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Abstract 

A method for automatically selecting the asymptotical optimal parameters is presented for signal de-noising in discrete wavelet 

transform. The parameters of wavelet de-noising were first encoded. A generalized cross-validation algorithm was then used to select 

these parameters automatically. The parameters that obtained the smallest generalized cross-validation were asymptotically optimal. 

Simulation signals with different features and range signal-to-noise ratios were used to demonstrate the optimality of the proposed 

method. In addition, the Raman spectrum of edible oil and nuclear magnetic resonance spectrum of quinine and Boc-protected proline 

were employed as real-world data to validate the proposed method. The proposed method achieved superior performances in both real-
world data and in artificial simulation. 

Keywords: signal de-noising, wavelet transform, generalized cross-validation, parameter optimization 

 

1 Introduction 

 

Obtaining accurate characteristics of instrumental signal is 

important, however, the required signal is often polluted by 

noise. To extract reliable information from instrumental sig-

nals such as infrared spectra (IR), Raman spectral, unwanted 

noise should be removed [1, 2]. The effects of noise in 

spectra can be reduced in several ways. One of the most 

recent methods is based on wavelet transform (WT). 

Because of the advantages of the localization of time-

frequency characteristics and the sparse representation of 

signal in the wavelet domain, discrete wavelet transform 

(DWT) is becoming an increasingly important tool in and 

compression [3-7]. The most popular tool in wavelet de-

noising is the wavelet coefficient shrinkage method known 

as wavelet threshold de-noising [8-10]. The quality of 

wavelet threshold de-noising is strongly affected by several 

essential parameters, including wavelet function, decom- 

position levels, threshold estimate, and thresholding policy 

[2]. How to obtain these optimal parameters is an important 

issue for wavelet de-noising. To overcome this problem, 

cross-validation (CV) and generalized cross-validation 

(GCV) have been proposed to optimize the threshold esti-

mate [2, 11-16]. Pasti et al. proposed a method to optimize 

individually the parameters, including the optimal decom-

position level, wavelet function, and threshold estimate [2], 

Cai et al. employed minimum description length (MDL) 

algorithm to select the threshold and wavelet functions [17]. 

However, individual optimal parameters do not guarantee a 

global optimal when all parameters are considered simulta-

neously. To the best of our knowledge, no single method can 

optimize these parameters automatically and simultaneous-

ly in DWT threshold de-noising. 
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The present study obtains the optimal parameters by 

maximizing DWT threshold de-noising. The DWT thres-

hold de-noising parameters are first encoded using Arabic 

numerals. The GCV algorithm, which was originally deve-

loped to optimize the soft threshold value, is then applied to 

determine automatically the optimal parameter combina-

tions so that the optimal performance of DWT threshold de-

noising can be reached. 

 

2 Theory 

 

2.1 DISCRETE WAVELET TRANSFORM (DWT) 

 

Discrete wavelet transform is a linear transform, and the 

wavelet transform of a discrete signal f  can be described 

as the follows:

 

 

w Wf , (1) 

where W  is an orthonormal matrix represented as wavelet 

basis or wavelet filter coefficients, and w I is the wavelet 

transform coefficients. f  is decomposed by the filterbank 

with a lowpass filter and highpass filter of W  into set of 

wavelet coefficients w : 

1 2[ , ,..., , ]J Jw cD cD cD cA , (2) 

where J  is decomposition level, and 1 2, ,..., JcD cD cD  rep-

resent the detail information of signal f  and JcA  repre-

sents the approximation information. This transform locali-

zes the most important spatial and frequent characteristics 

of f  in a limited number of wavelet coefficients since the 

wavelet basis can be derived from a common function called 
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mother wavelet, which has two operations: translation and 

dilation. 

Signal reconstruction can be processed by the same 

highpass filter and lowpass filter in the W  can be described 

by the simple equation: 

tf W w , (3) 

where 
tW  is inverse wavelet transform. In practice, a fast 

algorithm developed by Mallat [18] is commonly used for 

performing the transformation. 

 

2.2 DWT THRESHOLD DENOISING 

 

An input instrumental signal can be represented as the sum 

of two components: 

y f   , (4) 

where f  represents the ideal signal and   represents the 

noise. A DWT yields the same situation in terms of wavelet 

coefficients: 

w v   . (5) 

The vector v Wf  contains the wavelet coefficients of 

the original instrumental signal. Here, W   is the noise 

coefficient and w Wy  is the noisy signal coefficient. To 

obtain the ideal signal f , v  and   are separated from one 

another using a comparison of their wavelet coefficients. 

The simplified procedure for DWT threshold de-noising can 

be described as follows: 

1) A wavelet transform is applied to signal y to obtain 

the wavelet coefficient w . 

2) The wavelet coefficient   is removed to obtain the 

estimated wavelet coefficient df . 

3) The inverse discrete wavelet transform is applied to 

df  to obtain the de-noised signal dy . 

One of the key issues of DWT threshold de-noising is 

how to estimate   (i.e., how to distinguish   from v ). 

Many possible approaches can be used to estimate the noise 

level, a systematic analysis of the performance of these 

approaches can be found in [1, 19]. The universal threshold 

has the following format: 

TUV 2ln N , (6) 

where N  is the length of signal y ,   is the standard 

deviation of the noise, and estimated from the median of the 

detail coefficients at the first level of signal decomposition. 

median (de tai1) / 0.674  . (7) 

Once the threshold value has been calculated, the key 

question is how to obtain df . In general, DWT threshold 

de-noising methods use two different policies: hard and soft 

thresholding. The hard thresholding policy simply sets all 

the wavelet coefficients below a certain threshold th  to zero: 

0

t
ij ij ij

t
ij ij

w w if w th

w if w th

  


 

. (8) 

In soft thresholding, the values of the wavelet 

coefficients are shrunk by a certain threshold if they are 

above a certain threshold th : 

sgn( )( )

0

t
ij ij ij ij

t
ij ij

w w w th if w th

w if w th

   


 

, (9) 

where sgn  is the sign function that returns the sign of the 

wavelet coefficient ijw . 

 

2.3 GENERALIZED CROSS-VALIDATION (GVC) 

 

The goal of signal de-noising is to minimize the difference 

between the de-noised and the ideal (i.e., noiseless) signal, 

thereby minimizing the mean square error (MSE), as shown 

below: 

 
=1

2
1 1

MSE ( ) ( )
N

d d

i

f f f i f i
N N

    , (10) 

where df  is the de-noised signal, f  is the ideal signal. 

However, normally, the ideal signal is not known. Thus, 

MSE cannot be obtained. 

The GVC theory was developed to estimate the best 

threshold value to optimize DWT threshold de-noising 

using the soft thresholding policy. GVC defines the risk 

estimate function as follows: 

2 2
0( ) /GCV N w w N   , (11) 

where 0N  is the number of the coefficients replaced by zero, 

N  is the total number of the wavelet coefficients, w  is the 

modified wavelet coefficient after applying a threshold  , 

and w  is the wavelet coefficient of the original noisy signal. 

[12] proved that the threshold   that results in the smallest 

GCV is asymptotically optimal under certain conditions. 

Moreover, [20] improved the GCV algorithm for the hard 

thresholding policy. The detailed description of the GVC 

theory can be found in the document [20]. In general, when 

GCV is smallest, MSE is asymptotically at minimum, which 

means searched parameter for de-noise might be optimal, 

and might also rank among the top 10%, and implies that the 

de-noising result is asymptotically optimal. Moreover, GVC 

only depends on input and output data, which are of vital 

importance in practice. Therefore, GCV is able to measure 

MSE when the shape of the signal is unknown or the noise 

energy is difficult to estimate. 
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3 Experimental and calculations 

 

3.1 ENCODING OF DWT THRESHOLD DENIOSING 

PARAMERERS 

 

Many types of wavelet functions exist, and some wavelet 

families contain wavelets of different orders. The Db, Bior, 

Sym, and Rbio wavelets which are the different filters have 

been proven effective in signal processing [21]; however, 

the present study is limited only to the daubechies, symmlet, 

bior, and rbio families of filters. A total of forty-eight filters 

were investigated in the present study. To obtain the 

minimum GCV, these wavelet functions need to be encoded 

as variables denoted as Arabic numerals. For example, “1” 

denotes the wavelet function “sym1,” “11” denotes the 

wavelet function “db1,” and “48” denotes the wavelet 

function “dmey.” At the same time, other parameters, such 

as decomposition levels, threshold policy, and threshold 

estimation, are also encoded as Arabic numerals. The 

definitions and the encoding of these parameters are shown 

in Table 1. 

 

TABLE 1 Definition and Encoding of wavelet de-noising parameters 

Parameters 

description 
Definition domain Remark 

Wavelet function [1, wavelet nameN ][1] wavelet nameN  is the number of wavelet function in definition domain. Here, wavelet nameN  is 48. 

Decomposition scales [1, maxN ] maxN  is the maximum of decomposition scales. Here, maxN  is 10. 

Threshold estimation [5Tuv, 8Tuv] Tuv is universal threshold. 
Thresholding policy [1, 2] Hard or soft thresholding. 

[1] Wavelet filters from 1 to 48: sym1, sym2, sym3, sym4, sym5, sym6, sym7, sym8, sym9, sym10, db1, db2, db3, db4, db5, db6, db7, db8, db9, db10, 

db12, db15, db18, db20, db30, bior1.1, bior1.3, bior2.2, bior2.4, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8, rbio1.1, rbio1.5, 

rbio2.2, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8, Dmey; 

 

3.2 SIMULATION SIGNALS AND CALCULATIONS 

 

Different simulation signals were considered in order to 

evaluate the performance of the proposed method. The 

simulation signals of Blocks, Bumps, Heavysine and 

Doppler signal in the wavelet tool are employed in present 

study. The four signals contain abundant frequency compo-

nents, many peak information and lots of catastrophe parts, 

so they are always used as the typical signals for comparing 

the quality of de-noising algorithms. The four original sig-

nals and noisy signals are showed in Figure 1. 

In this study, the Wavelet Toolbox 3.0 (The Math Works, 

Natick, USA) was used, and the Pieflab Toolbox for GCV 

algorithm can be obtained from http://homepag-

es.ulb.ac.be/~majansen/software/ thresh -lab.html, and all 

the calculations were performed on the platform of 

MATLAB 7.6 (The Math Works, Natick, USA). 

 
FIGURE 1 Four simulation signals 

4 Results and discussions 

 

4.1 SIMULATION DATA  

 

In this study, the definition domain of the threshold was 

from 5Tuv to 8Tuv with the interval of 1 unit. As a result a 

total of 40 definition points are available.  

As mentioned above, when the minimum GCV value is 

achieved, MSE is also near to the optimal value under 

certain conditions. This means that the parameter 

combinations of DWT threshold de-noising corresponding 

to the minimum GCV are also near to optimal. For real-

world signals, MSE cannot be estimated, hence, rather than 

MSE, the proposed GCV approach was adopted to optimize 

the parameter combinations. 

Random noise was added 100 times to each type of 

simulation signal with the signal-to-noise ratio (SNR) 

ranging from 16.34 to 21.18 (Level 1) to validate whether 

the parameter combinations corresponding to the minimum 

GCV (or optimal GCV) are optimal. Each type of simulation 

signal can obtain 100 noisy signals. Here, only Doppler 

noisy signals are listed in Figure 2a (Level1). The MSE 

value corresponding to the minimum GCV (GCV-MSE) 

can be obtained from 38,400 (48 * 10 * 40 * 2 parameter 

combinations) different MSE values. Observing the 

arrangement locations of GCV-MSE in all 38,400 MSE 
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values is a simple way to determine whether GCV-MSE is 

minimum. When GCV-MSE is minimum (or ranks first), 

and imply the obtained parameter combination is optimal. 

Similarly, if GCV-MSE is near to minimum (or ranks in the 

top ten or top one hundred), the searched parameter 

combination is asymptotical optimal. The GCV-MSE 

concrete arrangement distribution of 100 noisy signals of 

each type of simulation signals is shown in Figure 3a. In 

Figure 3a, the abscissa values for Blocks, Bumps, 

Heavysine, and Doppler signals are 1–100, 100–200, 201–

300, and 301–400, respectively. The small circles in Figure 

3a represent the arrangement position of each noisy signal. 

Each discrete point is connected with solid lines for easy 

comparison of several different signals. 

 

 
FIGURE 2 Noisy Doppler signals with different SNR level: (a) Level 1 (b) Level 2 (c) Level 3 

 
FIGURE 3 GCV-MSE Arrangement locations of four simulation signals with different SNR, 1-100 is the arrangement locations of GCV-MSE for the 

Blocks signals, 100-200 are for Bumps signals, 201-300 are for Heavysine signals, 301-400 are for Dopper signals: 

(a) level 1 SNR (b) level 2 SNR (c) level 3 SNR 

As seen in Figure 3a, the arrangement locations of GCV-

MSE is relatively small for signals with the SNR level 1, and 

most of them are lower than 5,000, which indicates that the 

identified parameter combination is working well. A 

comparison of the optimization results of four signals shows 

the results of the Block signal sequence 1–100, as shown in 

the Figure 3a to be the best. This result can be explained by 

the GCV algorithm principle. Because the GCV algorithm 

is more suitable for regular signals, it is more appropriately 

applied in signals with less frequency information. The 

mean and standard deviation of GCV-MSE arrangement 

positions listed in Table 2 further validate the optimization 

effect of the proposed method. As shown in Table 2, the 

mean of the arrangement locations of the GCV-MSEs is top-

ranked (corresponding to 38,400 combinations), indicating 

that optimization results are very satisfactory. Compared 

with these results, the mean of Heavysine is the largest, 

which indicates that the optimization result is the worst 

among the four simulation signals. Moreover, the standard 

deviations of the Blocks signals are smaller than that of the 

other three signals, which indicate that the proposed method 

is relatively stable for Blocks signals.  

TABLE 2 Mean and standard deviations of GCV-MSE arrangement locations of four simulation signals 

Signals SNR level 
Blocks Bumps Heavysine Doppler 

Mean Sd Mean Sd Mean Sd Mean Sd 

Level 1 21 48 876 1327 1249 1651 285 665 

Level 2 17 16 847 1297 1947 2215 580 1339 
Level 3 38 92 1239 1176 2729 2840 690 1586 

dict://key.0895DFE8DB67F9409DB285590D870EDD/optimization
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TABLE 3 Mean and standard deviations of MDL-MSE arrangement locations of four simulation signals 

Signals SNR level 
Blocks Bumps Heavysine Doppler 

Mean Sd Mean Sd Mean Sd Mean Sd 

Level 1 71 74 2007 981 3897 1895 1131 692 
 

The MDL algorithm is free from any parameter setting or 
any subjective judgment when used for data compression and 
de-noising [17]. In the present study, the MDL algorithm can 
also be used in the parameter optimization of the DWT 
algorithm, with the coding and setting of the parameters the 
same as before. The optimization result shown in Table 3 also 
shows a comparison of the results of GCV algorithm of the 
noise level 1. Based on the Table 3, the MDL algorithm is 
inferior to the GCV algorithm, which is consistent with the 
result proposed by the document [2]. Moreover, MDL can 
only be used for optimization of hard threshold values. Hence, 
the following studies are all based on GCV algorithm. 

To investigate the influence of adding signals with 
different noise levels on the proposed method, 100 noisy 
signals with SNRs ranging from 11.17 to 16.22 (Level 2) and 
from 8.82 to 11.37 (Level 3) are employed. The noisy signals 
with different SNRs are shown in Figure 2b and 2c, along 
with a list of the Doppler noisy signals. Similarly, the GCV-
MSE specific arrangement distributions of the SNR levels 2 
and 3 are shown in Figures 3b and 3c. Clearly, the perfor-
mance of the proposed method is influenced by different 
levels of noises. Based on Figure 3, the Heavysine and 
Doppler signals are influenced the most, followed by the 
Bumps signal, whereas little influence is generated on the 
Blocks signal. These results indicate that the proposed 
method is suitable for several regular signals, further 
verifying that the GCV algorithm is more suitable for regular 
signals. In Figure 3b, most of the GCV-MSE arrangement 
locations are within 5,000, and only a few Bumps and 
Heavysine signals exceed 5,000, and the GCV-MSE 
arrangement locations greater than 5,000 are slightly 
increased for the SNR level 3, especially for Heavysine signal, 
as seen from Figure 3c. However, compared with the 38,400 
MSE values, the arrangement locations are still placed at the 
front location. The mean and standard deviations of the 
arrangement positions of 100 GCV-MSE of the four types of 
signal with SNRs at Levels 2 and 3 are listed. 

As seen from Table 2, the means of all the arrangement 
locations are small, which indicates that the parameter opti-
mization results are satisfactory. The Heavysine and Doppler 

signal are greatly affected by noise on the aspect of standard 
deviation values, whereas noise has little influence on Blocks 
signals.  

At the same time, the specific numbers of different arran-
gement scopes have been summarized out, as shown in the 
Table 4. The optimization results of the parameters of three 
types of noises which is shown in the Table 4 indicate that the 
numbers of those whose arrangement locations are below 384 
are 292, 269 and 227 respectively, which means that there are 
probability values of 73.00%, 67.25 and 56.75% to select the 
optimal combinations of top 1% correspondingly. Meanwhile, 
this also means that there are probability values of 94.50%, 
91.75% and 89.25% for the optimal combinations of top 10% 
to be selected respectively. This result is very satisfactory for 
such a huge combination of 38400. 

In order to investigate the relation between the GCV value 
and the corresponding MSE values, each GCV value of the 
38,400 different parameters and the corresponding MSE 
values should be listed. However, illustrating such massive 
data would be impossible because of page limitations. Hence, 
only 200 data were selected randomly from Block and 
Heavysine signals, their GCV values and the corresponding 
MSE values are reported in Figure 4. As one can see from 
Figure 4a, small GCV is not always corresponds to the small 
MSE, however, in the region of GCV smaller than 0.5, the 
trends of GCV and MSE are similar, based on Figure 4b, it 
was found that the smaller GCV and MSE correspond to same 
data point (parameter combination). Similar situation is also 
happened in the Heavysine signal; the detailed results are 
showed in Figures 4c and 4d. 
 

TABLE 4 Numbers of arrangement location 

SNR level 
Range 

<384 <1920 <3840 

Level 1 292 356 378 

Level 2 269 337 367 

Level 4 227 321 357 

 

 
FIGURE 4 Relations between GCV and MSE of block and heavysine signals 

dict://key.0895DFE8DB67F9409DB285590D870EDD/algorithm
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4.2 REAL-WORLD DATA 

 

The real-world data used in the present study is the Raman 

spectrum of edible oil (mainly composed of protein and fat). 

The T64000 Raman spectrometer used was produced by the 

French HORIBA Jobin Yvon Company. All Raman tests 

were conducted at room temperature. The excitation light 

source used was an argon ion laser with a wavelength of 

514.5 nm, laser power of 120 mw, and scanning 

wavenumber range of 500–3,500 cm-1. The experimental 

light path was backscattered. Laser-formed light spots were 

shown to have a diameter of approximately 1 um on the 

sample surface after being focused 100 times by the object 

lens. The original Raman spectrum in Figure 5a shows four 

peaks with different widths; the figure also shows the height 

and the area of the spectra peaks. In general, the shapes of 

the peaks, including width, height, and area should be 

maintained in the de-noising process to avoid influence on 

the analysis results. This makes signal de-noising very 

challenging. 

Using the proposed GCV methodology, the optimal 

parameter combinations were obtained as 8, 5, 4, and 1. 

Correspondingly, wavelet function of sym8, decomposition 

level of 5, a 4/5 Tuv threshold and hard threshold were 

employed. De-noising result in Figure 5b shows that the 

shapes of several peak values to be well kept, whereas most 

of the noises were eliminated. The attributes of the peak, 

including position, height, width, and area, are the main 

indices that define the components in the Raman spectrum 

analysis. The changes of the attributes of the peak before 

and after de-noising are shown in Table 5. The position, 

width, height, and area of the peak showed no prominent 

changes after the noise of the original spectrum was 

eliminated. 

 

 
FIGURE 5 Raman spectrum of edible oil: (a) noisy spectrum (b) 

denoised spectrum (c) noisy signals 

 

 
FIGURE 6 NMR spectrum of mixtures of quinine and Boc-protected 

proline: (a) noisy spectrum (b) denoised spectrum (c) noisy signals 

Another real-world data is nuclear magnetic resonance 

(NMR) spectrum in Figure 6a, which was obtained 16:84 

mol ratio mixtures of quinine and Boc-protected proline 

with enantiomeric excess of 10% in CDCl3. The NMR 

spectra were recorded after several minutes of thermal 

equilibration time. NMR spectrum was recorded on a 

Bruker Avance 500 MHz spectrometer. Spectrum was 

recorded using 16 scans at 298K. A full spectrum of sample 

was recorded referenced to TMS. An exponential window 

function with a line-broadening factor of 1Hz was applied 

to the FID before Fourier transformation. The 1H-NMR 

spectrum was phased and baseline-corrected using Topspin 

2.1(Bruker) and was automatically reduced by using the 

AMIX (Bruker GmbH, Germany) software package to 

continuous integral segments of equal width of 0.004ppm 

corresponding to the chemical shift range 1H,   6.9–8.8 

after removing the solvent resonance region (   7.2-7.3). 

Similar to the situation of Raman spectrum, to de-noise 

NMR spectrum is a very challenging thing because it 

requires that the shape of the peak should remain unchanged 

as much as possible. Since several peaks of this NMR 

spectrum are connected together, there is impossible to 

calculate the area and width of each peak. Therefore, we 

give the height of the peak and total area and width of three 

peaks prior to de-noising here. Using the proposed GCV 

methodology, the obtained optimal parameter combination 

is 4, 5, 4 and 1, correspondingly, parameters of wavelet 

function is sym8, decomposition level is 5, and 4/ 5Tuv 

threshold and hard threshold are employed. De-noising 

results are shown in the Figure 6b. The changes of the 

attributes of the peak before and after de-noising are shown 

in Table 6, as one can see from the Table 6, the spectral 

profile after de-noising, the height of the peak changes 

relatively less, and the shape of peaks almost remain 

unchanged, indicating that the de-noising effect is relatively 

satisfactory. Hence, it can be concluded that the parameter 

combination thus generated is relatively ideal. 
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TABLE 5 Comparison of attribute of peak before and after de-noising for Raman spectrum 

Peak 
Original Denoised 

Position Width Height Area Position Width Height Area 

1 1148 102 73 7079 1147 104 73 7076 

2 1346 46 124 7790. 1345 51 121 7788 
3 1652 23 174 6456. 1652 23 173 6451 

4 3421 153 668 120529 3422 151 668 120525 

TABLE 6 Comparison of attribute of peak before and after de-noising for NMR spectrum 

 

5 Conclusions 

 

The present paper proposed an algorithm that automatically 

selects DWT threshold de-noising parameters based on the 

GCV algorithm. Parameter optimization includes wavelet 

function, decomposition level, threshold estimation, and 

threshold policy. Four simulation datasets and real-world 

data of Raman spectral and NMR signals were used for vali-

dating the proposed algorithm. The results show that the 

identified minimum GCV value produces a better MSE 

value. Therefore, DWT threshold de-noising can be optimi-

zed automatically through reasonable parameter encoding 

based on GCV value. At the same time, the optimization 

ability of the proposed method slightly degrades with the in-

crease of the magnitude of added noise. 
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