapsed time of above comparison 

algorithms in insertion stage shows as Figure 10. 
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FIRURE 10 The insertion stage performance of above algorithms when 

insert uniform keys into a 10M B+-tree 
 

In here, the elapsed time of all algorithm do not 

contain the search time. From figure 9 and figure 10 , we 

know that when the tree size is 5M, with the size of keys 

set increases, the speedup of PALMTwo and PALMFour 

in insertion stage are almost no change which are 

approximately 1.8 and 2.9. Meanwhile, our algorithm’s 

speedup increases from 5.5 to 7.5.When the tree size is 

10M, the speedup of PALMTwo and PALMFour almost 

no change too which are approximately 1.8 and 3.1. 

Meanwhile, the speedup of our algorithm increases from 

4.76 to 8.43. According to this, we know that with the 

size of B+ tree increases, our algorithm’s speedup 

increases by a small margin. The reason is that our 

algorithm use one thread to complete one key’s insertion. 

So, it is more suitable to batch insert larger scale keys. 

Here, we also compared the overall performance of above 

comparison algorithms. When batch insert keys with 

different size into a 5M B+-tree, the overall performance 

of above comparison algorithms shows as Figure 11. 

2M 4M 6M 8M 10M

0

1000

2000

T
o
ta

l 
E

la
p
s
e
d
 T

im
e
(/

m
s
)

The size of batch insert keys array

 SingleInsert

 PALMTwo

 PALMFour

 CUBPTInsert

The size of B+ tree is 5M

 
FIGURE 11 The overall performance of above algorithms when insert 

uniform keys  into a 5M B+_tree 
 

When batch insert keys with different size into a 10M 

B+-tree, the overall performance of above comparison 

algorithms shows as Figure 12. 

From figure 11 and figure 12, we know that when tree 

size is 5M, with the size of keys set increases, the overall 

speedup of PALMTwo and PALMFour are almost no 
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change which approximately 1.95 and 3.2.However, our 

overall speedup increases from 24.4 to 47.4; when tree is 

10M,the overall speedup of PALMTwo and PALMFour 

are almost no change too which approximately equals to 

above. Meanwhile, our speedup increases from 18.5 to 

42.8. By analyzing the insertion and overall 

performance,we know that overall speedup is far more 

than the speedup of insertion stage for our algorithm. 

This is because performance gains in search and sorting 

stage far more than transfer cost. 
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FIGURE 12 The overall performance of above algorithms when insert 

uniform keys into a 10M B+_tree 

 

4.2.2 Highly skewed 

 

Here, the size and usage of data sets is similar with 

uniform distribution. The difference is that the number of 

leaf nodes which to be inserted are less than 5% and 80% 

or more keys are inserted to one leaf node. In the same 

way, we also focus on insertion stage and overall 

performance of above algorithms. Next, we analyse the 

elapsed time of above algorithms in insertion stage firstly. 

When batch insert highly skewed keys with different size 

into a 5M B+-tree, the elapsed time of above comparison 

algorithms in insertion stage shows as Figure 13. 
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FIRURE 13 The insertion stage performance of above algorithms when 

insert highly skewed keys into a 5M B+-tree 
 

When batch insert different scale highly skewed keys 

into a 10M B+-tree, the elapsed time of above 

comparison algorithms in insertion stage shows as Figure 

14. 

Here, all of the above comparison algorithms do not 

contains the search time too. With the size of keys set 

increases, the performance of PALM Two and PALMFour 

have received almost no improvement. The reason is that 

Performance gains, which obtained from multiple threads 

execution are offset by cost of threads creation and 

synchronization. On the contrary, our speedup increases 

very obvious; when tree size is 5M, the performance 

speedup of our algorithm increases from 3.8 to 5.91. 

When tree size is 10M, the performance speedup of our 

algorithm increases from 3.7 to 6.1.The reason is same 

with uniform distribution. However, the performance 

promotion effect of our algorithm has a little decline. 

This is because the amount of data which processed by 

GPU is reduced slightly. 
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FIRURE 14 The insertion stage performance of above algorithms when 

insert highly skewed keys into a 10M B+-tree 
 

To compare the overall performance of above 

algorithms, the total elapsed time when batch insert 

highly skewed keys with different size into a 5M B+-tree 

is described in Figure 15. 
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FIGURE 15 The overall performance of above algorithms when insert 

highly skewed keys into a 5M B+_tree 
 

When batch insert highly skewed keys with different 

size into a 10M B+-tree, the total elapsed time of above 

comparison algorithms is described in Figure 16. 

In figure 15 and figure 16, our algorithm contains 

transfer time. From them, we know that when the size of 

keys set increases, the overall performance speedup of 

PALMTwo and PALMFour remain unchanged which 

approximately 1.9 and 3.1. Meanwhile, our overall 

speedup continues to increase. If tree size is 5M, our 

overall speedup increases from 30.5 to 47.1. If the tree 

size is 10M, our overall speedup increases from 28.9 to 

47.2. However, from above analysis, PALM can not get 
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any performance gains in insertion stage. Here,the overall 

speedup is mainly obtained by sort and search stages.For 

the same reason, our overall speedup is far more than the 

speedup of insertion stage. 
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FIGURE 16 The overall performance of above algorithms when insert 

highly skewed keys into a 5M B+_tree 
 

All in all, our algorithm has obvious performance 

advantage in both stages. Meanwhile, our speedup 

increases with the size of keys set which different with 

PALM. Especially, if keys distribution is highly skewed, 

our speedup is more obvious. So, our algorithm is more 

suitable for highly skewed keys insertion. 
 

5 Conclusion and future research 

 

B+-tree is one of the widely used index structures. To 

improve the process of keys insertion, several batch 

algorithms are proposed. Meanwhile, they cannot make 

full use of the parallel throughout of current GPU. So, a 

lock-free batch Insertion algorithm on GPU is proposed 

in here, which consists of two stages. The experimental 

results show that when batch construct tree, the total 

speedup of our algorithm can achieve 73.34 ~ 84.36. 

When batch insert keys, the total speedup of our 

algorithm can achieve 18.5 ~ 47.4. Here, we only 

research on batch construction and insertion algorithm. In 

the future, we will focus on batch search and deletion 

algorithm on GPU. 
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