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Abstract 

Community structure has been proven to have great impact on epidemic spread in weighted networks. To understand the epidemic 

propagation in weighted homogeneous networks with community structure, a model of pseudo-random network is presented with 

adjustable community structure. By changing the number of edges connecting to the nodes in the same community and the weight of 

edges connecting to the nodes in the same community, we investigate the epidemic spreading in weighted homogeneous networks with 

different community structure. Simulations show that both the number of within-community edge and the weight of within-community 

edge have great impact on epidemic spreading behaviour. 
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1 Introduction 

 

In the past few years, the study of complex network has 

attracted the increasing interest since the small-world 

phenomenon introduced by Watts and Strogatz [1] and the 

scale-free phenomenon proposed by Barabási and Albert 

[2]. The ultimate goal of these studies on topology is to 

understand and explain the dynamic process up these 

networks, for instance, to understand how the topology of 

social network affects large-scale epidemics such as H1N1 

[3] and so on. It is of great importance to control the 

epidemic spreading taking place in real world networks. A 

great deal of models has been proposed to investigate the 

feature of epidemic spreading where the node is classified 

in three states: susceptible (which will not infect others but 

may be infected), infected (which is infective) and 

recovered (which has recovered from the disease and has 

immunity). The SI [4-6], SIS [7-9], and SIR [10-12] 

models are proposed based on the discrete states of the 

nodes. To investigate the dynamical behaviours in the very 

early stage of epidemic outbreaks when the effects of 

recovery and death can be ignored, we shall focus on the 

susceptible-infected (SI) model in which individuals can 

be in two discrete states, either susceptible or infected. 

Each individual is represented by a node of the network 

and the edges are the links between individuals along 

which the infection may spread. An infected node can 

infect any of its neighbourhood nodes with a fixed 

probability λ at each time step and the infected nodes 

remain always infective. At the beginning time, I0 nodes 

are randomly selected to infect the rest of the network, the 

dynamical process being affected by the topology of the 
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network. The behaviours of the SI model are not only of 

theoretical interest, but also of practical significance. 

The previous studies on networks have been 

principally focused on the unweighted network where 

edges between nodes are either present or not. However, 

lots of real world systems such as the scientific 

collaboration networks [13], the world-wide airport 

network [14], the mobile networks [15] and the Internet 

[16] have proved to be specified not only by the topology 

but also by the edge weight. 

Accompany with the continuing study of complex 

networks, another common feature of many real world 

systems, the community structure, is founded [17-21]. 

Community structure is the tendency for nodes to divide 

into subsets within which node-node connections are 

dense, but between which connections are sparser. There 

have also been some studies to investigate the impact of 

community structure upon epidemic spreading in scale-

free networks [22-24]. 

However, there are few studies to combine weight and 

community structure well to investigate the epidemic 

spreading in homogeneous networks. Indeed, the weight 

distribution of the edges would impact the community 

structure and the epidemic spreading in weighted 

homogeneous networks with community structure. In this 

paper, we proposed a model of pseudo-random network 

with adjustable community structure. By changing the 

number of edges connecting to the nodes in the same 

community and the within-community edge weight in the 

same community, we investigate the epidemic spreading 
in weighted homogeneous networks with different 

community structure. 
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This paper is organized as follows. In section 2 we 

describe the models, followed by the experimental 

evaluations in section 3. The conclusions are given in 

section 4. 

 

2 Models 

 

In order to study the dynamical behaviours in the very 

early state of epidemic outbreaks, we focus on the 

traditional SI model in which nodes are either susceptible 

or infected. If s(t) and i(t) are the density of susceptible and 

infected nodes at time t respectively, then s(t)+i(t)=1. 

Denote the spreading rate as λ at which each susceptible 

node acquires infection from an infected neighbour during 

one time step. In homogeneous networks, each node has 

approximately the same degree which makes it possible to 

use mean-field theory to obtain approximate results. In this 

case the system, we have 

( )
( )[1 ( )]

di t
k i t i t

dt
    . (1) 

Equation (1) states that the growth rate of infected 

nodes is proportional to the spreading rate λ, the density of 

susceptible nodes that may become infected s(t)=1-i(t), 

and the number of infected nodes in contact with any 

susceptible one. The homogeneous mixing hypothesis 

considers that the last term is the product of node degree 

<k> and the average density of infected nodes i(t). 

For our weighted SI model, We assume that transmit 

probability through the edge with weight w, λw, is 

equivalent to the infected probability that w infected nodes 

simultaneously influence the susceptible nodes [25,26], 

which is 

1 (1 )w

w    . (2) 

We also employ the pseudo-random network model to 

investigate the epidemic spreading since all other 

properties such as average node degree will be equivalent 

to fully random networks except the controllable varying 

strength of community structure. These networks are 

comprised of n nodes which are split into mods 

communities of n/mods nodes each. Each node has on 

average Zin edges connecting it to nodes of the same 

community and Zout edges to nodes of other communities. 

While Zin is varied, the value of Zout is chosen to keep the 

total average degree constant, and set to <k>. And we 

assign different weights to the different kinds of edges: 

between-community edges are given a fixed weight of wout 

(which is often set to 1 for simplicity), while within-

community edges are given the weight win =w. As Zin and 

w are increasing, the communities become better defined 

and easier to identify. 

To know the influence of the accuracy of community 

structure identification on information transfer capacity, 

we employ the modularity measure. A is the adjacency 

matrix where Aij=1 if nodes i and j are connected and 0 

otherwise. Let ci be the community, which node i belongs 

to. The modularity measure, Q, is defined as follows [18]: 

1
( , )

2 2

i j

ij i j

ij

k k
Q A c c

m m


 
  

 
 , (3) 

where 
1

2
ij

ij

m A   is the number of edges in the network, 

δ(u,v) is 1, if u=v and 0 otherwise. The higher the 

modularity Qmax is the stronger community structure the 

network has. In practice values for such networks typically 

fall in the range from about 0.3 to 0.7. Higher modularity 

values are very rare. 

 

3 Simulations and analysis 

 

At first, we check the impact of within-community edge 

weight w on the maximum modularity Qmax using pseudo-

random networks with n=128 nodes which are divided into 

mods=4 communities with 32 nodes in each community. 

The average degree <k> is set to 16. Simulation results are 

shown in Figure 1. 

 
FIGURE 1 Qmax vs w, n=128, mods=4, <k>=16 

From Figure 1 we can obtain that the increasing of edge 

weight will result in the increase of community structure 

especially in the traditional random network. In the 

pseudo-random network which has more with-community 

edges (Zin=14 in Figure 1), the network has pronounced 

community structure even though the within-community 

edge weight is smaller. And the greater the number or the 

weight of within-community edge is, the higher the 

maximum modularity Qmax is. 

Then we check the impact of the number of within-

community edge Zin on the maximum modularity Qmax. 

Simulation results are shown in Figure 2. 

 
FIGURE 2 Qmax vs Zin, n=128, mods=4, <k>=16 
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Figure 2 also proves that the greater the number or the 

weight of within-community edge is, the higher the 

maximum modularity Qmax is. 

Then we check the impact of the total node number n, 

the community number mods, and the average node degree 

<k> on the maximum modularity Qmax. Simulation results 

are shown in Figure 3. 

   
a) n=256, mods=4, <k>=16 b) n=128, mods=8, <k>=16 c) n=128, mods=4, <k>=32 

FIGURE 3 Qmax vs Zin 
 

Comparing with Figure 2, we double the total node 

number, the community number and the average node 

degree to get the results shown in Figure 3a, 3b and 3c 

correspondingly. From Figure 3 we can obtain that the 

maximum modularity Qmax is also increasing accompany 

with the number and the weight of within-community edge. 

Only the changing of the community number affects the 

absolute value of maximum modularity. The changing of 

the total node number and the average node degree will 

barely affect the result of maximum modularity. 

Now we focus on the epidemic spreading in weighted 

homogeneous networks. We set the the number of within-

community edge Zin as 14 for the network which has 

stronger community structure and 8 for the network which 

is a traditional random network. (In the scenario where 

average degree is 32, it changes to 28 and 16 accordingly.) 

At the initial age, we select a node randomly and make it 

an infected node. At each time step, the infected nodes will 

interact with their neighbours with probability λw which is 

defined in Equation (2). Simulations of different scenarios 

are shown in Figures 4, 5, 6 and 7. 

 

  
a) Zin=14 b) Zin=8 

FIGURE 4 Epidemic spreading in weighted networks, n=128, mods=4, λ=0.002, <k>=16 
 

In Figure 4, we report the density of infected nodes 

versus time in weighted homogeneous networks with 

different community structure. As shown in each figure, 

the epidemic propagation velocity is higher in networks 

with greater weight of within-community edge. However, 

when the weight of within-community edge is less than the 

weight of the between-community edge (w=0.5), less 

within-community edge will unexpectedly accelerate the 

epidemic propagation. 

Then we also double the total node number, the 

community number and the average node degree to get the 

results shown in Figures 5, 6 and 7 correspondingly. 
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a) Zin=14 

 
b) Zin=8 

FIGURE 5 Epidemic spreading in weighted networks, n=256, mods=4, 

λ=0.002, <k>=16 

 
a) Zin=14 

 
b) Zin=8 

FIGURE 6 Epidemic spreading in weighted networks, n=128, mods=8, 

λ=0.002, <k>=16 

 
a) 3Zin=28 

 
b) Zin=16 

FIGURE 7 Epidemic spreading in weighted networks, n=128, mods=4, 

λ=0.002, <k>=32 

As shown in each Figure, the increasing of weight of 

within-community edge will result in the acceleration of 

the epidemic propagation and less within-community edge 

will also accelerate the epidemic propagation when the 

weight of within-community edge is less than the weight 

of the between-community edge. 

We utilize different within-community edge number 

Zin to check the impact on epidemic spreading as shown in 

Figure 8. 

 
a) w=0.5 

 
b) w=0.25 

FIGURE 8 Epidemic spreading in weighted networks, n=128, mods=4, 
λ=0.002, <k>=16 
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In both scenarios where the weight of within-

community edge is less than the weight of the between-

community edge, less within-community edge can 

accelerate the epidemic propagation. 

 

4 Conclusions 

 

How the community structure impact on the epidemic 

spreading in weighted homogeneous networks is studied 

in this paper. With our weighted SI model and the 

computer-generated pseudo-random networks model, the 

epidemic propagation velocity is studied in difference 

scenarios. Both increasing the number of within-

community edge and increasing the weight of within-

community edge can enhance the community structure. 

And increasing the weight of within-community edge will 

result in the acceleration of the epidemic propagation. 

Furthermore, we also proposed that less within-

community edge will accelerate the epidemic propagation 

when the weight of within-community edge is less than the 

weight of the between-community edge. This study will 

shed light on how to restrain the epidemic spreading in 

weighted homogeneous network. 
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