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Abstract 

Landau damping of Langmuir waves is shown to have hydrodynamic roots, and, in principle, 
might have been predicted (along with Langmuir waves) several decades earlier, soon after Jeans 
(1902) paper appeared. 
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1 Introduction 

The Jeans dispersion relation is 

2 2 2 2 2 2   D )1( ) (s jkc k     
, (1) 

where k  is the wavenumber, 
2 2  s TC v  is the squared 

sound velocity,   is the ratio of specific heats, 

1/2(4 )Gp   is the Jeans gravitational frequency, T  is 

the average thermal velocity, and   /j TD v   is the 

gravitational analog of the Debye radius (which, of course, 

is not associated with screening, in contrast to plasma) 

(Jeans 1902). Equation (1) was obtained within 

Hydrodynamics, by using the Jeans model for infinite, 

homogeneous self-gravitating gas at rest in the equilibrium. 

This model is under severe criticism for decades (e.g. 

Binney and Tremain, 2008) as allegedly inconsistent 

because at the equilibrium it does not obey the Poisson law 

for the gravitational potential. We have shown, however, 

(Trigger et al., 2004; Ershkovich 2011) that the Jeans model 

is quite self-consistent as in uniform infinite fluid at rest the 

gravity force vanishes due to symmetry reason, and, hence, 

Poisson equation in the equilibrium is just irrelevant. Well, 

the Jeans model, of course, is not realistic but theoretical 

models (sometimes extremely useful) represent an idealiza-

tion which seldom is quite realistic. After all, ideal fluid, 

perfect gas, Maxwell demons, etc. do not exist either. 

Consider now an infinite, uniform electronic gas at rest. 

Taking into account similarity between Newton gravita-

tional and Coulomb laws in electrostatics, we replace the 

squared Jeans frequency 2  in equation (1) by 
2
0 , where 

0  is the Langmuir (1926) frequency, and obtain the 

dispersion relation for Langmuir waves 

0
22 2 2(3 D   )1ek  

, (2) 

where 0/e TD    is the Debye radius of electronic gas. 

Equation (2) also may be derived for plasma in hydro-

dynamic approximation (e.g. Krall and Trivelpiece, 1973), 

one-dimensional treatment when 3   is justified for 

Langmuir waves (Krall and Trivelpiece, 1973). Equation (2) 

yields a real part of the wave frequency a in the kinetic treat-

ment of the Langmuir waves (Landau, 1946; see also Krall 

and Trivelpiece, 1973). The Jeans model above for dusty 

plasma has been considered in Ershkovich and Israelevich 

(2008) by using Boltzmann-Vlasov equation in kinetics. 
Consider now a simplified picture: three identical parti-

cles (charged or not) are located along the same line at the 
points A, B, and C (so that in the equilibrium the distances 
AB = BC). A small sporadic displacement of the particle B 
toward the particle C violates the balance of forces 
(gravitational or electrostatic), because the distance between 
particles B and C becomes less than between A and B. As a 
result, an interaction between particles B and C grows, and 
between A and B diminishes. In case of self-gravitation, due 
to violation of symmetry, a particle B continues to approach 
the particle C (it corresponds to Jeans instability) whereas 
Coulomb repulsion tends to return a charged particle B at its 
original position, with small oscillation around the 
equilibrium state (with the frequency a0). 

Chaotic thermal motion, naturally, tends to destroy this 

idealized picture, hinders an organized, regular motion 

(waves and instability), giving rise to collisionless damping 

of oscillations. This effect is illustrated by equation (1): 

when thermal velocity is small 2 2( 1)jk D   the increment 

of the Jeans instability (Im )    is maximal. If the ther-

mal velocity T  grows, the increment diminishes, and with 

2 2 2/ k ( ~ 1)T jkD    the instability vanishes for any 

finite value of the wave number k . 

An organized motion is suppressed by the chaotic one. 

The damping is caused by thermal motion. Indeed, equation 

(2) points to the same conclusion: with 
2(kD ) 1e   
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equation (2) describes thermal oscillations of the electronic 

gas: / 3 Tk   (i.e. electronic acoustic waves), whereas 

Langmuir waves almost disappear (this case corresponds to 

strong collisionless damping of these waves).  

In the opposite limit, 
2(kD ) 1e  , equation (2) reduces 

to 0  . This is a condition of Landau damping. Thus, 

results of hydrodynamic and kinetic treatments happen to be 

qualitatively very similar, namely, strong damping of 

Langmuir waves within the Debye sphere and small dam-

ping outside of it. Moreover, the central idea of resonance 

between particles and fields, with the energy exchange 

between them, resulting in collisionless energy dissipation 

is implicitly present in equation (2), being associated with 

relation  
2

 kD ~ 1e , that is / ~ Tk   (which is indicative 

of resonance). From here it is not far to Landau (1946) dam-

ping (with its interpretation as reverse Cherenkov effect).  

Of course, some questions cannot be answered by means 

of hydrodynamic approximation, for instance, what happens 

with 
2( ) 1ekD  ? 

If chaotic thermal motion causes the wave damping what 

is the decrement? These questions may be elucidated only 

by means of exact kinetic approach. Landau damping of 

Langmuir waves proportional to exp(Im )t , Im 0   

was obtained by Landau (1946) with 
2( ) 1ekD  , 

Im Re   (see also, e.g., Krall and Trivelpiece, 1973). 

 Of course, Landau damping is of tremendous heuristic 

value. This effect is generally (and fairly) believed to be a 

corner-stone, an axiom of plasma kinetics. We have to say, 

however, that the Landau (1946) rule of a pole bypass 

direction was chosen in Landau (1946)  ad hoc, as if spe-

cially in order to describe mathematically a damping (rather 

than instability). An assumption of Maxwell distribution 

seems also not to be quite well consistent with the col-

lisionless character of damping. 
The effect of Landau damping of Langmuir waves is 

very small ( Im Re )  . 
According to Ecker (1972), it may be experimentally 

observed only in a very narrow interval 0.2 0.4ekD  . 
To resume, the chaotic thermal motion must hamper the 

regular, organized motion like waves and instabilities 
resulting in wave damping. This effect is seen from equation 
(1) for Jeans instability and should also be present in 
equation (2) for Langmuir waves. Therefore we believe that 
our qualitative picture above (including Langmuir waves 
and their collisionless damping), in principle, might have 
been predicted several decades earlier, soon after Jeans 
(1902) pioneering paper appeared. 

2 Conclusion 

Thermal motion was shown to suppress the regular one, 
thereby resulting in wave damping. Kinetic treatment also 
supports this (almost obvious) statement. But, according to 
Landau (1946) (see also Krall and Trivelpiece (1973)) both 
Re  and Im  depend on Tk  terms. We remind that 
Re  obeys the dispersion relation (2) which is obtained in 
hydrodynamical approximation.  

The origin of thermal terms (depending on Tk ) both in 
Re  and Im  is the same: it is the distribution function. 
Thus, there is genetic connection between Landau damping 
and Hydrodynamics. The arguments above allow us to arrive 
at the conclusion that this damping might have been predicted 
(of course qualitatively) long before the plasma kinetics arose. 
Landau damping is generally believed to be purely kinetic 
effect. To our opinion, it looks similar to the statement that 
bacteria arose together with Leeuwenhoek microscope. 
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