
COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(2D) 12-17 Xin Xiaoshuai, Chen Jinxi 

12 
Nature Phenomena and Innovative Engineering 

Using cubature Kalman filter to estimate the vehicle state 

Xiaoshuai Xin*, Jinxi Chen 

School of Automation Engineering, University of Electronic Science and Technology of China. No.2006, Xiyuan Ave, Chengdu, China 

Corresponding author’s e-mail: xinxiaoshuai@gmail.com 

Received 1 March 2014, www.cmnt.lv 

Abstract 

The vehicle state is of significant to examine and control vehicle performance. But some vehicle states such as vehicle velocity and side 
slip angle which are vital to active safety application of vehicle can not be measured directly and must be estimated instead. In this paper, 
a Cubature Kalman Filter (CKF) based algorithm for estimation vehicle velocity, yaw rate and side slip angle using steering wheel angle, 
longitudinal acceleration and lateral sensors is proposed. The estimator is designed based on a three-degree-of-freedom (3DOF) vehicle 
model. Effectiveness of the estimation is examined by comparing the outputs of the estimator with the responses of the vehicle model in 
CarSim under double lane change and slalom conditions. 
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1 Introduction 

A variety of active vehicle safety applications are being 
developed in modern cars to reduce driver burden and road 
accidents. Traction control system (TCS) and electronic 
stability program (ESP) are two popular active safety 
applications in vehicles. TCS concerned with controlling 
longitudinal motion of the vehicle and ESP concerned with 
controlling lateral motion of the vehicle. Traction control 
system works by controlling slip ratio of the four vehicle 
wheels. Although vehicle speed is required to calculate the 
slip ratio of the wheel in TCS, the absolute vehicle speed 
can not be accurately measured by wheel speed because of 
wheel slip. ESP works by controlling yaw rate and side slip 
angle of the vehicle. Side slip angle can not be measured 
directly. Due to these factors, vehicle speed and side slip 
angle are not directly measured on production cars and 
must be estimated instead. 

Although there are other nonlinear observer [1-5] based 
study about vehicle state estimation, the main research 
activities in the field concentrate on the application of 
Kalman filter theory, which is the most powerful tool for 
multi-sensor data fusion problems [6]. In [7-9], Kalman 
filter is used to estimate yaw rate, lateral acceleration and 
tire slip angle with linear vehicle model. Since Kalman filter 
is based on linear stochastic differential equations, it can 
only be used in the linear system estimation. As a nonlinear 
filter, extended Kalman filter (EKF) extend the use of 
Kalman filtering through a linearisation procedure. Ray 
proposes an extended Kalman filter (EKF) based method for 
estimating vehicle speed, braking forces, wheel slip and 
side-slip angle [10]. A nonlinear extended adaptive. 

Kalman filter is proposed for the estimation of vehicle 
handling dynamic states in [11]. In [12-13], dual EKF is 
used for vehicle state and parameter estimation. The EKF 
works well in many application, but may suffer from large 
estimate errors when system have strong nonlinearities, and 
also suffer from the computation burden of the Jacobians 
[14]. Unscented Kalman filter (UKF) is used to vehicle state 
estimation because it overcomes these hurdles [15]. The 
UKF reduces computational costs compared to EKF and 

needn’t linearize the system and measurement equations as 
required by the EKF. 

Recently, a cubature Kalman filter is proposed by 
Arasaratnam and Haykin, which improves the performance 
over UKF [16]. Since nonlinear filtering can be reducing to 
a problem of how to compute integral, cubature Kalman 
Filter introduce a third-degree spherical-radial cubature 
rule to achieve the cubature points which are used to 
approximate the multi-dimensional integral [14]. CKF has 
been proposed and used in many application, such as 
positioning [17-18] and attitude estimation [19]. For 
nonlinear system with additive Gaussian noise, cubature 
Kalman filer (CKF) can achieve more accurately than the 
UKF with similar computational complexity [20]. 

In this paper, we propose a CKF based estimator with a 
3DOF vehicle is to estimate vehicle velocity, yaw rate and 
side slip angle. The inputs of the estimator are steering 
wheel angle, longitudinal acceleration and lateral 
acceleration with additive noise. Effectiveness of the 
estimation is examined by co-simulation between the 
software CarSim and Matlab-Simulink under double lane 
change and slalom conditions. 

The rest of paper is structured as follow: The 3DOF 
vehicle model are described in Section 2. CKF based 
estimator is presented in Section 3. Our experiments and 
results are introduced in Section 4. Finally the main 
conclusion and future works are summarized in Section 5. 

2 Vehicle model 

The proposed method is based on a nonlinear 3DOF 
vehicle model, which is shown in Figure 1. 
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FIGURE 1 Nonlinear 3DOF vehicle model 
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Segel present a vehicle model with 3DOF in order to 
describe lateral movements including both roll motion and 
yaw motion [21]. By reducing the roll motion, a two-
degrees of freedom linear bicycle model is obtained [22]. 
The linear two degrees of freedom related to vehicle body 
are yaw rate ( ) and side slip ( ). The motion of yaw rate 
is described as: 

, (1) 

where  is the distance from the front axel to the centre of 
gravity (CG),  is the distance from the rear axel to CG, 

 is the effective cornering stiffness of the front axel,  
is the effective cornering stiffness of the rear axel,  is the 
vehicle moment of inertia about Z axis and  is the 
steering wheel angle.  

The motion of side slip is described as: 

, (2) 

where  is vehicle mass and  is the longitudinal 
velocity. In order to estimate the longitudinal velocity of 
the vehicle, longitudinal motion is required. 

The longitudinal motion is described as: 

. (3) 

Equations (1), (2) and (3) form the nonlinear three 
degrees of freedom of vehicle model. In this paper, 

is the state vector of the proposed 
estimator, and  is the measurement. The measurement 
equation is written as: 

. (4) 

3 CKF state estimation 

3.1 CUBATURE  KALMAN FILTER 

Kalman filter is a special case of the Bayesian filter, which 
assuming that the dynamic system is linear and both the 
dynamic noise and measurement noise are statistically 
independent processes [23]. Considering a nonlinear 
discrete-time system of the form 

, (5) 

. (6) 

where  is a N-dimensional state vector, the output  
  is a M-dimensional vector, is the known control 

input, and  are independent process and 
measurement Gaussian noise sequences with zero means 
and covariance  and  respectively. The heart of the 
Bayesian filter is to compute multi-dimensional weighted 
integral of the form 

. (7) 

Since it’s difficult to obtain the solution of the above 
integral, the challenge is to compute the integral 

numerically by finding a set of cubature point  and  
that approximates the integral  by a weight sum of 
function evaluations 

1

( ) ( )
m

i i

i

I f f 


 . (8)  

Cubature Kalman Filter introduce a third-degree spherical-
radial cubature rule to achieve the cubature point as: 

, (9) 

. (10) 

The entire algorithm is presented as follows: 
1. Time  update 

Evaluate the cubature points 

, (11) 

.  (12) 

 where  is associated covariance matrix, 
denotes a Cholesky decomposition of a matrix. 

Evaluate the propagated cubature points 

. (13) 

Estimate the predicated state 

. (14) 

Estimate the predicated error covariance 

. (15) 

2 Measurement update 
Evaluate the cubature points 

,  (16) 

. (17) 

Evaluate the propagated cubature points 

. (18) 

Estimate the predicated measurement 

. (19) 

Estimate the innovation covariance matrix 

. (20) 

Estimate the cross-covariance matrix 

. (21) 

Estimate the Kalman gain 
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.  (22) 

Estimate the updated state 

. (23) 

Estimate the corresponding error covariance 

. (24) 

The proposed sate estimation method is based on CKF, 
the block diagram of the method is shown in Figure 2. As 
can be seen in Figure 2, the state estimator is designed to 
estimate the vehicle state by using steering wheel angle, 
lateral and longitudinal acceleration signals. 

 

 
FIGURE 2 Estimation block diagram 

 

For the state estimator, the state vector is written as 

. (25) 

The measurement is written as 

. (26) 

The known input  is written as 

. (27) 

The state vector equation of the proposed estimator can 
be written as: 

,  (28) 

where  is the sampling interval. 
The measurement matrix is described as: 

. (29) 

4 Experiments 

Two simulation cases under double lane change and slalom 
conditions are conducted based on Matlab/Simulink and 
CarSim. CarSim is a multi-DOF nonlinear simulation 
software for vehicle dynamics control and integration, and 

detailed mathematical models for simulating automotive 
vehicle dynamics have been in use for decades [24]. Since 
CarSim can work with Simulink, we build estimation 
model in Simulink and test it with the full nonlinear 
CarSim vehicle model. The Simulink Model for the 
proposed estimation is shown as Figure 3. The known 
parameters of the vehicle model are listed in Table 1. 
 

 
FIGURE 3 The Simulink model 

TABLE 1 Specification of the vehicle model 

Parameter Symbol Unit Value 

Vehicle mass m kg 1650 

Vehicle moment of inertia about Z axis  kg  3234 

Distance from front axel to CG  m 1.4 

Distance from rear axel to CG  m 1.65 

Effective cornering stiffness of the front axel  N/rad ‐97000 

Effective cornering stiffness of the rear axel  N/rad ‐120000 

 
The process noise covariance of CKF is , and 

measurement noise covariance is . The 
sampling interval is . 

4.1 DOUBLE LANE CHANGE TEST 

The initialization of the State vector of the double lane 
change simulation case is . Simulation 
results are shown in Figure 4, Figure 5, Figure 6, Figure 7, 
Figure 8 and Figure 9. For the double lane change test, 
Figure 4, Figure 5 and Figure 6 are respectively the vehicle 
sensor signal of steering wheel angle, longitudinal accele-
ration and lateral acceleration. 

As can can be seen from Figure 4, Figure 5 and Figure 6, 

all simulated sensor signals for CKF contain white noise 
which simulates the sensor noise in the real world. Figure 7, 

Figure 8 and Figure 9 are respectively the estimation of 

longitudinal velocity, side slip angle and yaw rate. As can be 

seen from Figure 7, Figure 8 and Figure 9, the estimated 

value of longitudinal velocity, side slip angle and yaw rate 

capture the trends in the data from CarSim. The additive 

noise of the sensor signal is filter by the CKF well. 

 
FIGURE 4 Steering angle with noise 
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FIGURE 5 Longitudinal acceleration with noise 

  
FIGURE 6 Lateral acceleration with noise 

  
FIGURE 7 Estimation of longitudinal velocity 

  
FIGURE 8 Estimation of side slip angle 

  
FIGURE 9 Estimation of yaw rate 

4.2 SLALOM TEST 

The initialisation of the State vector of the slalom 
simulation case is . Simulation results 
are shown in Figure 10, Figure 11, Figure 12, Figure 13, 
Figure 14 and Figure 15. 

  
FIGURE 10 Steering angle with noise 

  
FIGURE 11 Longitudinal acceleration with noise 

  
FIGURE 12 Lateral acceleration with noise 
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FIGURE 13 Estimation of longitudinal velocity 

  
FIGURE 14 Estimation of side slip angle 

  
FIGURE 15 Estimation of yaw rate 

For the slalom test, Figure 10, Figure 11 and Figure 12 
are respectively the vehicle sensor signal of steering wheel 
angle, longitudinal acceleration and lateral acceleration. 
Figure 13, Figure 14 and Figure 15 are respectively the 
estimation of longitudinal velocity, side slip angle and yaw 
rate. As can can be seen from Figure 13, Figure 14 and 
Figure 15, the estimated value of longitudinal velocity, side 
slip angle and yaw rate capture the trends in the data from 
CarSim. The additive noise of the sensor signal is filter by 
the CKF well. 

5 Conclusions 

In this paper, some works are proposed to estimate vehicle 
speed, side slip angle and yaw rate of the vehicle. Firstly, a 
nonlinear 3DOF vehicle model is presented. Secondly, the 
estimator based on CKF is designed. Finally, the 
estimation is examined by comparing the outputs of the 
estimator with the responses of the vehicle model in 
CarSim under double lane change and slalom conditions. 
Experimental results of the simulation show the 
effectiveness of the proposed method. 
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