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THE DREAM

Our life is twofold: Sleep hath its own world,

A boundary between the things misnamed
Death and existence: Sleep hath its own world,
And a wide realm of wild reality,

And dreams in their development have breath,
And tears, and tortures, and the touch of Joy:
They leave a weight upon our waking thoughts,
They take a weight from off our waking toils,
They do divide our being; they become

A portion of ourselves as of our time, .....
1816

George Gordon Byron Selections. Lyrical Verse

I'm happy to announce that “The Khaim Kordonsky Charitable Foundation” joins
in supporting Computer Modelling and New Technologies journal. The introduction of
Reliability and Mathematical Statistics field is essential and important contribution the research
community. My father, Professor Khaim Kordonsky developed his life in advancing not only the
science of reliability and mathematical statistics, but also the application to the solution of
important problems in safety and operation efficiency.

But just as important, he selflessly gave his time and talent to his students and
assistants. In supporting your journal I want to continue my father’s legacy.

May 28, 2001 Inna Kordonsky-Frankel,
President of The Khaim Kordonsky
Charitable Foundation

The nature phenomena are accorded and contradict their models at the same time. The problem
of scientist to find the best compromise on the way of nature description, and thus, on the complicated
way to the truth. This is the way of science.

With this edition (Volume5, No.1), which is sponsored now by “The Khaim Kordonsky
Charitable Foundation” also, we start new activities of our Journal and announce the competition on the
best student scientific work presented here for Khaim Kordonsky Prize, open a new division
"Mathematical Statistics and Reliability Theory".

This edition is the continuation of our publishing activities and the current step in new science
fields. We hope our journal will be interesting for research community, and we are open for collaboration
both in research and publishing.

EDITORS

%/ e Yu. N. Shunin
% e e I1.V. Kabashkin
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ADHESION OF SILVER ON THE AI-TERMINATED
CORUNDUM (0001) SURFACE: HARTREE-FOCK SIMULATIONS

0. SYCHEV?, Yu.F. ZHUKOVSKII®, E.A. KOTOMIN", Yu.N. SHUNIN®

“ Department of General and Applied Physics, Transport and Telecommunication Institute,
1 Lomonosova, LV-1019, Riga, Latvia
"Institute for Solid State Physics, University of Latvia, 8 Kengaraga, LV-1063 Riga, Latvia

Ab initio Hartree-Fock calculations on the atomic and electronic structure of the Ag/a-Al,0;(0001) (corundum) interface have
been performed for a periodic two-dimensional slab model with using a posteriori electron correlation corrections. We have considered
only Al-terminated corundum (0001) surface as both chemically and stoichiometrically stable. The dependence of the adhesion energy on
the interfacial distance has been analyzed for the two most favorable Ag adsorption positions over corundum and for two different metal
coverages: a 1/3 monolayer (ML) of the Ag(111) crystallographic plane and a full Ag(111) monolayer. The small adhesion energies per
Ag atom (~0.2 eV for 1 ML and ~0.5 eV for 1/3 ML) are accompanied by a minor interfacial charge transfer, thus indicating a
physisorption. The observed difference of Ag adhesion energies for 1/3 ML and 1 ML coverages arises essentially due to a transition
from directed Ag-O bonding towards a more delocalized electronic density distribution. The results of our calculations are compared with
available experimental studies and theoretical simulations for several Me/Al,O; interfaces.

Keywords: Ab initio Hartree-Fock calculations, electronic structure of the Ag/a-Al,O; (corundum)

1. Introduction

Well-known in jewelry as sapphire, o—Al,O; (corundum) nowadays is one of the most widespread
ceramic materials [1], which is used also as a prospective substrate for ultrathin metal film deposition [2] and
as a catalyst [3]. Numerous experimental and theoretical studies have been performed for the interfaces
between corundum and various metal films including Ag [2,4,5,12-14], Cu [2,4-7,9,12,15], Nb
[2,4,5,8,11,16,17], Pt [2,5,14,15], V [2,5,10,15], etc. Recent ultramicroscopic observations using STM and
TEM methods have given structural information of almost atomic resolution for several Me/a-AlO;
interfaces; together with microdiffraction LEED studies they serve as a good test for theoretical simulations
[2,4,5]. It may be illustrated for thin copper films grown on a—Al,O3(0001) substrate by molecular beam
epitaxy (Figs. 1 and 2, respectively). The epitaxial orientation relationship leads to a mismatch of about 7%

between the corresponding spacings of the adjacent copper and alumina lattices, i.e. 16 of the Cu(022)

planes correspond to 15 corundum (3030) planes [6]. In order to minimize the interfacial energy either misfit

dislocations can accommodate lattice disregistry or the two lattices form a strain-free incoherent interface.
The latter was mainly observed for the Cu/a—Al,O; interface (Fig. 1), and its diffraction image (Fig. 2)
confirms this conclusion. In the case of the Nb/a—Al,O; interface, with noticeably smaller lattice mismatch
(2%), areas of fully coherent interface (as shown in Fig. 3) may coexist with the so-called semicoherent
interface containing misfit dislocations in niobium (due to a larger elasticity of metal as compared to alumina)
[8]. Nowadays various high-resolution spectroscopic methods such as HREELS and XPS make it possible to
predict both the structural arrangement of a metal layer on corundum substrate [5,9] and details of interfacial
interaction [10]. It has been reported that an oxide surface exposed to a metal atom beam results usually in 3D
metal islands [2,4], although under some circumstances a layer-by-layer metal film growth can also take place
[9]. The actual film growth mode depends on the very delicate balance of energies for these two modes, and
also on the rate of the metal deposition [11].

For a better understanding the adhesion nature of metals deposited on the corundum surface, we need
detailed information on the atomic structure of the pure substrate [18-25]. Equilibrium structure of corundum
(0001) substrate have been optimized using ab initio methods realized in both Hartree-Fock (HF) [18,19] and
Density Functional Theory (DFT) [20] computational codes. Recent molecular dynamics (MD) simulations
on the Al-terminated a—Al,0;(0001) surface have estimated an equilibrium surface geometry at several
temperatures, in qualitative agreement with previous first-principles calculations [21]. It is generally believed
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that the Al-terminated surface is energetically favored over the O-terminated one since the former is closer to
a bulk structure [22]. Detailed theoretical studies [23,24] indicate that even under conditions of high oxygen
gas partial pressure the Al-terminated corundum surface is stable (contrary to conclusions made in the review
paper [25]), while even a small hydrogen concentration on the o—Al,03;(0001) substrate considerably
stabilizes the alternative O-terminated surface.

Since H atoms are not included in our model, the Ag/a—Al,O; interface with O-termination of
substrate is not considered here. All the more so because we earlier simulated the latter [13] when
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Figure 1. High-resolution TEM images of atomically flat Figure 2. LEED pattern of 50 A Cu film on 0—Al,05(0001) substrate
Cu(111)/a—AL0O;5(0001) interface [6]: (a) along the

Cu[211] and o—Al,04 [ZT TO] zone axes (the clearly
resolved Cu (052) planes have a spacing of 1.28 A); (b)
after tilting the same interface area into the Cu [110] and
0—ALO;[1010] zone axes the (111), (1T1) and (002)
copper planes are clearly imaged.

after annealing to 923 K to give Cu(111) particles [7]. The schematic
below shows the Cu(111) spots as small, filled dots, and the clean
a—ALO;(0001) spots as open circles.

suggesting that silver atoms may replace outer AI’* ions in result of the non-equilibrium metal deposition on
corundum surface. The most favorable substrate sites for adsorption of silver atoms have been found in that
study as well: (i) on axes containing AI’" ions and crossing equilateral triangles formed from O ions (E
sites), and (ii) on hollow sites over internal O*" ions (H sites). In both cases silver atoms were found to be
interacting with substrate rather strongly (3 eV per Ag atom) [13]. Later Verdozzi et al. [14] modeled silver
and platinum adhesion over an Al-terminated 54-plane corundum slab using plane-wave pseudopotential
calculations in the framework of DFT method. Their general conclusion was made that the nature of such an
Ag/corundum interaction is physisorption, although well-separated metal atoms (1/3 ML) may be more
strongly bound (1.1 eV per Ag atom) due to an effect of the surface Madelung potential above the alumina
surface. A similar DFT plane-wave study was performed for Nb adhesion on the both Al- and O-terminated
surfaces of a corundum (0001) substrate [17]. It was found that Nb-adhesion on the O-terminated surface (13
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eV per Nb atom) is much stronger than on the Al-
terminated surface (3.4 eV), probably due to the
high “energy cost” for forming such a surface [17].
A phenomenological so-called Image Interaction
Model (IIM) has also been applied to Nb adhesion
on Al-terminated corundum [11]. The optimal

iy @ Nb adsorption sites for the Nb(111) monolayer were
e | e AP found in agreement with previous ab initio
(@001) O o calculations, over equilateral O triangles; the
adhesion energy per Ag atom for these adsorption

sites was found here to be 4 eV.
To clarify the nature of Ag adhesion on an
~ Al-terminated corundum (0001) surface, we present
(0f14) in this paper a quantitative analysis for both
parameters of total energy and -electronic
properties of the interfacial bonding (in terms of
the difference electron density and local multipolar
components of the charge density). The analysis is
{7 igure 3. C.ross-section 'of the coherent Nb(111)/a-AL,05(0001) E‘?)i?(dmoerihgsrigi(glc elI_eI irgicgiz?izgznsoégjgsiz)
interface with Al-terminated substrate along the Nb[101] and X . .
0—Al,05[2110] zone axes [8]. for two different Ag adsorption sites and two
different Ag coverages (1/3 ML and 1 ML).

2. Theoretical background
2.1. COMPUTATIONAL DETAILS

We use the HF-CC method as implemented into the computer code CRYSTAL98 [26] with
Gaussian-type basis set. This code is well suited for calculations of periodic 2D and 3D systems and
incorporates electron correlation corrections. Recently we have described main algorithms and procedures
realized in CRYSTAL code in order to perform the HF-CC calculations [27,28]. In the framework of the HF-
CC method, we have used mainly Perdew-Wang a posteriori corrections [29]. In contrast to our previous
study [13], here we have applied the basis sets optimized by Catti et al. [30] for both a-Al,O; and MgAl,O,
crystals. The Al and O basis sets were modified in Ref. [30] by introducing d polarization function and re-
optimizing core and valence shells as well as sp polarization functions used in previous a-Al,O; studies
[18,19]. Re-optimized all-electron 8(s)-511(sp)-1(d) and 8(s)-411(sp)-1(d) basis sets for Al and O,
respectively, were found to be effective in lowering the total energy for corundum slabs and describing the
electron density distribution more properly, especially around the aluminium atoms [29]. For the Ag atoms,
we have used the same basis set as earlier [13], employing the small-core Hay-Wadt pseudo-potential for the
atomic core [31] and a 311(sp)-31(d) basis set with Gaussian-type functions for the valence and virtual shells.

2.2. MODEL OF Ag/a-Al,05(0001) INTERFACE

For the simulation of silver adhesion on the corundum substrate, we have used a slab model, periodic
in two dimensions and with finite thickness in the third dimension, perpendicular to the (0001) plane. We
have fixed the alumina substrate structure to be the same as in Refs. [13,19]. Slab model of the a-Al,03(0001)
substrate belongs to the hexagonal plane group Pj;,; (see its top views in Fig. 4). Two-dimensional (2D)
surface unit cell is a rhombus with optimized side a ~ 4.76 A. The C;, rotation axes normal to the surface and
containing A’ ions form a regular network, which crosses a (111) plane of the face-centered cubic structure

(fce) parallel to the (0001) plane. The distance between adjacent aluminium axes is 2.75 A (a/ \/g ). The two

rhombic surface unit cells drawn between Al’" axes are shown in Fig. 4. All the O*" ions in the bulk structure
are equivalent and the slab structure optimized by Puchin et al. [19] forms a periodic network of equilateral
triangles with sides b;, b, and b3 (2.64, 2.74 and 2.87 A, respectively), as well as versatile triangles positioned
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between them (Fig. 4a). Although this optimized structure belongs to the plane group Pj;;, it is slightly
distorted as compared to the structure of perfect corundum crystal [18,32] containing only two types of
equilateral oxygen triangles (bi and b'2 ) and isosceles triangles between them (Figure 4b).

A 9-layer slab terminated by AI’* ions (Figure 5) has been modeled, with a primitive unit cell

containing 15 atoms. The oxygen-containing corundum (0001) planes are equivalent, with a distance ¢ = 2.16
A between nearest ones. Each oxygen plane can be transformed into neighboring one by a synchronous

combination of the 60° rotation around the corresponding C;, axes and a translation by 44" = a/ \/5 , so that

the two rhombic surface unit cells shown in Figure 4a coincide. Each O plane is associated with two adjacent,
less-densely packed Al planes, so that each A

I’ ion is positioned either above the center

e Al

Figure 4. Top views of the oxygen plane of the corundum (0001) substrate as optimized in [19] (a) and in the case of perfect corundum
structure [32] (b). The 2D rhombic unit cell with a side a as well as the two neighboring aluminium planes positioned symmetrically
above and below oxygen plane (the corresponding AI** ions are shown as black and striped circles, respectively). (a) The side lengths b,,
b, and b; for three different equilateral triangles are given in the text; each of them is shown with own gray-scale color: the larger side,
the lighter triangle. The versatile triangles are shown white. (b) There exist only two types of equilateral oxygen triangles with side

lengths bi and bvz (2.57 A and 2.84 A) shown as dark and light, respectively, whereas white triangles between them are isosceles.

El H

Figure 5. Side view for a—Al,03(0001) slab where silver
atoms are distributed regularly on the aluminium Cj, axes
. Al?* above and below Al-terminated substrate, thus forming a

periodic \/E X\/g superstructure (1/3 ML coverage). The

interlayer structure of the interface is defined by ¢, d and
zag parameters. The optimized values for ¢ and d are 2.16
A and 0.12 A, respectively, whereas values of z,, are
given in Table 1. The most probable sites of Ag
adsorption are found to be H and EI (their explanations
are given in text).

of the largest equilateral oxygen triangle or below the middle triangle (at a distance d of 0.84 A). To reduce
maximally the computational effort and exploit the system’s symmetry, we have applied a two-side adhesion
model, i.e. spatially similar Ag layers have been placed on both surfaces of the corundum slab. HF-CC

10
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calculations performed by Puchin ef al. [19] and other studies of the a-Al,0;(0001) substrate in the literature
[18,20,21] have shown that the external aluminium ions on the isolated Al-terminated substrate relax by 60-
80% towards the outermost oxygen plane (Figure 5). Here, we have varied the interfacial distance z,, as well
as the outer distance d for the Al-terminated corundum substrate. We have considered two different
coverages, 1/3 ML (Figs. 6a,b) and 1 ML (Figures 6¢,d). For 1/3 ML coverage, we have considered two
different adsorption patterns: Ag atoms over the smallest equilateral triangles, site £/, or Ag over versatile
oxygen triangles, i.e. above 1/3 of H sites (Fig. 5). As to 1 ML coverage, two different adsorption patterns
were considered as well: either above all equilateral triangles (£ sites shown in Fig. 6¢) or above all H sites
(Fig. 6d). For the 1/3 ML coverage one third of an Ag(111) crystallographic plane is distributed regularly on

corundum (0001) substrate forming a periodic\/g x\/g superstructure. In our previous simulations of silver

adhesion on O-terminated corundum (0001) surface [13], we considered also Ag adsorption above outermost O*~
ions, but these were found to be less stable towards silver adhesion. Space and symmetry compatibility between
the a-Al,O3(0001) and Ag(111) planes mentioned above makes it possible to consider comparatively simple
models of the Ag/corundum interface without misfit dislocations (Figures 6a-d).

Figure 6. Top views of Ag atom distributions over corundum (0001) surface for the two different coverages: 1/3 ML of the Ag(111)
crystallographic plane (a,b) or 1 Ag ML (c,d). The two different Ag adsorption positions are above equilateral triangles (a,c) and versatile
triangles (b,d) forming the outermost oxygen plane. Various planes P—P, which projections are shown on all top views, are used in Fig. 7
to analyze the electron charge density distributions in the cross sections perpendicular to the (0001) surface. Note that (c) shows the top
view on steps of the buckled Ag(111) monolayer over Al-terminated corundum. 4 lines correspond to foots of silver steps closest to the
substrate while C lines correspond to their apexes, respectively (density plot in Fig. 7e shows more clearly a relief of Ag step).

11
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The experimental Ag-Ag equilibrium distance in bulk silver is 2.88 A and slightly exceeds that
between the nearest AI’" axes normal to the a—Al,05(0001) surface (2.75 A) [32]. Thus, mismatch between
the corresponding spacings of the adjacent silver and alumina lattices is about 4.7%, i.e. smaller than for
Cu/corundum interface, but larger than mismatch between alumina nad niobium lattices mentioned in
Introduction. This is why for 1 Ag ML positioned over all £ sites (Figure 6¢), some difference between the
Zag coordinates appears (when optimizing the interfacial energy), which can be characterized by height /5, of
steps in the buckled silver monolayer. To simplify the geometry optimization, the heights between the Ag
rows 4 and B as well as between B and C (Figure 6¢) have been kept equal. Our resulting optimized overlayer
becomes a stepped Ag(111) monolayer for the adsorption pattern in Fig. 6¢c. The optimized value of /4, was
found to be around 0.7 A, similar to the result of Verdozzi et al. [14]. The buckled silver monolayer is clearly
seen in the corresponding electron density plot (Figure 7e). When 1 Ag ML is placed over all H sites (Figure
6d), by necessity silver monolayer forms a flat, slightly distorted Ag(111) film, with three kinds of distances
between nearest Ag atoms: 2.64, 2.74 and 2.87 A (cf. aforementioned 2.88 A in the Ag bulk [32]).

2.3. BRIEF DEFINITION OF BASIC PROPERTIES

In TABLE 1 we present parameters of equilibrium geometry, s, and z,,, which were mentioned
above. The binding energy per Ag atom, Ey;,, at the equilibrium distance is also given in Table 1. Here we
have calculated E;,; using the universal binding energy relation [33] (similar to the potential energy curve for
diatomic molecule), where Ej;,, is extracted from the potential interface energy curve Ej(za):

(o) (0)
ZAg T ZA ZAg T ZA
Ey(zpg) = 20E g (14 —2—25 exp{— — "¢ g} : (1)
Zpg N

where the co-factor 2 appears due to the two-side adhesion, # is a number of Ag atoms per surface unit (one

or three, for 1/3 ML and 1 ML coverages, respectively) and s a scaling constant. Obviously, for well-

separated Ag and corundum slabs liT E,(z5g)=0. Eq. (1) is used in this paper to obtain the potential
ZAg 00

energy curves of interface energy for various substrate coverages and several adsorption sites (Figure 8).

The basis-set-superposition error (BSSE) has also been evaluated according to the standard
procedure implemented into CRYSTAL9S8 code [26]. The BSSE is estimated as the difference between the
total energy of the interface system and the energies of each of the two sub-systems with the other sub-system
included as “ghost” atoms only. The BSSEs for the binding energies for the Al-terminated slab in Table 1 lie
in the range 0.05 to 0.10 eV. The order in which the Ag atoms favor the different adsorption sites is not
affected whether we use BSSE corrected or uncorrected binding energies.

To obtain more insight into the nature of the interaction between the corundum surface and the Ag
quasi-isolated adatoms (1/3 ML) or the full (111) monolayer, we have calculated a few properties using the
CRYSTALY8 code. The Mulliken net atomic charges, e.g. Aga,, are defined as a difference between the
electronic charge of isolated neutral atom (Z,,) and interfacial atom (ga,). Projections of atomic dipole

moments, D/(fg), have been calculated as matrix elements of atomic orbitals (AO) with the operator z (its

direction pointing outwards from the surface), and describe an electron density shift perpendicular to the
interface. The matrix elements in an AO representation with the operator 2z°—x’—)” form vertical projections

2 2 2
of quadrupole moments Q/(fgz A negative value here means that atom is contracted along the z

direction while expanded in the interfacial xy plane and vice versa.

To characterize the interaction between atoms inside the metal slab and between the slab and the
corundum substrate across the interface better, we have plotted a series of difference electron density plots
(Fig. 7). Computational algorithm used to construct these plots has been described in our recent paper [27].
The 2D charge distributions Ap(r) show effects of the interface interaction since they are defined as:

A,O(r) = pAg / corundum slab(r) - [pAg slab(r) + Peorundum slab(r)], (2)

12
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i.e the total electron density Oag/ corundum slab(X) Minus a superposition of the densities for the two isolated metal
and corundum slabs with the same geometry as in the interface system (pag siab(Y) and pPeorundum siab(I),
respectively). The projections for the cross-sections used for these plots are defined in Figure 6.

3. Main results and discussion

Our results for the low and high (1/3 ML and 1 ML) substrate coverages show important
characteristics concerning the silver-oxide binding (TABLE 1 and Figures 7,8). The equilibrium Al-O
interlayer distance d (Figure 5) is almost unchanged in the Ag/corundum interface when it is optimized
simultaneously with zy, (TABLE 1) as compared to the isolated Al-terminated substrate (0.12 A versus 0.14
A, respectively). For 1/3 ML coverage, the energetically most preferable position for silver adhesion is over
versatile triangles, i.e. atop subsurface O* ions (Figure 6b). Probably this occurs due to an additional
attraction of Ag atoms by the O® ions of the next subsurface oxygen plane. At the same time, surface
projections of the outermost A’ ions of the corundum substrate are closer to H sites (atop the centers of
white triangles in Figures 4a and 6), than to the centers of smallest equilateral triangles (dark gray triangles
with side length b; in the same Figures). This also explains why silver atoms in the former adsorption
positions end up further away from the corundum surface (Fig. 8 and Table 1) and why vertical projections of
the corresponding multipole moments are smaller.

d) €) f)

Figure 7. The 2D difference electron density distributions Ap(r) (see explanation in Section 2) for various configurations of Ag atoms
adsorbed on substrate (Fig. 5), with special symbols used to show centers of the crossed atoms and ions: (a,b) the two cross-sections for
1/3 ML of Ag(111) plane over E{ sites along P,—P, and P,—P, directions (Fig. 6a), (c) cross-section for 1/3 ML of Ag(111) plane over H
sites along P,—P, direction (Fig. 6b); (d,e) two cross-sections for Ag(111) monolayer over all equilateral oxygen triangles along P,—P,
and P,—P,, directions (Fig. 6¢); (f) section for distorted Ag(111) monolayer over all versatile oxygen triangles along P,—P, direction (Fig.
6d). Isodensity curves are drawn from —1 e au™ to +1 e au™ with an increment of 0.002 e au™. The full and dashed curves correspond to
positive and negative difference electron densities, respectively. Fig. 7e shows a step /4, of the buckled Ag(111) monolayer (Table 1).

13
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ué' 0.1 Figure 8. The binding energies Ej (za,) as a function of the
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TABLE 1. Optimized parameters for different slab models of the Ag/a—Al,05(0001) interface. Ag positions over both equilateral and
versatile O triangles for different substrate terminations and coverages are shown in Figure 6.

— - D
Ag Substrate Distance | Height in | Binding energy [Mulliken charge on Ag| _ _l_)r_(ij ??Elf)_rl_s_(if_ r_r{u_lfl})_o_l?s_ ]
2 0 D? @222’
atom coverage by Zag steps f1a, ¥ Eyia AGa, Ag Ag
over Ag(11l) | X _________ eV e eau ea’
1/3 | our data 2.21 None 0.48 +0.01 0.348 -0.713
ML | Ref.[14] 1.96 none 1.1 0<g,4,<+0.1 - —
equilateral (4)° +0.11 0.696 —-0.702
: our €)
O triangles | ML 249 072 0.21 (B) : +0.04 0.175 —1.090
data (C)° -0.15 -0.472 —0.982
Ref. [14] 2.13 0.84 0.36 - - -
versatile 1/3 ML 2.39 none 0.54 +0.01 0.051 —-0.448
O triangles 1 ML 2.77 none 0.17 -0.01 -0.013 —0.894

9 Optimized distance between Ag atom closest to a surface and an outer substrate layer (Figure 5).

® Optimized value of intralayer height between silver atoms in a stepped Ag(111) monolayer (Figure 7e).

© Values of the interface binding energy per Ag atom are estimated according to universal binding energy relation written as Eq. (1).
9 Normal to surface components of both dipole and quadrupole moments for Ag atom.

© Charge transfer on a stepped Ag(111) layer calculated for interfacial, middle and outer silver atoms, which lie on 4, B, C lines in
Fig. 6c, respectively.

There exist certain structural restrictions for Ag atoms over hollow sites to form monolayers and
thicker overlayers (Figure 6d). While a periodic network formed by the centers of all equilateral oxygen
triangles (crossed by axes containing A’ ions) completely corresponds to the symmetry of the Ag(111) plane
(Fig. 6¢), the alternative network over H sites, which repeats the distribution of O*” ions in the subsurface
oxygen plane, may be treated as a distorted Ag(111) surface. Such a monolayer film is not very stable in an
isolated state and its further growth is rather problematic. As to a regular Ag(111) monolayer, its profile is
buckled because silver atoms on the corundum substrate tend to preserve the same interatomic distance as in
bulk silver, which is somewhat larger than the distance between the nearest centers of equilateral oxygen
triangles E. Moreover, periodic change of vertical positions of AI*" ions in corundum (0001) substrate (Figure
5) prevents flat horizontal profile of silver monolayer if Ag atoms are adsorbed in F sites. It may be also
illustrated by Fig. 3 for the Nb/a-ALO; interface. The optimized /4, value of the regular steps in the Ag(111)
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monolayer is considerable (0.74 A). The charge redistribution within the buckled Ag layer (Figure 7e and
TABLE 1) contributes to making the equilateral oxygen triangles the preferred adhesion sites for the Ag
monolayer. Since the “internal” Ag atoms over 4 rows (Figure 6¢) are slightly positively charged (+0.1 e),
they are attracted to the equilateral triangles formed by the O*” ions.

The ratio of the binding energies per Ag atom between 1/3 and 1 ML Ag adsorption over equilateral
oxygen triangles is 2.3 for our data, namely 0.47 eV versus 0.21 eV (TABLE 1). Verdozzi et al. [14] obtained
a ratio of 3.1, namely 1.1 eV versus 0.36 eV. The energy ratio about 2-3 probably occurs because each Ag
atom in the 1/3 ML interacts directly with three nearest O*~ ions, while for 1 Ag ML, the number of silver
atoms equals that of oxygen ions. Moreover, adjacent Ag atoms in the buckled monolayer form metallic
bonds, interacting unfavorably with the oxygen triangles below and reducing the interfacial bonding per Ag
atom. This is evident from a comparison of charge distributions for both Ag coverages on the Al-terminated
substrate (Figures 7a and 7d): the Ag electron density delocalization on silver atoms is markedly larger for a
metal monolayer. On the other hand, if we consider binding energies per rhombic surface unit of the substrate
(Figure 4a), they are higher for 1 ML coverage than for 1/3 ML, since one such unit contains three quasi-
equivalent adsorption positions.

The relatively large quadrupole moment values, szgzl_xz_y R (Table 1), mainly indicate that silver

electronic shells are affected by the outermost AI*" substrate ions. Our results agree well with corresponding
physisorption energies for perfect Ag/MgO(100) and (110) interfaces (0.2-0.8 eV per atom) [34], and we find
only a negligible charge transfer across the Ag/a-Al,03(0001) interface. The charge redistribution (Fig. 7) is
mainly limited to electronic charge polarization in the rather close vicinity of the Ag nuclei.

4. Conclusions

In this paper, we have analyzed the dependence of the adhesion energy on the interfacial distance for
the two most probable Ag adsorption patterns and for two different coverages of corundum (0001) substrate.
Ag adsorption over every third versatile oxygen triangle (i.e. H sites) is found to be slightly more preferable
energetically than over equilateral oxygen triangles, whose centers are pierced by Al*'-containing Cj, axes. A
possible explanation could be a favorable interaction between the Ag atoms and O*~ ions in next, subsurface
oxygen plane, which are positioned under versatile O triangles. In contrast, for the dense silver monolayer
coverage, the equilateral oxygen triangles (i.e. on the C;, AI’" axes), are more favorable adsorption sites for
Ag adsorption than the versatile triangles (above a network of internal O ions). The binding energy per Ag
atom is by a factor 2-2.5 larger for 1/3 ML coverage than for 1 ML on a—Al,O3(0001) surface. This is
probably due to a larger interaction of Ag atom with three nearest oxygen ions for 1/3 ML, whereas for 1 ML,
each metal atom corresponds to the only oxygen ion, and thus Ag binding turns out to be weaker. Calculated
per surface unit of corundum, the binding energy is larger for the larger coverage since the Ag atom
concentration is three times higher. Unlike for the Ag/MgO interfaces [34], where the electron density
localized between the Ag atoms inside the metallic monolayer film, gives rise to a favorable electrostatic
attraction with the MgO substrate cations, the analogous Ag-Ag electron density features for the Ag/a-
ALO5(0001) interface rather result in an electrostatic repulsion with the corundum substrate anions (Figure
7d), due to different crystalline structure of both oxides. At the same time, a presence of enhanced interatomic
electron density inside the Ag monolayer indicates a preservation of some metallic properties in silver film as
was earlier observed in the Ag/MgO interfaces.

On the whole, for the Al-terminated a-Al,O3(0001), which corresponds to an equilibrium state of the
corundum substrate, we observe relatively small adhesion energies per Ag atom and negligible interfacial
charge transfer, which clearly indicates a physisorption. One can suppose that the outer aluminium ions on the
Al-terminated substrate surface “screen” the favorable interaction between the silver atoms and the outermost
oxygen triangles. As to buckled profile of silver monolayer, it corresponds to a coherent Ag/a-Al,0;(0001)
interface when existing some mismatch of lattice constants between metallic film and substrate. Common
incoherence of metal/oxide interfaces, well observed for instance in Figure 1 for Cu/corundum interface,
arises usually for more-or-less thick metal overlayer. Clarifying a mechanism of metal film growth, which we
have began to study [35], one can explain also this transition from coherent to incoherent metal/oxide
interface.
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A NOVEL RELATION FOR THE EFFECTIVE DIFFUSION
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We suggest a modification of the well-known Maxwell-Garnett equation for the mobility (effective diffusion coefficient) in
two-phase media (a matrix with inclusions) which permits the description of a wide range of experimental situations. The novel approach
correctly treats the partial trapping of a diffusing particle by an inclusion as well as consequences of an energy barrier for the particle
penetration into an inclusion. Computer simulations show that the presented mean-field theory reproduces surprisingly well results for
square inclusions without concentration limitation. For inclusions with other shapes (e.g., spherical) the theory works well up to
concentrations at which mobile particles become trapped in “pockets" between inclusions.

Key words: inhomogeneous media, diffusion, computer simulation, mean-field theory, particle penetration

1. Introduction

Calculation of transport properties of inhomogeneous materials has a long history, starting with the
pioneering papers by Maxwell-Garnett [1]. The composite material is usually modelled as a combination of a
host phase (matrix) characterised by the diffusion coefficient of a probe particle, D,, and spherical inclusions
(the second phase) characterised by the particle diffusion coefficient D, radius 1, and volume fraction @ .
These two diffusion coefficients are expressed through the hop length / and the average waiting time between
the two successive hops 7:

12
D =— i=12, ey
2dr;

where d denotes the space dimension (1, 2, or 3).

A very similar problem arises in the description of other transport coefficients (electrical and thermal
conductivity, dielectric constant, magnetic permeability, elastic moduli, etc.) in two-phase systems [2-9].
Examples of systems for which it is desired to predict such properties are porous media, polymer blends,
foams, and ceramic- metal mixture. In this paper, we consider cases for which the generally accepted relation
for the effective diffusion coefficient fails and requires generalisation.

2. Standart Maxwell-Garnett approach

Let us reproduce briefly a typical derivation of what is generally known as the Maxwell-Garnett
(MG) formula. Experimentally the matrix with inclusions is characterised by an effective diffusion
coefficient, D,y , which is a function of D;, D,, and @ . To determine it, one can use the electrostatic
analogue. We consider a macroscopically homogeneous material with the diffusion coefficient D, Following
the original derivation of MG equation, we imagine that the particle concentration c has an average gradient g
(similarly to a homogeneous electric field) along some axis.

Then we insert into the material a spherical inclusion of radius , surrounded by a spherical shell of a
host material (matrix) with the radius »; and assume that the inclusion does not change the concentration field
outside, i.e. at » 2 r;. (The radii r; and r, are defined in such a way that the inclusion's volume fraction
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state equation:

ACr,S (I‘, 9‘) = 0,

¢(r.8)=
¢,(1,9)=

T

C1(fo,9) = Cz(fo,S)

oc, (r, 8) oc, (r, 8)
Dj——— =D,
or r=r, or r=r1,
€2 (rl > 9) = Cetr (r1 ’9)
502 (I‘, ‘9) 8ceff (rs 8)
]Dz——jif—— =Der— > —
r=n

r=n

From egs. (3) to (9) we obtain a set of equations:
3A-1iB—E=0
D,ri;A-D,r;B+2D,E=0

ﬁB+E+€g:0

D, B+Dy1ig—2D,E=0

Using this set of equations, one gets the MG equation sought for:

Desr :D2[1+ 3D, =D, J0 }

D, +2D, _(D1 —Dz)(b

19

Arcos9, (0<r<r,),

Br+£2)c059, (r0 <r< rl),

Copr (1,9) = —grcos 9, (1 <r),

where ci(r,S) is a local particle concentration in inclusions
(i=1) or in a host material (i=2).

Equations for the unknown constants A, B, E and g
arise from the boundary conditions for the particle
concentrations and fluxes:

SOLID STATE PHYSICS

Figure 1. (a) Schematic presentation of the matrix with inclusions in terms of a
core-shell model. (b) The case of different-size inclusions.

3
=20 satisfied) (Figure 1la). The effective diffusion

coefficient D,y can be determined from the following steady-

2)

in the coordinates » and 9, where 9 is an angle between r and
the external gradient g. The appropriate solution of eq.(2) reads

3)
(4)
)

(6)
(7
®)
(€))

(10)
an
(12)
(13)

(14)



SOLID STATE PHYSICS

In general, for an arbitrary space dimension (d=1, 2 and 3) instead of eq.(14) one finds:

D, =D,|1+ d(D, ~ D, Jo } (15)

D, +(d_1)D2 _(Dl _Dz)‘b

This result holds not only for a periodic set of the same-size spherical inclusions but also for a random
N\
)
\d
(rf )

fulfilled (Figure 1b). However, the question, at which volume fractions @ inclusions begin to 'compete' and

eq.(15) is no longer valid, remains open and could be solved by a comparison with an analytical theory which
takes many-particle effects into account (see, e.g., [7]) and/or by means of direct computer simulations.

inclusion distribution of different radii r(i) if the condition ® = (d is space dimension) remains to be

3. Disadvantage of MG equation

Consider now several cases when the generally-accepted MG equation (15) gives incorrect results.
A . Let us begin with a situation when the inclusion is totally impenetrable, i.e. a diffusing particle is reflected

. .. 0cylr,d . o D .
at ry as could be described by the condition % =0 (consider also the limiting case D—l —0 in
L 2
0
€q.(7)) . In this situation eq.(15) gives
20
D =D,|1-———|, (d=2 1
ff 2{ " q)} ( ) (16)
30
Dy =D,|1-———|, (d=3 17
eff 2{ 7t CD} (d=3) (17)

Such relations are well-known in the reaction-rate theory [11]. The same result may be obtained from eqgs.(3)
to (9), putting there c, (r, 8) =0 (as well as A=0, see discussion in [10]).

However, eqs.(16) and (17) give an incorrect concentration dependence (see discussion in [6].) The correct
@ -dependence, as we show below, is

D 30
o =T 2{ 2+®} (d=3) (18)
D 20
Dy =—=D,|1-——1, (d=2 1
=T 2{ HCD}( ) (19)

The reason for this incorrectness lies in the use of relation (8). In fact, the concentration of diffusing particles
in the matrix cannot be equal to that in the effective medium because in the latter all particles are stirred over
a whole system's volume and thus their averaged concentration should be less by the factor of 1—® . This
indicates that eq.(8) should be corrected as:

Cz(rla‘g):klceff(rl’s)’ (20)
i.e., in reality there is a jump in concentration on the core (inclusion) - shell (matrix) boundary, r = r;. The
question is, how to get the coefficient k;? We propose to obtain it, as a much better approximation, from the

expression for the average equilibrium particle concentration of the system (total particle number divided by
total volume)
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Coip =D + ¢, (1- D) (1)

In the particular case of impenetrable inclusions (c; = 0) we obtain from eq.(21):
1
Copp =CH1—D), k; =——. 22
or =2 (1- @), k, —o (22)
B. Another restriction of the use eq.(15) arises from the Maxwell's boundary condition ¢, (r,9)=c,(ry,9),
€q.(6). In fact it can be shown that eq.(15) is valid in the case of different diffusion coefficients in the matrix
. . . . o . . . e 1 1
and the inclusion, D; # D,, only if the particle velocities in the matrix and inclusions coincide, 1 =2 In
L )

a general case it is necessary to introduce the measurable coefficient k connecting ¢, and c,:
¢, (x5, 9)=ke, (ry, 9). (23)

In order to improve the MG equation, in the above-presented standard derivation of the effective diffusion
coefficient, we can use eqs.(20) and (23) instead of the original Maxwell's eqs.(6) and (8). When doing so,
instead of standard eq.(15) we arrive at

d(le_Dz)q)
D =D,k |1 .
. 1[ "kD, +({@-1)p, ~(kD, -D, )0 @9

In the 1D case this equation coincides with the exact solution [12]. The two coefficients k and k; are related

through the equilibrium concentrations in inclusions and the matrix and volume fraction @ according to egs.
(20), (21), (23):

C
k=—L

- (25)
and
Cz :klceff. (26)

From eq.(21) we obtain the volume dependence of the coefficient k;:

N S
11—+l o 27)
)
Using eq.(27), one obtains the following relation instead of eq.(24) :
d(Dl %1 _p, )cb
D c
1-o+—L@|  (4-1)D,+ "D, ~|D, L-D, |o
€2 €2 )

Similarly to the MG theory, this equation reproduces correctly both limiting cases, as @ strives for
zero and unity. Equation (28) is a basic result of our theory. It should be recalled that ¢, and c, are average
concentrations of diffusing particles in the two phases - the inclusions and the matrix.
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a) i . R Figure 2. Different cases of energy barriers between the matrix and
! inclusions, /; , E; are a hop length and an activation energy for
diffusion in the two phases, i= 1, 2. (a) An inclusion with the
diffusion coefficient in the inclusions smaller than in the matrix;
E there is no energy barrier between them. (b) An energy barrier E, for

1 the penetration into inclusion, p, < 1. (c) Partial trapping of particles

I>
inside inclusions, p; < 1. The detrapping energy is E,.
E
It is convenient to express the ratio c/c,
T T entering eq.(28) through the kinetic parameters of
inclusions and the matrix. In equilibrium, the steady-

b) state situation fluxes of particles to and from
inclusions are equal:
= c ho_ c L, 29
1T 29
/\ A A ’ /\ A /\ Remember that the diffusion coefficients D; and D,
are defined by eq.(1).

Figure 2 shows several important situations

for the potential energy profiles of the diffusing

o)) particle, modeling its partial trapping by an inclusion

(potential energy well) and the (partial) reflection from

it due to the energy barrier, respectively. To describe

these situations, let us introduce the penetration

E probabilities p; from the inclusion to the matrix and p,

from the matrix to inclusions, respectively. Thus, in
the general case one gets

. . o _Lpomy
matrix indlusion matrix o) llpsz' (30)

In the case of a potential barrier the penetration probability (per unit time) is defined entirely by the activation
energy E;, [13]:

E12
= - €X] . 31
5] Ty-€ p( kT j ( )

The same is true for the particle hop from the inclusion with the probability p;. Equations (28) and (30) allow
one to describe many diffusion-controlled processes in composite media with trapping and release of mobile
particles.

Now let us compare our results with previous theories. In the 1D case eq.(28) reproduces the exact
result derived for a periodical inclusion distribution in the Kronig-Penny model with particle reflections (eq.
(4) in [12]) which reads in our notations as:

-1
Dy = @ +1_(D : 1 ) (32)
Dk D, 1-® + ®k

where k = ¢,/c,.
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In turn, in the 3D case our eq.(28) for D,y coincides with that obtained in ref. [6] for a particular case of
periodic distribution of inclusions using mathematically very complicated formalism of irreversible
thermodynamics with chemical potentials. The analytical results presented in ref. [14] also demonstrate the

-1
presence of a distinctive co-factor (1 —p+L CDJ entering the D,y .
)
In the case of a complete particle reflection from the inclusions (D; = 0; ¢;/c; = 0) eq.(28) transforms
into €gs.(18) and (19) as quoted above. For a small volume fraction of the inclusions, ® << 1, one arrives at

D :Dz{l—%}(d:” (33)

D =D2[1—CD],(d=2). (34

Equation (33) was received earlier in ref. [15] whereas eq.(34) was derived in ref. [10] using the
effective medium approximation. The expression (33) was also derived calculating the effective self-diffusion

constant of the mobile species in solution [16].
Let us consider now several limiting cases for D4 In the case of impenetrable inclusions (complete

reflection of particles, ¢;/c, —> 0), eq. (28) is simplified:

D,(d-1)

d-1+d (35)

Deff =

Figure 3. Transformation of the 2D (3D) diffusion into 1D and 2D diffusion as square (cubic) inclusion fractional volume approaches
unity ((a) and (b), respectively ).

As ® — 1, one gets in 2D and 3D cases Dy = D,/2 and 2D,/3, respectively, while the MG equation
yields a zero effective diffusion coefficient. This result means that in these limiting cases the particle diffusion
becomes in fact one- or two-dimensional as shown in Figure 3 for square and cubic inclusions.

To stress the role of a potential barrier in D, let us consider the limiting case of a strong trapping,
c/c; —> 0. From eq.(28) one obtains:
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_D, 1+d-®
kd 1-@
which demonstrates that D, is independent of the diffusion in inclusions. The same results in the limiting

case Dy/D; — 0.

eff > (3 6)

4. Random walk simulations

In order to compare eq.(28) with computer simulations, we have modeled periodical arrays of
spherical and square inclusions of the same size in 2D varying the kinetic parameters 1,,t,,and 1,,t,, for
particle diffusion in the matrix and inclusions in a very wide range of magnitudes thus simulating very
different situations mentioned above. For a periodical distribution of inclusions in the matrix we monitored a
particle diffusion and calculated D4 by the standard formula:

()
r
| J 37
eff 7dt
where t is diffusion time and the mean-square particle displacement during its random walks on the lattice
N
>
i=I (38)

)5

was averaged over more than (typically) N=10° -10° runs. The waiting time 7 was chosen to be sufficient to
satisfy the standard condition: < r * > is much larger than the squared distance between adjacent inclusions L°.
For this purpose we used the first-passage algorithm [7]. We modeled cases of both impenetrable and
penetrable inclusions. The hop length 1 was always chosen to be mach smaller than both the shortest distance
between boundaries of the two nearest inclusions and inclusion radius. Results of computer simulations are
discussed below.

5. Simple exactly solvable model

There is one particular case in which D, could be determined exactly for the two-phase

inhomogeneous media in all dimensions: /; = I,; 7; # 1,;,D; # D,. That is, the waiting times in the matrix and
inclusions differ but hopping lengths are equal (Figure 2a). In this case after N walks we get from eq.(37):

2
<r > . (39)
2d(N,7, +N,1,)

Here N; and N, are numbers of particle walks in the phases 1 and 2, respectively. For suffciently large N
(diffusing particle visits inclusions many times) one obtains, obviously:

Dy =

N, =®N, N,=(-®)N (40)

Substituting eq.(40) and < /* >= 2dNI into eq.(39), we receive results well-known for conductivity in
inhomogeneous media [5] :

1 1 1
:—(D-l-—(l—q)) 41
Deff 1 2 ( )

Note that this equation is often considered to be valid only for 1D but as we have demonstrated, in fact it
could be used in any space dimension. (Compare this equation with eq.(32) where energy barriers for particle
penetration to/from inclusions are incorporated.) The same result also follows immediately from our general
eq.(28), taking into account that at/; =/, :
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S0
& 1, (42)

which leads to

D,-_ P2
eff — .
-0+ (43)
T2

Equation (43) coincides with eq.(41), we just have to replace L by D—l . The effective diffusion coefficient
T2 2

could be easily related to the fractions of time which mobile the particle spends in matrix (t;) and inclusions

(th):

t th
D =D +D .
ar =D TP (44)
From egs. (28) and (44) one obtains:
t —d -
et peplee
! (l—®+k®){k1(l—®)+d—1+®} @5)
D,
OO
b)
©)

Figure 4. Different types of lattices and inclusions: spherical and ~ Figure 5. A pocket effect when particles become trapped between
square shape inclusions in the square lattice (a, b), spherical inclusions which results in zero effective diffusion coefficient

inclusions in the hexagonal lattice (c).
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Figure 6. Comparison of generally-accepted Maxwell-Garnett theory (dotted line, eq.(14)) and our eq.(28) (solid line) with 2D computer
simulations for periodically distributed rejecting inclusions vs their dimensionless concentration; square symbols are for the spherical
inclusions on a square lattice; triangles for the spherical inclusions on a hexagonal lattice, and full circles are for square inclusions on a
square lattice.

6. Results of computer simulations

It should be mentioned that at high concentrations of the inclusions their shape becomes important
(Figure 4) the effect never discussed earlier in the literature. If inclusions are circular or spherical and touch
each other at one point, D,z — 0as ® — @, (which could be easily be calculated as @, =n/4 and 3/=n

for circular inclusions in the square lattice and hexagonal lattice, respectively). The reason is that a particle
spends most of its time in a "pocket" formed by nearest inclusions (Figure 5).

Let us discuss here results of modeling inclusions of different shapes as shown in Figure 4. (Very
preliminary results were presented in ref. [17]). First of all, our computer simulations clearly demonstrated the
correctness of our theory in the case of large concentrations of the square inclusions (Figure 6) in a whole
range of concentrations and failure of the MG theory. This figure presents also the results of calculations for
the effective diffusion coefficient at completely reflecting circular inclusions in the 2D square and hexagonal

lattices (% =0, Figure 4a,c). The immediate conclusion can be drawn that the computer simulations also
2

coincide, with a precision of 1 %, with our theory, eqs.(28) and (35), for the case of spherical inclusions, up to
inclusion volume fractions as large as @ =0.6 and 0.8, for square and hexagonal lattices, respectively. The
discrepancy at larger volume fractions is due to the just explained "pocket" effect (Figure 5) neglected in the
analytical theory. What should be stressed here is that the MG eq.(14) (dotted line) gives a rather incorrect
dependence even at small since it neglects differences in the particle concentrations in inclusions and in
matrix. This becomes very transparent in the case of impenetrable inclusions.

7. Discussions and conclusions

In this paper a modified Maxwell-Garnett equation (28) was derived which gives suprisingly good
description of the mobility in the 2D heterogeneous media with square inclusions. We believe that this is also
true for 3D case.) The main advantage of our mean-field theory is its simplicity, transparency and validity for
any space dimension in contrast to previous mathematically very complicated approaches based on
irreversible thermodynamics with chemical potentials [6], cluster expansion [14] etc. Validity of our universal
relation for the effective diffusion coefficient is proved by computer simulations. These latter demonstrated
for the first time the effect of inclusion shape at high inclusion concentrations. Note that the concentration
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jump on the inclusion boundary, Eq.(25), commonly known as partition coefficient, is not new and was
observed in all previous theories (e.g., [14,19,20]). The more so, this partition coefficient was found also
experimentally, e.g., for metallic alloys Al-Cu, Al-Ge, Al-In, Al-Sn [19]. The concentration jump is not
surprising which becomes obvious in the limiting case of impenetrable inclusions (¢; > 0, ¢; = 0). The
expression suggested for the effective diffusion coefficient permits treatment of solid-state inhomogeneous
systems (composites, ceramics) with very different properties of inclusions and the host matrix, including a
partial rejection of diffusing particles from inclusions and a trapping inside inclusions. The more so, it could
be useful in quite different fields like mathematical modelling of the release of anti-microbal agent from
packaging material to a food product [20], transport through membranes, or self-diffusion of small molecules
in colloidal systems containing polymers, proteins, micells etc [6].
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We present the first ab initio Hartree-Fock simulations on the Cu/MgO interface using CRYSTAL computer code for periodic
systems. First, we describe our results for bulk copper and MgO(001) 2D slabs. Then we consider a model of an initial stage of the
Cu/MgO(001) interface formation (with 1/4 submonolayer and monolayer substrate coverages). We compare our results with
various experimental and theoretical data, in order to clarify the nature of interfacial bonding and its electronic structure. The
dominant interfacial effect is found to be physical adhesion of copper associated with polarization and charge redistribution.

Keywords: 4b initio Hartree-Fock calculations, CRYSTAL code, electronic structure, Cu/MgO interfaces, copper adhesion

1. Introduction

A number of technological applications of copper continue to grow, especially in
microelectronics [1]. In particular, Sun Microsystems Inc. and IBM use copper-containing
microelectronic devices in supercomputers. The power of new copper-based microprocessors is derived in
part from IBM pioneered copper wiring. Copper-based chips offer superior commercial and technical
performance as compared to chips that use traditional aluminum wires [2]. Copper possesses a better
conductivity than aluminium, which provides a more efficient signal transfer. Thus, copper chips could
operate 40% faster then aluminium ones and, moreover, the former are cheaper by 30%. Copper is now
expecting to replace aluminium as the main conducting material for all types of integrated circuits within
the next device generations. Meanwhile, even today copper-based microprocessors are widely used in all
kinds of electronic products - from notebook computers to cameras, mobile phones, microwave ovens,
etc. [1].

In the light of recent achievements in microelectronics and other high technologies, the necessity
in both improving and further development of copper applications is quite actual. There is increasing
demand for epitaxially grown copper films on non-conducting substrates widely used in integrated
circuits [2,3]. One of the important issues is the fabrication of smooth Cu films to serve as a growth
template for device structures, such as tunneling magnetoresistance devices (TMR). MgO substrates in a
combination with a Fe/Pt seed layer provide the superior film quality needed. The copper/magnesia
interface is also of great importance in other technological applications, including catalysis, metal-matrix
composites, recording media, etc. [4]. It is very important to understand both atomic structure and
electronic properties of the interfacial region. One example is charge redistribution in the metal film,
which has an impact on its conductivity and also affects its catalytic ability [5]. Stability of the metal-
oxide interfaces and their technologically important properties markedly depend on the adhesion nature,
mechanical support, both heat and carrier transfer across the interface, as well as specific morphology.

Two types of copper/magnesia interfaces have been mainly studied so far, both experimentally
and theoretically: Cu/MgO(001) and Cu/MgO(111) [6-19]. In the former case, oxide surface is non-polar,
due to successive alternation of Mg*" and O*™ ions in each magnesia (001) plane. On the other hand, the
MgO(111) surface may be either Mg*'— or O* —terminated, thus the interface between copper and
magnesia is polar and more strongly bonded than non-polar one [6]. Growth of MgO precipitates in a Cu
matrix under an internal oxidation has been observed using high-resolution methods of atom-probe field
ion and transmission electron microscopy (AFM and TEM, respectively [7-9]), as well as spatially
resolved electron energy loss spectroscopy (HREELS [10,11]). These experimental studies revealed
presence of the Cu/MgO(111) interfaces, with the preferable O’ —termination of MgO surface, and
absence of Cu/MgO(001). On the other hand, the adsorption of copper moieties on the MgO(001) support
was analysed in Auger electron spectroscopic (AES) experiments performed by Meller et al. [12].

Theoretical studies of copper/magnesia interfaces were mainly performed at the ab initio level
[6,13-19]. Using Hartree-Fock (HF) method and finite-cluster models, Bacalis and Kunz [13] considered
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neutral and ionization states of Cu atom on a perfect and defective MgO(001) substrate. For the perfect
MgO, the adsorption energy per copper atom positioned over O> ion was estimated to be rather weak
(0.38 eV). Further simulations [6,14-19] were mainly performed using Density Functional Theory (DFT).
Li et al. [14] used the DFT method to calculate several finite-cluster models of Cu atom over the
MgO(001) surface. In analogous simulations, Résch et al. [15] applied cluster model embedded in a large
array of point charges. At the same time, Benedek, Minkoff ef al. [6] considered results of DFT
calculations for the periodic slab models of Cu/MgO(111) and Cu/MgO(001) interfaces and found
markedly larger sticking of copper atoms to the (111) surface of magnesia substrate: three-fold larger than
that on the (001) surface.

Nevertheless, taking into account noticeable mismatch (=15%) between the lattice constants of
MgO and Cu, a couple of recent theoretical studies considered not just a monolayer coverage of substrate
by a metal (as in the case of the Ag/MgO(001) interface with almost equal lattice constants for both
components [20-25]) but copper clusters distributed on densely-packed magnesia substrates. Using Car-
Parinello method, which combines DFT and molecular dynamics techniques, Musolino et al. [16] have
studied the adsorption of small Cu, clusters (n<13) onto a MgO(100) substrate simulated by two-layer
slab. It was found that the competition between adsorbate-adsorbate and substrate-adsorbate interactions
turns in favor of the former. The interaction between copper atoms inside the clusters determines the
metal adsorption process. This is one of the reasons why three-dimensional (3D) structures are preferred
as compared to two-dimensional ones (2D): the system gains more energy by bonding copper atoms
together than by 2D metal adsorption them on oxygen surface ions. Results [16] show that small copper
clusters (n=1-5) readily are adsorbed on the MgO surface with binding energies £, per Cu atom in the
0.4-0.9 eV range, whereas for larger clusters, E,; is always smaller than 0.4 eV per atom. Matveev et al.
[17] used embedded cluster model of the Cu/MgO(001) interface to simulate both creation of copper
clusters on regular magnesia substrate and strong localization of metal atoms in the vicinity of anion
oxygen vacancies with two and one trapped electrons (so-called F,— and F, —centers, respectively) [17].
Jug et al. [18] applied both ab initio DFT and semi-empirical MSINDO calculations to simulate various
Cu,, clusters (n<52) on a (8x8x3) MggsOqs cluster model of magnesia (001) substrate. It was found that
the sticking probability of copper atoms to the MgO surface is reduced with an increase of a number of
adsorbed Cu atoms because not all atoms can be adsorbed atop the oxygen ions. Instead, Cu-Cu binding is
invoked. At the first step, the growth of a single double layer takes place, on top of which, formation of
an island from metal atoms is expected. Comprehensive simulation of the Cu/MgO(222) interface has
been carried out by Benedek, Seidman ez al. [19]. Periodic calculations were performed for both regular
and semi-regular interfaces that approximate the lattice constant mismatch of the real system: a 5x5
copper layer unit cell (UC) placed on a 4x4 magnesia UC. The terminating O* —layer as well as the
interface Cu-layer exhibits warping albeit on a scale of less than 0.1 A. It was also found that the
interface atoms in relatively coherent regions move toward the interface and those in regions of poorer fit
move away from it.

Our study is devoted to periodic slab simulations of the Cu/MgO(001) interface. We focus both
submonolayer and monolayer substrate coverages but first analyze isolated copper and magnesia. To go
beyond usual periodic DFT simulations on copper/magnesia interfaces [6,16], we perform ab initio
Hartree-Fock calculations with the electron correlation corrections (HF-CC method) as implemented in
CRYSTALY9S code [26]. This was successfully applied for a series of simulations on the Ag/MgO
interfaces performed recently at the Institute of Solid State Physics, University of Latvia [23-25]. There
were several theoretical calculations of the electronic structure of silver layers deposited on the perfect
(001) and (011) magnesia substrates [23] as well as Ag/MgO(001) interface with substrate defects (0>
and Mg”" surface vacancies) [24]. The most recent paper was devoted to a thermodynamic theory of the
mechanism for silver film growth on perfect MgO(001) substrate based on results of ab initio HF-CC
calculations on the interfacial superstructures [25]. A novel approach permits to predict conditions for
metal atom aggregation into Ag, clusters, and to estimate the metal density in them. The calculated high
mobility of Ag atoms leads to formation of 3D metal islands, whereas continuous silver layer can arise in
result of their further overlap.

1. Theoretical background
2.1. HARTREE-FOCK CALCULATIONS ON PERIODIC SYSTEMS

For a long time the Hartree-Fock method was the most popular technique for a study the
electronic structure of atoms, molecules and clusters, whereas a number of periodic systems, especially
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crystalline solids, were mainly studied using Kohn-Sham (KS) method in the framework of DFT
approach [27]. Moreover, various HF computational procedures has never been too popular among solid
state physicists, for at least two reasons [28]:
= standard HF approach performs rather poorly for the electron gas, which is the simplest of all
possible periodic systems; moreover, this remains true (or possibly gets even worse) for many
properties of real solids;
=  the non-local exchange term makes the HF equations more difficult to solve than the KS ones,
where the exchange-correlation potential is simply a multiplicative operator, no matter how
complicated its determination [29] either as such or as a well defined starting point for more
sophisticated techniques.
Nevertheless, in the recent years has it become possible to formulate a fair judgement about the
usefulness of the HF approach in solid state physics [30], since the advent of powerful computers and of
improved computational schemes, which also include electron correlation corrections. Quite contrary,
DFT method, which had played for long time a minor role in molecular quantum chemistry, has become
more and more popular in the last years, and DFT related computational schemes are now available in
standard ab initio molecular codes [31]. The most successful modern HF codes possess a similar
structure:
= the linearized Hartree-Fock-Roothaan (HFR) equations are solved by using a few localized
functions per atom indicated as atomic orbitals (AOs) expressed as linear combinations of
Gaussian type functions (GTF) with appropriate exponents and “contraction” coefficients;
= either molecular or crystalline orbitals (MO and CO, respectively), as well as eigenvectors of the
Fock matrix are obtained through a self-consistent field (SCF) procedure;
= the correlation corrections to the ground state wave function (a posteriori HF-CC approach [32])
are used to evaluate total energy in more adequate way as compared to standard HF procedure;
= the description of excited states are usually performed by means of configuration interaction (CI)
or perturbation techniques.
To perform ab initio HF-CC simulations on the Cu/MgO(001) interface, we have used the
computer code CRYSTALO9S5 [26] implemented by the Group of Theoretical Chemistry of the University
of Torino in collaboration with the Computational Group at the Daresbury Laboratory (a series of
computer codes CRYSTAL are under continuous development for about twenty-five years [30,33]). The
crystalline-orbital method, upon which CRYSTAL treatment is based, uses a set of localized atom-
centered GTFs, y,(r ), for the n.-electron-containing unit reference cell (UC) of periodic lattice described
by g translation vectors. The unknown COs are expanded as linear combinations of a set of m Bloch
functions (BF) built from these GTFs (CO LCGTF):

p(kr)=n, S, (0T exp(ik-g)7,(r - g). (1
= g

where k is a general vector in the first Brillouin zone (BZ). Solution of one-electron Hartree-Fock
equations for this crystal

F o, (kr)=¢(k) ¢ (kr) ©)
defines the energy spectrum of eigenvalues &; (k). BF representation of the Fockian becomes
F (k) =Xexp(ik - g)F ,,(g). 3)
g

where F,,(g) is the matrix element of the Fock operator between the x-th AO located in the zero UC (0)

and the 1~th AO located in the g cell (the row index can be limited to the 0 cell for translation symmetry)
and may be presented as a sum of four different contributions:

F () =T, (8)+V ,(8)+/],(8)+K ,(8), “)

where matrix elements of kinetic (f ), electron-nuclei (l} ), Coulomb (j ), and non-local exchange (I% )
operators are defined throughout the first BZ [28]:

T (&) = [ 2,(")V; x,(r - g)dr , (a)
N Zj

Vl® = XX 7, (0) ——L—7,(r —g)dr, (5b)
J=1 g ‘r—Rj—g"

30



SOLID STATE PHYSICS

J @ =SSP ()5 7,07, (- g) 2, (0 —g") 2, (c —g' —g"drdr',  (50)
2o g g |r o g”|
1 m 1
K, (@=-—2X 2P, @)VZllr,®r,0 -g)y——x -2y, ' -g —-g"drdr',  (5d)
210 g g" |r_rr_gu|

where V, is a Laplace operator, N, R;, and Z; are number of atoms per UC, their radii-vectors and charges,
respectively, g’ and g'’ determine lattice summations, whereas elements of density matrix are defined as:

P,(g)=2],  exp(ik-g') (nz_hc;(k)cm(k)ﬁ{gp - Si(k)}j dk, (6)

Brillouin
zone

where @ is the so-called Heaviside "zero-temperature" occupation function [34], & is the Fermi energy
which determines the occupied manifold in k-space, whereas c,(k) and (k) are eigenvectors and
eigenvalues of Fock matrix ||F(Kk)||, respectively. Since summations over all translation vectors, which are
used in Egs. (5b-5d), extend to the infinite set, a special strategy is specified for the treatment of the
corresponding infinite series, as well as for the substitution of the integral that appears in Eq. (6) with a
weighted sum extended to a finite set of k-points. CRYSTAL code provides an accurate and efficient
solution to these problems [30,33].

Matrices represented in the Bloch basis ("k space") take a block diagonal form, as Bloch
functions are bases for the Irreducible Representations (IR) of the Translation Group (TG). In the case of
closed shell systems HFR equations in matrix form are presented as:

[E®)]| x [[CA[| =[S x [|CH[] > [[EW], (N

where |C(k)|| and ||E(K)|| are matrix of eigenvectors and diagonalized matrix of eigenvalues, respectively,
whereas ||S(k)|| contains Fourier transformations of pair-wise overlap integrals:

S (k) = Xexp(ik - g)] 7, (r)z, (r - g)dr, (8)
2

In principle, Eq. (7) should be solved for all the (infinite) {k} set of points in the Brillouin zone.
Fortunately, only a finite and usually a small subset of these blocks, corresponding to a suitable sampling
of k-points, needs to be diagonalized, because interpolation techniques can be used for eigenvalues and
eigenvectors throughout the first Brillouin zone. An expression for the total electron energy per UC,
which is obtained using variational principle and taking into account representation of the trial HF wave
function as a single determinantal function constructed from antisymmetrized spin-orbitals [30], can be
written as follows:

E = §2Pﬂv(g)[Fw(g) +7,,(8)+ Vw(g)]. )
HV g

In the case of open shell periodic systems (for instance, paramagnetic species), the so-called
unrestricted HF method (UHF) is usually applied, where two matrix equations must be solved self-
consistently, for both & and S electrons:

IFI)I < ICH I = ISR > [[CH I > [[EAE)II, (10a)
IF )| < [C7 Ml = ISR || x [[E k)] (10b)

The total density and spin density matrices are defined in direct space using UHF computational scheme
as:

IP(g)l| = IP% ()l + IPAg)Il, (11a)
IPT"(g)l = [P%(g)ll - 1P (@), (11b)

where ||[P%(g)|| and ||P%(g)|| are obtained as in Eq. (6) by using the eigenvectors ||C*(k)|| and ||CA(K)]|
obtained from Egs. (10a,b), respectively. Elements of Fockians are defined as follows:

Fy(8) =F ,(8)— K (g) (12a)
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B ooy _
F,(2)=F,(g&)+K, (2, (12b)

where ||F(g)|| matrix is defined as in Eq. (4), the total density matrix ||P(g)|| from Eq. (11a) is used in the
Coulomb and exchange terms written in Egs. (5c,d), whereas K/jv (g) is defined as K, (g) in Eq. (5d),

however, elements of spin density matrix Plj’;" (g) are used there instead of P,,(g) for total density matrix.

An expression for the total electron energy per UC according to the UHF procedure is slightly more
complicated than that in Eq. (9):

E,= ﬁz{ Po@ [P @+ T @+ 7, @) + Pjﬁ"(g)K}fﬁ(g)} . (13)
uvg

Geometry and basis set input;
symmetry analysis;
integrals classification;

computation of mono- and

bi-electronic integrals

Reconstruction of Fock matrix ||F(g)||

N

Calculation of Fermi energy & (k)

as well as Fourier transformation
reconstruction of density matrix of ||[F(g)|| to ||F(k)||
1Pl

A

Diagonalization of ||F(K)||

Figure 1. Scheme of implemenation of the standard HF method in CRYSTAL code.

Cyclic procedure of the Self-Consistent-Field (SCF) solution for matrix Eqs. (7) and (10a,b) in
the framework of CRYSTAL computational scheme [28] is illustrated in Fig. 1. All the relevant quantities
(mono- and bi-electronic integrals, overlap and Fock matrices) are computed in the direct configuration
space. Just before diagonalization step ||[F(g)|| matrix is Fourier transformed to reciprocal space of BF
according to Eq. (3), then both eigenvalues ¢; (k) and eigenvectors ¢, (k) are combined to generate direct
space matrix ||P(g)|| using Eq. (6) for the next SCF cycle. Each of them is completed by total energy
calculation using either Eq. (9) or Eq. (13). Two sections of the UHF scheme, corresponding to « and S
electrons, are independent until the Fermi energy & calculation and ||F(g)|| matrix reconstruction. It is
then possible to force the system into a state with a particular total spin value (S.), by imposing the
corresponding value when the crystalline one-electron energy levels ¢ ; are populated at each cycle of the
SCF step [28]. The whole procedure is completed after n-th SCF cycle when either set tolerance of the

total energy per UC is achieved, i.e. | E ,(0’;) -F t(o";]) | < OF , or n exceeds set limit of cycles.

To correct E,,; for the standard HF method by a posteriori estimating the electron correlation
energy, CRYSTAL code provides an integration of the applying DFT functional [34]:

EP™ — [ p@r) &[p(r)] dr, (14)

cell
where ¢, is a correlation energy per particle, whereas HF electron density o(r) is defined as:

occupied
states

pm)=] 5 g kn)[ Ole, - (K)} dk (15)

zone
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Several correlation functionals used in the DFT and implemented in the CRYSTAL95 code [26] may be
applied in order to evaluate EPFT) as defined by Eq. (14). Thus, a total energy per unit cell using a

posteriori HF-CC approximation is expressed as a simple sum of contributions given in Egs. (9) or (13)
and Eq. (14). In calculations we have used both Local Spin Density and non-local Generalized Gradient

approximations (LSD and GGA) for the electron correlation corrections. In the former case, E(SP) is

defined in terms of the correlation energy per particle &, in the homogeneous electron gas with a density
po(r). In the present study we have used a LSD functional suggested by Vosko, Wilk and Nusair [35]. The
GGA correlation functional depends not only on the electron density of homogeneous electron gas but on

its gradients as well; to determine E{°“Y | we have used the Perdew and Wang approximation [36].

To perform ab initio calculations of the Cu/MgO(001) interface using CRYSTAL code, we must
make a correct choice of the basis set (BS) for local atom-centered Gaussian-type functions y; (r). In this
study, we use all-electron BS 8(s)-51(sp) for O and 8(s)-61(sp) for Mg, originally optimized by Causa et
al. [37] and then re-optimized in our previous studies of the Ag/MgO interfaces [23], as well as 8(s)-
64111(sp)-41(d) for Cu, originally developed by Doll and Harrison [38] and re-optimized by us in current
study, in order to reproduce better the properties of copper bulk. When applying the mentioned BS for
oxygen, magnesium, and copper, we could obtain reasonable results for properties of both Cu/MgO(001)
interface and its separate components, which are described below, in Sections 3-5.

2.2. SLAB MODEL OF THE Cu/MgO(001) INTERFACE

Both copper and magnesia bulk crystals possess a face-centered cubic (fcc) lattice structure,
which belongs to the space symmetry group Fm3m. As mentioned in Introduction, a mismatch of their
lattice constants, ac, (3.6 A) and aygo (4.2 A) [39], is about 15%. Thus, in spite of a space compatibility
within the coherent Cu/Mg(001) and Cu/MgO(111) interfaces, their components are either strained (in the
case of the copper film on magnesia substrate) or compressed (for magnesia film on the copper substrate).
This is why such an interface is very likely completely incoherent or semicoherent (with misfit
dislocations) [40]. Nevertheless, this is not relevant for the adsorption of single Cu atoms on substrate,
therefore a model of 1/4 submonolayer copper coverage (1/4 ML) of the perfect MgO(001) surface (Fig.
2a) is quite justified for a simulation of the interaction between Cu atom and oxide substrate. We also
treated monolayer substrate coverage (1 ML), where copper network is indeed strained. The reason for
this model (Fig. 2b) is a comparative analysis of the interfacial properties when increasing concentration
of metal atoms on oxide substrate in the framework of a periodic slab model.

Figure 2. Fragments of the Cu/MgO(001) interface with 1/4 ML (a) and 1 ML (b) substrate coverages where Cu atoms are placed at
the distance z¢, above surface O*~ ions. Another possible adsorption position of copper atoms on the same substrate is above surface
Mg”" ions. Both interface models are sectioned by one and the same plane P—P limited by dashed lines and used for construction of
the difference electron density plots shown in Fig. 6.
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In our theoretical simulations of the perfect MgO(001) substrate, we have applied three-layer
slab which has a 2D periodicity. Since one-side copper coverage of magnesia slab, which we consider,
was varied from 1/4 ML to a 1 ML, we have made a series of calculations for a 2x2 extended surface unit
cell of MgO(001). Figs. 2a and 2b show copper atom positions over surface O*~ ions (we have considered
also the interface configurations with Cu atoms sitting over Mg" ions). For all these structures, we have
carried out the total energy optimization. For the metal/oxide system, this means a two-dimensional
optimization of the total energy E(ame0, Zcy) as a function of the substrate lattice constant ay,o and the
interfacial distance z¢,. For the MgO substrate, we optimize the total energy E,,(amg0) as a function of the
lattice constant. Similar to our recent simulations on the Ag/MgO(001) interface [23-25], we neglect here
magnesia surface relaxation, which was earlier found to be rather small [37]. Dashed planes across slabs
(Fig. 2) are used in Section 5 to analyze re-distribution of the electron density in the interfacial region
between Cu and MgO(001).

2.3. BASIC PROPERTIES OF COPPER/MAGNESIA INTERFACE AND ITS COMPONENTS

Using CRYSTALD9S code [26], we have calculated a number of properties describing both the
Cu/MgO(001) interface as well as copper and magnesia which interact with each other. For these, we
have analyzed the cohesive and adhesion properties (optimized lattice constants and interfacial distances
as well as cohesive energy and bulk modulus for bulk copper, and interfacial adhesion energy), moreover
we have studied charge distribution across copper-magnesia interface (both Mulliken charges and bond
populations as well as the difference electron density plots). Some properties may be obtained directly
during the HF-CC calculations, whereas to obtain another group of properties, we performed further
analysis of the results of CRYSTAL calculations.

To optimize bulk lattice constants ac, (Fig. 3) and amgo (Fig. 4), we have varied both interatomic
distances retaining Fm3m symmetry of the fcc crystal (Fig. 2). Details of the corresponding procedure
using both quasi-harmonic parabolic approximation for the energy minimum E(? per lattice unit cell

(UC) and a least-square method with the second-degree polynomial have been described by us elsewhere
[32]. Another important lattice feature is the bulk modulus B, which is defined as [32]:

B -1 3 azEmr (16)

=n a, —,
*or?

where 7 is a co-factor dependent on the type of cubic lattice (for the fcc lattice n = 4), a, an equilibrium
lattice constant, whereas ' = @’ an optimizing volume of UC. The bulk modulus have been estimated
through a fitting the curves E,(a) by a polynomial regression as described in Ref. [32]. The cohesive

energy E.,, per atom defines the difference between optimized total energy E;: per UC and the total

energy EM" of isolated atom surrounded by 12 AO of its nearest fcc neighbors, according to the

atom

optimized lattice structure (“ghost” atoms contain no charge) [41]:

E,=En—E". (17)

bulk atom

The values of B and E,,;, have been mainly calculated for bulk copper (Table 1), in order to check
correctness of the re-optimized BS for Cu, as was mentioned in subsection 2.1.

To define an optimal value of adhesion energy E,, according to the so-called universal binding
energy relation, UBER (similar to the potential energy curve for a diatomic molecule) [22], we fit the
calculated total energy of the interface to the following potential binding energy curve:

)

Zew — 289 Zew — 2
E, (zcy )= E k(l"‘%)'exp( _%) (18)
where z(c? is the equilibrium interfacial distance, k£ the number of Cu atoms per 2x2 magnesia surface
unit (one or four, for 1/4 ML and 1 ML coverages, respectively), and s a scaling constant. Note that for

well-separated copper and magnesia slabs lim £, (z,) = 0. Eq. (18) has been used in this paper to fit
Zou ™ ®

the interfacial potential energy curves (Fig. 5) as well as to get values of zg’g and E,y, (Table 2) for the

two substrate coverages (1/4 ML and 1 ML) and two Cu adsorption sites (above Mg** and O*™ ions). Both
charges and bond populations at the Cu/MgO(001) interface (Table 2) may be analyzed directly from
outputs of CRYSTAL calculations, in terms of Mulliken population analysis [26]. For more detailed
description of the interface charge re-distribution, we have drawn the difference 2D plots of electron
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density (Fig. 6) across the Cu/MgO(001) interface shown in Fig. 2. This represents the total interface
electron density minus the superposition of atomic densities. To construct these plots, CRYSTAL code
uses algorithms described by us recently [32].

3. Simulation on bulk Cu

To begin the simulation of Cu/MgO(001) interface, we must be sure that its components are
described properly. Despite the fact that magnesia substrate was earlier simulated using CRYSTAL code
quite intensively since 80s [37], and we have used its optimized geometry and BS earlier in a study of
Ag/MgO(001) interface [23-25], previous HF simulations of copper-containing materials are rather scarce
[38,42]. Moreover, the basis set used for description the metallic copper and its chemical activity [38] was
obtained after rather trivial re-optimization of BS for copper ions in magnetic pseudocubic KCuF;
perovskite [42]. We found that description of the valence Cu 4s AO by using only one Gaussian type
function, as done in [38], is not sufficient for comprehensive simulations. Three GTFs for this valence
state were suggested 15 years ago by Bacalis and Kunz [13]. However, that basis set was applied for a
finite cluster model of Cu/MgO interface and, moreover, two of the three functions were too diffuse to
apply them directly in our periodical calculations. This is why we have re-optimized BS for copper
applied by Doll and Harrison [38], not changing configuration of the LCGTF but only optimizing
exponents of the Gaussian functions for the valence 4s state as well as virtual 4d, 5s and 6s states, in order
to achieve a better reproducibility of experimental values for ac,, B and E.,;, in the framework of HF-CC
method.

TABLE 1. Basic cohesive properties for bulk copper.

Properties a?’) . B, Eeon
Method "
A Gpa eV
standard HF 3.8 113 2.69
HF+CC (LSD) 3.75 106 3.07
HF+CC (GGA) 3.65 105 3.86
Data obtained 3.95 (standard HF) 69 (standard HF) 0.49 (standard HF)
_ . 3.53 (DFT, LSD) 195 (DFT, LDA) 4.95 (DFT, LSD)
by Doll and Harrison [38] 3.63 (DFT, GGA) 155 (DFT, GGA) 3.89 (DFT, GGA)
Experiment 3.604 [44] 142 [46] 3.51 [45]

*DFT method, with both LSD or GGA exchange and correlation functionals [29]

Basic results of our simulation on bulk copper are presented in Table 1 and Figure 3. We
describe here three data set, which are obtained using the standard HF method (with no corrections) and
two different electron correlation corrections implemented in the framework of HF-CC method: LSD
(VWN [35]) and GGA (PW [36]), as was explained in subsection 2.1. It is obvious from Table 1 that both
corrections improve the quality of obtained results. This may be explained by well-known fact that the
standard Hartree-Fock method usually overestimates bond lengths and underestimates the formation
energy [43], whereas electron correlation corrections minimize these artifacts, especially GGA. It is also
true for the value of cohesive energy (Table 1). This is why for further simulations of both magnesia
substrate and Cu/MgO(001) interface we have used only PWGGA correlation corrections. When we
compare values of AE (Fig. 3) and E,,, (Table 1) per Cu atom, their difference by a factor 2.2-2.5 may be
explained by the different geometries: the former case corresponds to a symmetrical 3D expansion of
copper lattice, whereas cohesion energy estimates a simple removal of Cu atom from the lattice, along
some one-dimensional trajectory. As to the bulk modulus, its values seem to be underestimated in all
three cases, a posteriori corrections did not lead to a better agreement with the experimental value [46]. It
confirms the corresponding shortcoming observed in [38], although only the standard HF method was
applied there, not HF-CC like in our current paper.
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4. Simulation on the MgO(001) substrate

Magnesia is a typical ionic crystal, during its formation the charge transfer of almost 2 e between
the initially neutral magnesium and oxygen atoms takes place (according to different theoretical estimates
for bulk magnesia [47,48], this transfer lies in the range 1.9-2.0 e, whereas our calculations give 1.97 e for
both bulk MgO and non-polar MgO(001) substrate). In this study, we mainly use magnesia basis sets,
which were described in Refs. [37,47] and mentioned in subsection 2.1. The extended BSs of MgO (8-
511G for Mg and 8-411G for O) introduced later [48] include more diffuse polarization functions for 4sp
and 3d virtual states of both magnesium and oxygen. Nevertheless, the basic properties of bulk MgO are
not changed noticeably with these new BSs. Thus, we did not see the need to use the extended BS, taking
into account the large increase in both computer disk space and CPU time, which would result in such

calculations.

per MgO formula unit, eV

tot

AE

interatomic distance Ao

A

Figure 4. Potential curve AE,(amgo0) = Ewnlameo) — Erol a,\jgo ) obtained for the PWGGA electron correlation correction (a) and its

fragment, which allows to localize an energy minimum for the lattice constant a
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The optimized value of the lattice constant aﬁZLo for the pure MgO(001) substrate have been

determined by us using the potential energy curve for a 2x2 surface supercell (Fig. 4) since the latter is
used in further periodic simulation on the copper-magnesia interface. In this case a lattice constant has
been found to be slightly smaller than in previous calculations for the bulk unit cell and the surface UC

(4.19-4.21 A [23,37,47,48]). We find aﬁZLo values to vary in the range 4.09-4.15 A when using various

electron correlation functionals and slab models (three and five (001) layers). One reason for the
difference can come from the surface stress, which, like the surface tension of a liquid, tends to reduce the
interatomic spacing. This effect can be confirmed by the systematic differences of about 0.02 A between
three-layer and five-layer systems (in the latter case the lattice constant is larger). In any case, we have

chosen the value of amo (4.11 A) optimized for three-layer MgO(001) slab using the PWGGA electron

correlation correction (Fig. 4) for further a posteriori HF-CC calculations of the copper-magnesia
interface. As to the substrate binding energy per MgO formula unit (15.87 eV), this is quite close to the
corresponding experimental value for the bulk magnesia 10.45 eV [48]. Obviously, for 3D and 2D
crystalline systems the binding energies per the same structural unit could differ. Taking into account that
the energy of atomization for bulk Cu is about 8 eV (PWGGA a posteriori correlation), one can conclude
that it would be quite close to AE,,, per MgO unit in MgO(001) substrate if both estimates were done per
“averaged” atom.

5. Simulation on the Cu/MgO(001) interface
5.1. COMPLETE 1 ML SUBSTRATE COVERAGE

There is difference in adsorption nature of both complete and partial copper coverages (Figs. 5,6 and
Table 2). Copper monolayer model gives a clear the energetic preference for Cu adsorption over the surface
O” ions (0.24 eV versus 0.16 eV for Cu positions over surface Mg”"). This is in agreement with both
previous theoretical simulations on the Cu/MgO(001) interface [6,13-17] and our results for the
Ag/MgO(001) interface [23,24]. Theoretical data systematized by Lopez et al. [15] show a wide range of £,
values (0.2-1.5 eV per copper atom) for Cu adhesion over O sites on magnesia substrate obtained using
different models and computational methods. However, our current data do not provide so marked preference

for the O adsorption sites as in the most of cited studies, moreover, the Z&)_o distances are noticeably
overestimated while values of Z(Cou)-Mg may be considered as underestimated (Table 2). The same comparative
analysis [15] reveals a rather narrow interval of the interfacial distances, zc,o (1.85-2.15 A); therefore, our

estimate (2.4 A) is evidently above it.

TABLE 2. Parameters of the Cu/MgO(001) interface as calculated using HF-CC method (PWGGA correlation corrections) and their
comparison with previous results

Cu atom Substrate coverage Interface distance Adhesion energy Charge transfer
over (our and previous calculations) 2% A (Fig. 2) Ewn®, eV Agea®, e
1/4 our data 2.48 0.22 -0.005
o ML | Lietal [14]° 1.9 1.4 0.03
ion 1 our data 2.40 0.24 -0.009
ML | Benedek et al. [6]° 2.0 1.0 -0.08
1/4 our data 2.35 0.62 -0.014
Mg* ML |Lietal [14] ¢ 2.5 0.5 _
ion 1 our data 2.69 0.16 -0.005
ML | Benedek et al. [6]° 3.20 0.2 -0.06

* Value of adhesion energy is given per Cu atom.

® A positive sign means excess of the electron density as compared to a neutral atom.

¢ Single Cu atom over finite cluster model of MgO(001) was calculated using DFT method (LSD exchange and correlation
functionals)

4DFT (LSD) method was applied to calculate periodic slab model of the Cu/MgO(001) interface with monolayer substrate coverage.
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Figure 5. Interfacial energy Ei(zc,) as a function of the interfacial distance zc, for the two different adsorption sites Mg and O (Fig. 2)
and two different Cu coverages (1/4 ML and 1 ML) on the MgO(001) substrate. PWGGA electron correlation correction has been
used to obtain energy values for potential curves. Full lines were drawn using the standard B-spline option.

Our calculations confirm another conclusion of previous studies: negligible chemical bonding across
the interface, between copper and magnesia substrate. Thus, the adhesion is physical in its origin. The
calculated Mulliken charges on Cu atoms indicate a negligible charge transfer from metal atoms to substrate
(Table 2). This agrees with results of periodic simulations [6], whereas finite cluster calculations usually
predict a small transfer of electronic charge to copper atom [14]. The electron bond populations across the
interface (between metal atoms and substrate ions) are also practically zero. On the other hand, there is a
charge redistribution within the metal. We have observed a noticeable bond population between nearest Cu
atoms (0.075 e per atom) within the metal planes parallel to the interface, which is not sensitive to the
adsorption site. This value of bond population is smaller as compared to Ag/MgO(001) interface (0.1 e [23]),
which could be caused by a just strained state of Cu monolayer on magnesia substrate mentioned above,
lattice constants of silver and magnesia almost coincide. Nevertheless, even such a strained copper monolayer
displays a conducting behavior, which is important for microelectronic applications. The Mulliken population
analysis gives a reason for Cu adsorption over O ions to be favored. This preference comes from the
electrostatic attraction between the enhanced Cu electron density, concentrated around the hollow position of
the copper monolayer, and the substrate Mg>" ion below it (Figure 6b). On the other hand, for the Cu
adsorption over the Mg®" ions, there is a repulsion between this interatomic electron density and the substrate
O ion below it. The corresponding difference electron density plots (Figures 6b and 6d for copper adhesion
over O and Mg sites, respectively) clearly confirm this effect.

5.2. PARTIAL 1/4 ML SUBSTRATE COVERAGE

In the case of low substrate coverage by metal atoms, there is practically no interatomic electron
density concentration between Cu atoms, and therefore its attraction or repulsion with the nearest substrate
ion plays no longer any role. For separated Cu adsorption over O*~ or Mg”" ions, there is a single nearest
substrate neighbor (either O>~ or Mg®" ion) and four next-nearest substrate ions of the opposite type (either
Mg”" or O sites). However, our data for the low substrate coverage by copper are rather unexpected (Figure
5 and Table 2): adsorption energies for isolated Cu atoms are almost three-fold larger for positions over Mg

sites than over O”~ ions, whereas difference z(cog_o - z(c(ﬁ_Mg = 0.13 A is quite surprising result as well. This
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difference may be partly explained by a definite compensation of electrostatic attraction and repulsion of
polarized and slightly charged Cu adatoms with surrounding surface ions in the case of 1/4 ML coverage. It
may be suggested that the effect of four surrounding O”” ions is much more essential than that from the
oxygen ion below.

a) ¢)

Figure 6. Difference electron density plots Ap(r) (see explanation in subsection 2.3) for the cross sections shown in Figure 2. (a) and
(c) correspond to a 1/4 ML substrate coverage by copper atoms over O and Mg adsorption sites, respectively, whereas (b) and (d) show
electron re-distribution in the interface between the copper monolayer and magnesia substrate for the same O and Mg adsorptions
sites. Isodensity curves are drawn from —1.0 to +1.0 e au™ with an increment of 0.0022 e au™ for atomic difference.

The charge transfer from the isolated copper atom to the substrate is also almost twice as large for
Cu positions over Mg sites (0.09 e versus 0.05 ¢). A comparative analysis of the difference electron
distribution plots (Figs. 6a and 6¢) may clearly illustrate these bonding peculiarities of Cu atom adsorbed over
surface oxygen and magnesium ions. Their comparison indicates that Cu atoms are more disturbed when
sitting atop nearest and interacting with next-nearest O> ions than to magnesium ions, while electronic shells
of Mg®" ions are not affected too much from deposited copper atoms. Meanwhile, a participation of the
subsurface substrate ions in interfacial bonding is quite negligible. Thus, the difference electron charge
distributions shown in Fig. 6 give the most convincing argument in favor of a decisive role of the interaction
between Cu atoms and surface O* ions in the mechanism of copper adhesion on the magnesia interfaces.
Nevertheless, we suppose that the ratio of ~2.8 between the adsorption energies, which favors Cu atom
localization atop Mg sites to be rather incorrect. Since we have checked the main configurations of the
Cu/MgO(001) interface using extended BS for bulk magnesia [48] and obtained results which qualitatively
agree with those we discuss in this paper, the only reasonable explanation of this artifact may be an
incompleteness of the copper BS [38]. Thus, our nearest task is the BS further modification, in order to
achieve more adequate simulation of the Cu/MgO(001) interface.
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6. Conclusions

One general conclusion to be drawn from the ab initio Hartree-Fock calculations with correlation
corrections is that there is no chemical bonding on the Cu/MgO(001) perfect interface. Contrary, physical
adhesion associated with polarization and charge redistribution turns out to be the dominant effect. For copper
monolayer, the adhesion energy is enhanced by the interaction of the substrate ions with the additional
electron density accumulated near by the interatomic positions of the interfacial Ag layer. This favors copper
atoms position above the surface O” ions on the (001) substrate, similarly to the Ag/MgO(001) case [23,24].
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ELECTRONIC STRUCTURE AND RESISTIVITY OF COPPER
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The electronic structure and resistivity calculations of are considered. The main attention is paid to the cluster approach
for condensed state.
Keywords: atomic potentials, pseudopotentials, cluster approach, effective media approximation, electronic structure and resistivity
of copper

“Copper is the first “new” material that is
breathing life into the existing well-established
silicon realm”.
Aart de Gues, Chairman and CEQ ,
Synopsys Inc. as quoted in EE Times

1. Introduction

Copper is a very popular material nowadays. The rapid development of electronics,
telecommunications and other high-technological industries lead to the “copper” boom. Copper possesses
the highest electrical conductivity of all commonly found metals on earth. This property of copper when
added to its inherent strength, formability and corrosion resistance make it and its alloys unique in their
usefulness as conductors of electricity.

A basic understanding of the properties of copper and copper alloys can be very useful for the
modern electronics. Both physical and mechanical properties play an important role in the selection of an
appropriate alloy and its subsequent processing, stamping, drawing, etc.

In 1997, fulfilling a dream of several decades, IBM introduced a technology that allows chip-
makers to use copper wires, rather than the traditional aluminium interconnects, to link transistors in
chips. This advance gives IBM a significant lead in the race to create the next generation of
semiconductors. Every chip has a base layer of transistors, with layers of wiring stacked above to connect
the transistors to each other and, ultimately, to the rest of the computer. The transistors at the first level of
a chip are a complex construction of silicon, metal, and impurities precisely located to create the millions
of minuscule on-or-off switches that make up the brains of a microprocessor. Breakthroughs in chip
technology have most often been advances in transistor-making. As scientists kept making smaller, faster
transistors and packing them closer together, the interconnect started to present problems. In the
semiconductor industry, bigger isn't always better. In fact, the phrase "smaller, faster, and cheaper" is
more applicable to computer technology. Aluminium has long been the conductor of choice, but it will
soon reach the technological and physical limits of existing technology. Pushing electrons through
smaller and smaller conduits becomes harder to do - aluminium just isn't fast enough at these new,
smaller sizes. Scientists had seen this problem coming for years and tried to find a way to replace
aluminium with one of the three metals that conduct electricity better: copper, silver, or gold. Of course, if
that were simple, it would have been done a long time ago. None of those metals is as easy to work with
as aluminium in ever-decreasing amounts. Any new material presents fresh challenges, and reliably filling
sub-micron holes and channels is a bit like filling the holes of a golf course from an air-plane. What's
worse, those metals interact badly with silicon, soaking into it and altering its electrical properties. Not by
much, but even a few stray atoms are enough to short-circuit the chip. IBM had to develop a diffusion
barrier that could be deposited in silicon wafers along with the copper. By the late 1980s, IBM
researchers found one metal that did the trick, paving the way to the breakthrough announced in 1997.
Some expert assume that “Copper in on its way toward becoming the golden metal of the Silicon Age”.

The following uses for copper are gathered from a several sources as well as from anecdotal
comments:

e wire
e coinage metal
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e copper compounds such as Fehling's solution are widely used in analytical chemistry in tests for
sugar

e the electrical industry is one of the largest users of copper

e copper sulphate is used as an agricultural poison, and water purifier

Additional info about copper usage can be found in electrical industry branch Appendix.

The main goals of this work are:

e methods of the electronic structure calculation;

e copper and its electronic properties in the framework of “liguid metal” model,

e the strategy of pseudopotential calculation, without using the self-consistent procedure and studied
pseudopotentials for copper as main research object;

e the density of electronic states (DOS) for the single scatterer in vacuum, specific resistance for
copper and simulated its disorder dependence on the base of calculated pseudopotentials. Started the
study of DOS for scatterer in medium for future works as a priority task.

General, atomic and crystallographic Properties and Features of Copper. overview see in Appendix

2. Electronic structure calculation methods overview

In this section we describe the methods, which are now successfully used for electronic structure
calculations, discuss some results, define their advantages and limitations.

2.1. GENERAL

The formulation and development of quantum theory in the first half of the 20™ century has led
to a revolution in our understanding of fundamental physics. Quantum theory has demonstrated a
surprising accuracy and predictive power, and the importance of quantum theory in the pure and applied
sciences in virtually unchallenged.

The relevant equations to be solved are clearly the equations of quantum mechanics, if we are to
attempt to model real processes and real materials. Unfortunately, Schrodinger's equation, the most
fundamental equation of wave function based quantum mechanics, cannot be solved analytically for all
but the most trivial of systems, most of which are not relevant to the world at large.

Electronic structure calculations - numerical solutions of Schrodinger's equation for a specific
system - are distinct from other forms of modelling because they are first-principles in nature. That is,
except through the choice of the researcher, the calculations contain no external parameters other than a
most basic description of the system. Calculations of this nature enable the speculative study of systems,
potentially without reference to experiment. Where a given physical property is physically inaccessible -
such as the binding energy of an atom or molecule deeply embedded in a complex host - the availability
of reliable qualitative data is a powerful stimulus.

However, the numerical solution of Schrodinger's equation remains a difficult task. Exact
solutions of the equation are, in general, only solvable in times scaling exponentially with system size.
This scaling precludes exact calculations for all but the smallest and simplest of systems. Approximations
may be introduced to reduce the equations to a form that can be solved in polynomial time, but at the
penalty of losing some degree of accuracy and predictive power. The treatment of electron-electron
interactions is the principle source of difficulty: the physical and chemical properties of a system depend
principally on the interaction of the electrons with each other and with the atomic cores. These
interactions cannot easily be separated out or treated without approximation.

The most successful electronic structure methods in current use, those of density functional
theory and quantum chemistry, have been applied to a wide range of systems relevant to the real world. In
practice, the density functional and quantum chemical approaches involve approximations for the
electron-electron interactions, limiting the achievable accuracy.

In this work, stochastic methods for the solution of Schrodinger's equation are developed and
applied to real systems. Quantum Monte-Carlo (QMC) methods treat electron-electron interactions almost
without approximation and with a computational cost scaling cubically with system size. Their accuracy
enables an unprecedented degree of confidence to be placed in the results obtained. A number of technical
developments are made in the earlier chapters of the thesis, prior to two significant applications: the
computation of the one-body density matrix of silicon and several related quantities, and a study of the
energetic stability of a series of carbon clusters. The use of Quantum Monte-Carlo methods was essential
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in both of these applications, particularly in the study of carbon clusters where no other currently
applicable computational method is sufficiently accurate.

2.2. CALCULATION METHODS

Quantum Monte Carlo techniques provide a direct and potentially efficient means for solving the

many-body Schrodinger equation of quantum mechanics. Finding accurate solutions of this equation is
one of the central problems in physics and chemistry.
The simplest Quantum Monte Carlo technique, variational Monte Carlo (VMC), is based on a direct
application of Monte Carlo integration to the calculation of multi-dimensional integrals of expectation
values such as the total energy. Monte Carlo methods are statistical and a key result is that the value of
integrals computed using Monte Carlo converges faster than by using conventional methods of numerical
quadrature, once the problem involves more than a few dimensions. Statistical methods therefore provide
a practical means of solving the full many-body Schrédinger equation by direct integration, making only
limited and well-controlled approximations.

Comparisons are made with several well-developed approaches for solving the many-body
Schrodinger equation in this chapter. Numerous quantum chemical methods and density functional
approaches have been developed for solving the 'electronic structure problem". A review of several
methods currently in general use is given along with an outline of their relative advantages and
shortcomings.

2.2.1.The Hamiltonian.

The time independent Schrodinger equation for a system of N particles interacting via the
Coulomb interaction is

,HY =EV, 2.1

where

J
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and W is an N-body wave function, r denotes spatial positions and Z is the charge number of the atom. £
denotes the energy of either the ground or an excited state of the system.

Most physical problems of interest consist of a number of interacting electrons and ions. The total
number of particles, N, is usually sufficiently large that an exact solution cannot be found. Controlled and
well understood approximations are sought to reduce the complexity to a tractable level. Once the
equations are solved, a large number of properties may be calculated from the wave function. Errors or
approximations made in obtaining the wave function will be manifest in any property derived from the
wave function. Where high accuracy is required, considerable attention must be paid to the derivation of
the wave function and any approximations made.

2.2.2. The Born-Oppenheimer approximation.

A reasonable approach used in the solution of equation (2.1) is the Born-Oppenheimer approximation. In
a system of interacting electrons and nuclei there will usually be little momentum transfer between the
two types of particles due to their greatly differing masses. The forces between the particles are of similar
magnitude due to their similar charge. If one then assumes that the momentum of the particles are also
similar, then the nuclei must have much smaller velocities than the electrons due to their far greater mass.
On the time-scale of nuclear motion, one can therefore consider the electrons to relax to a ground-state
given by the Hamiltonian (2.2) with the nuclei at fixed locations. This separation of the electronic and
nuclear degrees of freedom is known as the Born-Oppenheimer approximation.

It is important to note that this approximation does not limit the techniques described to systems
of fixed ions: in principle, once the electronic configuration is known, the nuclear degrees of freedom
could also be solved for, giving rise to nuclear motion.
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The many-body Hamiltonian, (see, equation (2.2)) , is expressed in form:

2.3)
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where r; and dgare positions of electrons and ions with the charge Z,, e=m=2nh=4ne,=1 (this means
atomic units). The simplified Hamiltonian remains very difficult to solve and no analytic solutions exist
for general systems with more than one electron.

2.2.3.The Hartree Fock theory.

Hartree-Fock theory is one the simplest approximate theories for solving the many-body
Hamiltonian. It is based on a simple approximation to the true many-body wave function: that the wave
function is given by a single Slater determinant of N spin-orbitals:

V(X)) wi(xy) e w(xy)
Va(Xy) Wo(Xy) o wo(xy) (2.4)

>

Y=
W (X)) W (X)) e wn(Xy)

where the variables x include the coordinates of space and spins.

This wave function may be inserted into the Hamiltonian, equation (2.3), and an expression for
the total energy derived. Applying the theorem that the value of a determinant is unchanged by any non-
singular linear transformation, we may choose the y to be an orthonormal set. We now introduce a
Lagrange multiplier €, to impose the condition that the y are normalised, and minimise with respect to the

W
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In the one-electron approximation equations we obtain:

= VR0 Vi (03 )+ U () =2, 1) 2.6)

where U(r) is a non-local potential and the local ionic potential is denoted by Vj,,. The one-electron
equations resemble single-particle Schrodinger equations. The total Hartree-Fock equations are given by:

, 2
V(D) = (-2 V2 + Vi O, O+ far |“|’ (r)l Vi) 0, far % v @D

The right side of the equations consists of four terms. The first and second give rise are the
kinetic energy contribution and the electron-ion potential. The third term, or Hartree term, is the simply
electrostatic potential arising from the charge distribution of N electrons. As written, the term includes an
unphysical self-interaction of electrons when j=i. This term is cancelled in the fourth, or exchange term.
The exchange term takes into account the Pauli principle and the determinantal form of the wave
function. The effect of exchange is for electrons of like-spin to avoid each other. Each electron of a given
spin is consequently surrounded by an *“exchange hole", a small volume around the electron which like-
spin electron avoid.

The Hartree-Fock approximation corresponds to the conventional single-electron picture of
electronic structure: the distribution of the N electrons is given simply by the sum of one-electron
distributions | y [°. This allows concepts such as labelling of electrons by angular momentum (“a 3d-
electron in a transition metal”), but it must be remembered that this is an artefact of the initial ansatz and
that in some systems modifications are required to these ideas.
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Hartree-Fock theory, by assuming a single-determinant form for the wave function, neglects
correlation between electrons. The electrons are subject to an average non-local potential arising from the
other electrons, which can lead to a poor description of the electronic structure. Although qualitatively
correct in many materials and compounds, Hartree-Fock theory is insufficiently accurate to make accurate
quantitative predictions.

2.2.4.Basis set expansions.

In the preceding section, the single-particle Hartree-Fock equations were presented (equation
(2.7)). Numerical solutions usually are found by expanding the orbitals in a basis set:

M
Vi =D Cidy 2.8)
k

The unknown Hartree-Fock orbitals, y, are written as a linear expansion in M known basis
functions ¢. Inserting equation (2.8) into equation (2.7) leads to a set of matrix equations for the
expansion coefficients, cy. The problem of solving the Hartree-Fock equations is reduced to a linear
algebra problem, which may be solved by techniques such as iterative diagonalisation.

In practice, a basis of plane waves in periodic systems or localised Gaussians in finite systems, is
commonly used. The basis set expansion represents an additional limitation of the techniques: unless the
basis set expansion has sufficient freedom to encompass the exact solutions for the Hartree-Fock orbitals,
¢, a compromise solution with a higher Hartree-Fock energy will be found. In practical applications,
convergence of the basis set must be studied to verify that the expansion is sufficiently complete.

2.2.5. Post Hartree-Fock techniques.

Going beyond the ansatz of a single-determinant wave function may reduce the limitations of
the Hartree-Fock method. There are two broad categories of such approaches: those based on perturbation
theory and those based on the variational principle. Among the latter approaches is the configuration
interaction method which will be covered here because the focus of this thesis is on obtaining accurate
many-body wave functions.

Configuration interaction. Configuration interaction (CI) methods are one of the conceptually simplest
methods for solving the many-body Hamiltonian. Although theoretically elegant, in principle exact, and
relatively simple to implement, in practice fi// CI can be applied to only the smallest of systems. The
basis for CI methods is the simple observation that an exact many-body wave function, y, may be written
as a linear combination of Slater determinants, Dy,

Y= ¢ Dy, 2.9)
k=0

where the Dy fully span the Hilbert space of the wave function. The determinants can be any complete set
of N-electron anti-symmetric functions but are typically constructed from Hartree-Fock orbitals such that
D is the ground-state Hartree-Fock determinant.

The Hartree-Fock “reference determinant" D, is by definition the best single-determinant
approximation to the exact wave function Y. In most electronic systems, the Hartree-Fock energy
accounts for the majority of the exact total energy, and the missing correlation energy is small. If the
coefficients c, are normalised then typically cy=1 and all remaining c, are very small. A very large
number of configurations is required to yield energies and wave functions approaching the exact many-
body wave function. In practice the expansion must be limited on physical grounds, as the total number of
determinants is:

M!
O (2.10)
NI(M—N)! -
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where the length of the expansion ky,, is given in terms of the number of electrons, N, and the number of
basis states, M, in the expansion (M>>N).

The scientific problem in adapting the CI method into a practical one is to obtain the best wave
function, and hence lowest CI energy, with the shortest expansion length. A typical approach would be to
truncate the expansion after only double or quadruple excitations from the reference determinant, where
an excitation consists of replacing a ground state occupied orbital by an unoccupied one. These levels of
truncation are the CI singles-doubles (CISD) and CI singles-doubles-triples-quadruples (CISDTQ)
methods. A formidable number of terms are still left in the expansion. Accurate applications of the
methods are consequently limited due to their computational cost.

When performed within a finite reference space, an additional problem with the method becomes
apparent: the methods lack “size-extensivity” and do not perform equally well in systems of differing
size. As the size of system increases, the proportion of the electronic correlation energy contained within
a fixed reference space (such as all single and double excitations) decreases. The lack of size-extensivity
results in a non-cancellation of errors when systems of different sizes are compared, resulting in
difficulties when interaction or bonding energies are required. Despite these limitations, CI represents a
controlled (and variational) improvement to the ground-state wave function, and may therefore be used in
the determinantal parts of trial wave functions in QMC.

2.2.6. Other methods.

The lack of size extensivity and substantial cost of the CI method has led to the development of
several related methods. The coupled-cluster (CC) method is one of the most important practical advances
over the CI method. Although non-variational, it resolves the problem of size extensivity, and is often
very accurate, but more expensive than (limited) CI. The CC method assumes an exponential ansatz for
the wave function

Yoo =exp(M Wy (2.11)

where the coupled-cluster wave function is given by an excitation operator acting on a reference wave

function, usually the Hartree-Fock determinant Wyr=D,. The operator T is generates k-fold excitations
from a reference state:

f:sz , (2.12)
k

so that, for example,

T, Wye =Zt§bD§b : (2.13)
ij
The operator T, generates excitations from pairs of occupied states, ij, to pairs of virtual states, ab, from a

reference Hartree-Fock determinant D. The expansion coefficients tijah are determined self-consistently. A
“coupled-cluster doubles” wave function is written as :

Yeep =exp(Ty)Wyr (2.14)
1 (2.15)
abyab ab . cd y abed
Weep =D + 2t Dj +522tu tig Dijgg +-
i i K

The CC expansion is usually terminated after all double excitations or all quadruple excitations
have been included. It may be shown that this expansion is size consistent. By including many excitation
terms in the expansion, CC methods are computationally very expensive relative to HF calculations.
Formally, CC singles-doubles scales as the sixth power of the number of basis states included in the
expansion, and calculations including up to quadruple excitations scale as the tenth power of the number
of states. The key limitation of the CC methods are their rapid increase in computational cost with system
size. This presently limits the methods to small molecular systems.
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Limitations. Hartree-Fock is a simple theory which satisfies the commonly known features of fermion
wave functions. The theory generates wave functions that are anti-symmetric with respect to the exchange
of two electron positions and includes exchange between like-spin electrons. The cost of a Hartree-Fock
calculation formally scales with the cube of the number of basis functions, but depending on
implementation the scaling can be between linear and quadratic with system size. It is insufficiently
accurate for quantitative predictions of the properties of many compounds. By neglecting electron
correlation, interaction energies are typically very poor. A Hartree-Fock wave function is a well-
controlled approximation to the many-body wave function, and for this reason Hartree-Fock continues to
be widely used: it is often predictably accurate or inaccurate, and therefore useful for determining
qualitative information such as trends in a structural parameter with system size.

Almost all post Hartree-Fock methods share the combined limitations of a poor scaling with
system size and a strong basis set dependence. In practice, post Hartree-Fock methods typically scale with
the fourth or higher power of the number of basis states included in the calculation, limiting their
application to small systems. The basis states depend on the underlying basis set used in their numeric
expansion, equation (2.8), and it is commonly found that use of improved methods requires an improved
basis set, further increasing the cost of calculation. CI and CC-based methods effectively transform the
electron-correlation problem into a basis set problem, where the basis set is the set of molecular orbitals
derived from a Hartree-Fock (or similar) calculation.

Density functional theory. Density functional theory (DFT) is a powerful, formally exact theory. It is
distinct from quantum chemical methods in that it is a non-interacting theory and does not yield a
correlated N-body wave function. In the Kohn-Sham DFT, the theory is a one-electron theory and shares
many similarities with Hartree-Fock. DFT has come to prominence over the last decade as a method
potentially capable of very accurate results at low cost. In practice, approximations are required to
implement the theory, and a significantly variable accuracy results. Calibration studies are therefore
required to establish the likely accuracy in a given class of systems.

2.2.7.The Hohenberg-Kohn theorem.

The Hohenberg-Kohn theorem states that if N interacting electrons move in an external potential
Vex(r), the ground-state electron density ny(r) minimises the functional

E[n] = Fn]+ [ n(r)Vey (r)dr , (2.16)

where F[n] is a universal functional of n and the minimum value of the functional E is E, the exact
ground-state electronic energy.

The proof of equation (2.16) is straightforward. It is a proof only of existence; additional theory
is required before a method can be implemented. Levy gave a particularly simple proof of the Hohenberg-
Kohn theorem which is as follows:

A functional O is defined as
Oln(1= lim (¥[0]¥), 2.17)

where the expectation value is found by searching over all wave functions, W, giving the density n (¥)

and selecting the wave function which minimises the expectation value of 0. F[n(r)] is defined by
Fin(r)]= lim (¥Y[H¥),
)= im C¥[F¥) 2.18)
so that <¥| F [¥>, then from the definition of the functional E:
E[n]=Fn]+ [n(r)V, (r)dr = (¥ |ﬁ + Ve | ) . (2.19)

The Hamiltonian is given by F+V,, and so E[n(r)] must obey the variational principle,

E[n(r)]=E, (2.20)
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This completes the first part of the proof, which places a lower bound on E[n(r)]. From the
definition of F[n(r)] equation (2.18) we obtain:

Fln, ()] < (¥, [F] ¥, ). (2:21)
since ¥ is a trial wave function yielding ny(r). Combining In(r)Vext (r)dr with the above equation
gives

E[n(r)]<E, , (2.22)

which in combination with equation (2.19) yields the key result

E[n(r)]=E,, (2.23)

completing the proof.
The Kohn-Sham equations. Kohn and Sham derived a coupled set of differential equations enabling the

ground state density noy(r) to be found. Kohn and Sham separated F[n(r)] into three distinct parts, so that
the functional E becomes

()] = T, [0+ ] “)—“(rd dr' + Exc[n(0)]+ [ n(r)V e (dr , (2.24)

where T[n(r)] is defined as the kinetic energy of a non-interacting electron gas with density n(r),
1Y, . 2
Ti[n(0)] === X [wi OV y; (r)dr (2.25)
i=1

and not the kinetic energy of the real system. Equation (1.26) also defines the exchange-correlation
energy functional Exc[n]. Introducing a normalisation constraint on the electron density, j'n(r)dr =N

we obtain 0 [E[n(r)]- uj n(r)dr] =0, then
on(r)

SEM()] _
sn(r) (2.26)

Equation (1.28) may now be rewritten in terms of an effective potential, V (1),

%?g)] + Ve (r) =p (2.27)
where

Ve (1) = Vi )+ ] ﬁdrwxe ®) (2.28)
and

Vxc(r) = SE%:)(”] . (2.29)

Crucially, non-interacting electrons moving in an external potential V.(r) would result in the
same equation (2.28). To find the ground state energy, E,, and the ground state density, ny, the one
electron Schrédinger equation :

49



SOLID STATE PHYSICS

(—%V? Vo ()~ ) (1) =0 (2.30)

should be solved self-consistently with
N 2

n(r) =[x, (2.31)
i=1

and equations (2.27)and (2.28). A self-consistent solution is required due to the dependence of V.g(r) on
n(r). The above equations provide a theoretically exact method for finding the ground state energy of an
interacting system provided the form of Exc is known. Unfortunately, the form of Exc is in general
unknown and its exact value has been calculated for only a few very simple systems. In electronic
structure calculations Exc is most commonly approximated within the local density approximation or
generalised-gradient approximation.

The local density approximation. In the local density approximation (LDA), the value of Exc[n(r)] is
approximated by the exchange-correlation energy of an electron in an homogeneous electron gas of the
same density n(r), i.e.

EL M n(r)] = [ £xc ((r))n(r)dn(r) (2.32)

The most accurate data for Exc[n(r)] is from Quantum Monte Carlo calculations. The LDA is
often surprisingly accurate and for systems with slowly varying charge densities generally gives very
good results. The failings of the LDA are now well established: it has a tendency to favour more
homogeneous systems and over-binds molecules and solids. In weakly bonded systems these errors are
exaggerated and bond lengths are too short. In good systems where the LDA works well, often those
mostly consisting of sp bonds, geometries are good and bond lengths and angles are accurate to within a
few percent. Quantities such as the dielectric and piezoelectric constant are approximately 10% too large.

The principle advantage of LDA-DFT over methods such as Hartree-Fock is that where the LDA

works well (correlation effects are well accounted for) many experimentally relevant physical properties
can be determined to a useful level of accuracy. Difficulties arise where it is not clear whether the LDA is
applicable. For example, although the LDA performs well in bulk group-IV semiconductors it is not
immediately clear how well it performs at surfaces of these materials.
Limitations. Despite the remarkable success of the LDA, its limitations mean that care must be taken in its
application. For systems where the density varies slowly, the LDA tends to perform well, and chemical
trends are well reproduced. In strongly correlated systems where an independent particle picture breaks
down, the LDA is very inaccurate. The transition metal oxides XO (X=Fe,Mn,Ni) are all Mott insulators,
but the LDA predicts that they are either semiconductors or metals. The LDA has been applied to high 7.
superconductors, but finds several to be metallic, when in reality they are insulating at 0K.

The LDA finds the wrong ground state for in many simpler cases. For example, the LDA finds
the wrong ground state for the titanium atom. The LDA does not account for Van der Waals bonding, and
gives a very poor description of hydrogen bonding. These phenomena are essential for most of
biochemistry: the structure of DNA of depends critically on hydrogen bonding, as do the changes in the
structure of most molecules on solvation.

The success of the LDA has been shown by QMC calculations to result from a real-space
cancellation of errors in the LDA exchange and correlation energies. This is illustrated in figure, where
the exchange and correlation energy densities of silicon are compared with an accurate QMC calculation.
The cancellation represents a difficulty when improvements to the LDA are attempted, as an
improvement in only the exchange or correlation contributions may give worse results.

An obvious approach to improving the LDA is to include gradient corrections, by making Exca
functional of the density and its gradient:

ES [n(r)] = [ £ xe (n(0)n(r)dr + [ Fye [n(e), [Va(r)[ldr , (2.33)

where Fxc is a correction chosen to satisfy one or several known limits for Exc.
Clearly, there is no unique recipe for Fxc, and several dozen functionals have been proposed in the
literature. They do not always represent a systematic improvement over the LDA and results must be
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carefully compared against experiment. The development of improved functionals is currently a very
active area of research and although incremental improvements are likely, it is far from clear whether the
research will be successful in providing the substantial increase in accuracy desired.
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Figure 1. Contour plots of the LDA exchange and correlation energy densities compared with VMC calculations for Si in the
diamond structure in the (110) plane: (a) 8¥MC (r)—SI;DA (r); (b SXMC (r)—el‘DA (r). The chain of atoms and bonds are

represented schematically. The contours are in atomic units. Note that in the bonding regions between silicon atoms, the error in the
exchange energy density tends to cancel with the error in the correlation energy density. Figure courtesy R. Q. Hood.

The main problem of the Hartree-Fock and DFT methods is the underlying treatment of electron
correlation. In the Hartree-Fock method, electron correlations beyond a mean field picture are entirely
neglected, whereas in DFT they are included approximately via a functional Exc[n]. DFT methods
consequently require careful calibration to establish their accuracy (or inaccuracy) on a case by case
basis. Both methods provide a relatively inexpensive route to performing computational physics,
chemistry and materials science, provided only trends and not highly accurate quantitative predictions are
required. Post Hartree-Fock methods are potentially very accurate, but their poor scaling with system size
limits their usefulness, restricting their application to small molecules and excluding most topics in
condensed matter. Quantum Monte Carlo methods combine favourable scaling with system size with a
very accurate treatment of electron correlation. This renders them ideal for correlated studies of large
molecules and condensed matter systems when high accuracy is required.

An additional novel and very practical feature of Quantum Monte Carlo methods is that they
provide a direct measure of the likely accuracy obtained. This feedback represents a fundamental advance
over current density functional and quantum chemical methodology where the accuracy obtained is both
unknown and variable. This is clearly advantageous when new systems are investigated, where there is
little or no reference data.

3. Pseudopotential for electronic structure calculations

Previously we discussed some methods, which are more or less effectively used for the
electronic structure calculations. All these methods are relatively new and have several interpretations in
special usage software. The software, which uses these methods, is usually very complex and the
approximations and methods are not so clear. Sometimes, calculation results have to be improved and the
mechanism of that is not obvious. Also the user interfaces of these programs are not easy to understand as
well as the interior, which may need some modifications. But, nevertheless, these programs are used,
because no alternative methods are presented. We cannot state that the method, which was described and
developed in these papers, can now replace the above-mentioned ones, but with further development and
improvement it can become the workable alternative. Who knows, maybe the development of this
alternative method will take away all the disadvantages of the other ones. This method is based on the
pseudopotential of the atom calculation, using the analytic functions. This approach was successfully used
in some calculation previously [1]. As this approach was successfully used for glass-like structure and the
thin metal layers have the same structure, we will use this for the study of copper layers properties.
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Any calculation of physical characteristics for the solid, which is connected with electron and
phonon subsystems, is joined with the calculation and/or plotting of the potentials (potential functions).
These potentials must be calculated, taking into account the simulated effects. The first step on this way is
to calculate the electronic spectrum of the solid, as a quantum-mechanics object. The practical mean in
this situation acquires the single electron approach, i.e. when the movement of every electron in the
system is examined in the averaged field of nucleuses and other electrons. This averaged field must
account both Coulomb interaction (within the system) and exchange-correlation effects in electron
subsystem. In the simplest variant of these task neglect the lattice dynamics of the solid (adiabatic
approach) and investigate only the stationary task. But even for this simple task the calculation of
electronic spectrum for disordered medium is problematic. In quantum mechanics we can liberate two
different stationary calculation approaches.

The first one, when we calculate the eigenvalues, i.e. we must solve the Shrodinger equation
Hu;=¢;u; to find the single-electron functions u; and the corresponding eigenvalues of energy for single-
electron states ;. This procedure is usually self-consistent, because the exact shape of the function in the
Hamiltonian is unknown and is found on the base of some “seed” potential during the iteration process.
The boundary condition for wave functions is their disappearance on infinity. As a result, we get the
discreet spectrum of energies, then, on the base of the calculated wave functions the many-electron wave
functions and corresponding basis are calculated.

The second class of these tasks is the scattering problems, when the plane wave with the known

energy is scattered on the potential V(r) and the Shrédinger equation: (A+ k2 )\VE(IP) = V(rp)\u P (E),

is solved for boundary conditions, = which  corresponds the  scattered  wave:
wp(B) > expk) + £0,¢) exp(ikr) /.

Originally was supposed, that this problem statement is reasonable only for the positive energies
I’=g>0. But later, this approach was successfully used for the negative energy states of atoms and
molecules and the cluster method of multiplex scattering for complex molecules and dopes in solids
electronic structure calculation. Later on based on these principles many calculation schemes for both
ordered and disordered solids were created. It can be stated that all thin layers have the glass-like
structure, so thin copper layers in the way the used in microelectronics can be examined as the mediums
with certain order of chaos. On this base we will continue our research.

3.1. GENERAL

The solution of the Shrddinger equation, required for the spectrum determination of atoms,
molecules or solids (both ordered and disordered) in a non-relativistic approach, needs the knowledge of
the electron self-consistent potential in the summary field of nucleuses and other electrons, so we can
proceed to the single-electron task. Usually, this potential is unknown and we need to calculate it. One of
the ways to obtain this potential for the free (isolated) atoms is to execute the self-consistent procedure
(like Hartee-Fock-Slater) and receive, as a result, the self-consistent potential of an atom and the
corresponding wave functions in single-electron approach. It is perfectly clear that the potential of
isolated atom is an element of the total solid potential function. But this function cannot be found as a
simple superposition of the atoms potentials. Therefore we need a detailed analysis for all the factors that
determine atom’s potential. There is a group of methods, which calculate this potential, as a result of
eigenvalues task. In the base of all these methods lies the Hartree method, which proposed the single-
electron equation for the spin-orbital u; of the i-electron in the atom:

[-V] + V(D) + Vg Olu; (D =g;u; (1), G.1)

where — V12 is the kinetic energy operator, V(1) is the Coulomb potential energy of the electron in point

1, owing to the interaction with the nucleus and other electrons in the system, V(1) is exchange-
correlation term, Uj(1) is one of the wave functions. Then, for the atom with charge number Z:

27 *
V. (1) = —T+an]'uj(Z)uj(2)g12dv2 ,
j

where uj (2)u;(2)is electronic charge density of j —orbital in point 2, g;,=2/ry,, 1}, is the distance between

point 1 and 2, n; is the orbital filling number (0 or 1). The term:
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V() =-n;[u; @Qu;(2)g,dv, ,

considers that the electron on i-orbital does not interact with himself. Integration is done throughout the
volume.

The system of wave functions U; gives us the possibility to calculate the electronic density of
states (DOS) using the Hartree method:

p(D) = X nju; (Du; (D). (3.2)

The single-electron functions, included in well-known determined total wave function are
variated and minimize atom’s total energy. The use of these wave functions in variational procedure leads
to the Hartree-Fock energy:

[V + Ve Olu; () - X o [u] Q)u; @)g dvou; (1) = £, (1). (33)
J

This DOS (3.2) can be used for the representation of exchange-correlation term in statistic
approach. The calculation of DOS can be made only numerically. As was mentioned the algorithms of
these calculations exist, but the calculation needs a lot of time and powerful system to achieve some
results. For some solid systems (like disordered systems, glasses, etc.) these calculations became even
more complex, because we need to solve numerically a high-order system of differential equations.

On the other hand, we can’t get a structure potential from common potential superposition of the
isolated atoms (like in the German-Skillman procedure), because we have to count both Coulomb
interaction and bond exchange interaction. So, to calculate the electronic structure of the disordered
system, we need to calculate the “crystalline potential” first. The task of electronic density of states
calculation forces us to find the simple and effective way to calculate potentials, especially as it is just an
intermediate result for the DOS calculation.

The Mattheus-Zeud idea of separate interpretation for nucleus and electronic parts of the
potential seems very effective for our task. But the same idea is used in another well-studied method, the
Xa-Slater method. Slater took into consideration all the major factors that define electron energy in
single-electron approach. To be more precise, Slater took the equation (2.2.1) and has written it down in
the following form:

[=V{ + V(D) + Ve DTy (D = &;u; (1), (3.4)

>0 fu;(Duf u;u;(2)g,,dv,
where V,pyp =-— ! " is the exchange correlation term. The charge,
u; (Du; (D)
which creates the Vyyr potential, is called “exchange correlation charge” or “Fermi-hole”. After that
Slater proposed to replace V,ur by the weighted average with weights, corresponding to the probability
of finding the electron in position 1 on i - spin-orbital:

ATZTninjjuf(l)uj(Z)uj(l)ui (2)g12dv,
iTj

. B ’ 3.5
[ xiHF ]AV %nku;(l)uk(l) ( )

where arrow means the electron spin position. This formula is true for both “up” and “down” spin
positions. The exact solution for equation for the gas of free electrons gives:

[VXiHF ]AV = —6[3p T (1)/471:]% = sz (1) .

All these reasoning lead Slater to create the self-consistent field method, which was later
modified.
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Now it became clear that our main efforts should be directed to the determinations of Coulomb
part, as well as the electronic charge distribution near the nucleus that defines the exchange term in Xa -
Slater method:

vV, ()=aV,,1)=-6a(3p/ 8m)/3 | (3.6)

The next step for the DOS can be the introduction of MT-approach of the potential, as this
potential will be used to calculate the electronic structure of a solid and what is more a disordered solid,
which have no translation symmetry. The MT-approach gives us the possibility to separate the complex
potential superposition into the system of isolated potential wells, connected through the constant level of
interatomic energy (MT-null). The selection of this MT-null level is also an object of interest, because it’s
not trivial. Furthermore, the MT-approach gives us some advantages of potential spherical symmetry
inside the MT-spheres. That can be very useful in this complex task.

3.2. ATOMIC POTENTIALS.

Let us represent the potential of the neutral atom as the sum of nucleon and electronic parts:
Vi (1) = Ve (1) + Vi (1) . (3.7)

Let us now try to define both items of this sum. For the nucleon (Coulomb) part it is very
convenient to use the Gaspar potential, which is the universal approximation of electrostatic screened
potential. The advantage of this potential is that it approximates numerical calculations very well, when
Thomas-Fermi method is used, in wide range of charge numbers Z and at the same time is an analytic
function. It is represented as:

G 27 exp(—Ar/p)

vo == H
coul I‘(l +Al'/j,l) s (3'8)

where 1=0,1837, n=0,8853Z"7, A= 1,05.
After that we can find the electronic charge density from the Poisson equation:

V,(1)=2Z/r-V9(r), (3.9)
p(r)=V,V, /8n, (3.10.)

where V. is the screened part of the potential.
Using the Xa-Slater method we can find the exchange term:

V., (1) =—60(3p/ 875)% . (3.11)

The a parameter is an adjusting parameter and is chosen accordingly to consist the electron total
energies received as a result of Hatree-Fock procedure with energies that where calculated using the Xo., -
Slater method. These calculations were made by Schwartz for the Z=1,2...41, but should be noted that for
large Z, o ~ 0.7 and decreases slowly. This method is very simple, but it has one weak point, the o
parameter itself. Therefore, we should mention the modification of this method made by German and
Schwartz:

Viap = [0 +BG(P) Vs, (3.12)

where
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2 2

G(p) =i[ﬁj oY, (3.13)
3Up p

Vi = —6[3p/8n]% . (3.14)

The advantage of this method is the constant parameters o, 3 for any Z. 0=0,66(6) and =0,003.
The development of these methods can be presented for numerical calculations as follows:

Vcr (I') = Vcoul (I') + sz (I') ’ (3 1 5)

where V,, can be presented either by Xa or X3 method.
As was mentioned above the Coulomb part of this potential is presented by Gaspar potential:

Veou (1) = —2Tzf (1), (3.16)
f(r)=exp(-Ar/p)/(1+ Ar/p). (3.17)

The exchange part of this potential also needs some modification to make it more convenient for
numerical research:

1
V,, = —6[3p/8m)? | (3.18)

where p(r) =—V, V% (r)=-Zf"(r) /dnr £ (r) = -1, f(r) - A f(1),
£/(r) = —(h, + A DE' () + AL, Ay =4/, A, =(A/p)/(1+ Ar/p)

The Xa3 method needs some additional functions to be defined:

Viop = [0 +BG(P) Vs, (3.19)

after that we can use the properties of tangent functions to present this exchange potential in other form:

Vo = o{l + th(EG(p)ﬂsz, (3.20)
o

where

2 2
G(p) :%[%J —z%p,vrp:Z(f"’—f"/r)/4rcr,p”:Z(fIV —2f"/r+2f"/1%)/ 4nr,

V2o =2Zf" Jdmr " =-2A0 f(r) + 2A (1) — O+ AE"(r)
£ = 6A ()= 6A f'(1)+3AF"(1) - (A, + ARF"(r).

In such a way, we have two methods that analytically represent the isolated atom potential; it is
very useful in numerical calculations. Using the above-mentioned formulae we will calculate the atomic
potentials and compare the results for both methods and for the Hartree-Fock self-consistent potential
calculation.

3.3. CRYSTALLINE POTENTIALS

Using the isolated atom potentials in MT-approach in electronic structure calculations for the
solids is ill-defined, because we need to take into consideration the influence of the nearest neighbour
(short range ordering). Therefore we need to formulate the “crystalline” potential, the term “crystalline”
does not mean any translation symmetry, it can be used for disordered solids also. “Crystalline” means
that we need to calculate the electron potential in the field of nucleuses and other electrons. But we cannot
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just take a simple superposition of neutral atoms, because we need to take in account the behaviour of
outer electrons in bonds. The base for this calculation is (as was mentioned in the previous section) the
potential of an isolated atom. We can formulate this potential as follows:

Vercoul (1) = Veou (1) + Veou (@ = 1), (3.21)

where a is the interatomic distance. The exchange part of the potential can be presented in the following
way:
P (M) =p(r)+p(a—-1), (3.22)

where Vi, (r) = —6a[3p, (r)/ 8n]% s Vo = 0{1 + th(E G(p)ﬂVXS .
o

In case of need V. and p. can be precised by known Levdine oa-functions, to take into
consideration several neighbors, but in the first approach it can be ignored. Then the sought potential is
presented as:

Vcr (I') = Vcoul(r) + sz (I') . (323)

“Crystalline” potential (2.22) is an analytical function that is very convenient for numerical
research.

3.4. POTENTIAL MT-APPROACH

As it was mentioned above, the potential in MT-approach replaces the complex aggregation of
overlapping potentials (in fact, one complex potential well) by the system of isolated spherically
symmetrical MT-potentials in interatomic medium, which is characterised by the constant potential level
(MT-null).

The crystalline potential in MT-approach can be represented as:

Vir (1) = Ve (1) = Vi - (3.24)

Vo characterise the border energy between the localised and non-localised states. The choice
of MT-null level is not trivial. For semiconductors, where interatomic bonds are covalent, this level is
about 0,5Ryr Ry, where Ry is the radius of MT-sphere. The radius of this sphere in our case is %2 a. For
the metals, which are studied in this work, the bond character is not so well-defined, because of electron
gas. For it's turn the choice of MT-null in metals in general and copper in particular can be the object of
simulation and study. The maximal value for this MT-null parameter can be taken the MT-null level of
the semiconductors.

3.5. MAIN RESULTS AND ANALYSIS

For all the calculations where the Xo method was used we suppose that a=1. The source file for
all calculation is available in Appendix 1. The program made universal for any structure that will fulfill
the method requirements. The “Quick start” Guide on the program can be found in Appendix 2.

First of all let us present the basis of all calculations, the potential for Xa and Xaf§ calculation
approach.

The Figure 2 demonstrates the differences in potentials calculated using two methods: Xa and
Xap. As we can see, both methods give comparable results, but with the growth of argument the
difference became more noticeable. This can possibly be the influence of two factors:

e These calculation was made using the reduced Xo method, which is peculiar with the assertion that
o=1. But the real a coefficient can be different from 1. The real o we suppose is situated between 0.7
and 1. Unfortunately, we have no exact information about a value for copper.

e The other reason that influenced the first graph that Xa 3 method is more exact and it better “feels”
the presence of neighbor atom. In support of this fact, we can see that Xa 8 method react immediately
on the border effect (exit from cluster zone, 7>2.5 A).
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Figure.3. Calculated reduced results in comparison with self-consistent potential.

The second graph illustrates the comparative results of both methods with the self-consistent
potential, which was received as a result of Hartree-Fock self-consistent procedure. As we can see from
this graph, both methods are in close concordance with the “classical” Hartree-Fock method. This gives
us the possibility to use these potentials in future calculations. After short graphs analysis, we can assume
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that Xaf method is more exact, it is also is not dependant from the o coefficient (which, in its place is

dependant from Z). Using of this method gives us the possibility to create the universal program for

future usage. In conclusion of this analysis we can announce 2 advantages of this method:

e it does not use any experimental constants and this fact makes it usable for poorly studied materials;

e the calculation does not need the prolonged self-consistent procedure (like Hartree-Fock) and it can
be successfully used for the simple atomic and molecular structures in some properties calculation
(like in spectrum determination).

r, at. units
0

-10
V(r),Ry |

-12

14

[
o] [
|

- Vxa
- VXaf

Figure 4. MT-potential for both approaches, MT-level =0,5 Ry.

The Figure 4 in this section presents the comparative results of potentials and potentials in MT-
approach. This approach gives us the possibility to “simulate” medium presence. For the semiconductors
the MT-level is calculable and well determined, because of purely covalent bond mechanism. For metals,
where the presence of free-electron gas complicate the problem we can use this parameter as a variable in
future calculations. This will determine the adaptability of this method for metals. The Figure 4 shows us
that we lower the MT-potential, like putting it in some potential well, which can be determined as
common background potential in medium.

4. Calculations of the density of electronic states and specific resistance for thin copper layers

4.1. PHASE SHIFTS AND LOGARITHMIC DERIVATIVES

There are different models of electromagnetic wave scattering in condensed matter. First of all we
will define main positions of our scattering model. We assume that plane electromagnetic wave e’
interacting with a single atom or medium transforms into studied wave that can be expanded in to wave
train as follows:

Pom = 2Ry Y™ 4.1
1
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The behaviour of an angular component Y™ is simple and out of interest, because the scattering is

defined by radial component R (further R;). The above-mentioned model is represented on the Figure 5.

ikr
The atomic shpere R.Yj

RY,
Figure 5. The model of scattering.

The potential (2.23) will be used for logarithmic derivatives calculation v, = va (1) / Rl (1)

RMT
by numerical integration of Shroedinger radial equation:
1 d, 6 ,dR, 2 1(1-1
—— (0" —)+[k" ——=-U([@)]R; =0. 4.2
2 dr dr)[ 2 OIR, (4.2)

The numerical integration was made using the forth-order Runge-Kutta method. The peculiarity
of this calculation is that the integration interval 0-Ryr is divided in two parts: the small values of T,

where we have to ensure the singularity of this potential and the solution of this equation is R, = r'f(r)
and where the equation (4.1) for the f(r) function the (4.2) looks like:

f"(r)+ z(1 +Df'(r) +[k* = U()If(r) =0, (4.3)
r

and the large values of r, the potential weak-change region, where the (4.2) itself was integrated. After
we will receive the logarithmic derivatives, we can calculate the phase shifts for the single scatterer in
vacuum:

8, = ki (kR yr) = v1i (KR yr)
knj (kR yr) —7vn; (kR yp)

4.4)

4.2. CLUSTER: LIQUID METAL MODEL

Expediency of this model examination lies in its simplicity, which gives a possibility, on one
hand to demonstrate the methodical part of cluster approach without any technical difficulties, on the
other hand to retrieve some convenient for analysis data in an evident form. Besides, the liquid metal
model has a plain physical meaning. The term “liquid” means the full structural disorder of the substance
involved. To be more precise, the distance up to the nearest neighbour (first coordination sphere)
maintains, but the angular coordinates are random. Another condition is that the average density of matter
maintains locally also.

So, we take into consideration only the nearest order, in the absence thereof the far order, like it
is in the liquid. The term metal doesn’t mean that this model can be used only for metals; it was
successfully implemented on semiconductors [1]. To implement this model we need to isolate the matter
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into a single atom, which will be associated with a crystalline potential in MT-approach (2.23) to consider
the influence of the nearest neighbourhood. This means that around the studied atom is spread the
neighbor atom and, in fact, we are working on the one-bond distance. The only demand is to maintain the
average interatomic distance constant, angular coordinates are random (Figure 6).

This model can be used for the wide range of mediums, where the structural order as is not
present, but short-range order is present. These are amorphous semiconductors, glasses, etc. Thin metal
layers can also be presented as a glass-like structure.

Figure 6. The “liquid metal” model

After that we use the potential to calculate the y, which are, in their turn used to calculate the
phase shifts on the Ry, defining the scattering properties of a medium. For the moment we can forget
about the potential itself and concentrate on the scattering task, to return to it later, because the possible
applications of it are not exhausted. The spherical symmetry of this task allows to use partial
decomposition techniques and we can write down the scattered wave outside the MT-sphere (2), where
the potential is constant, as:

y(® = j (kr) - tgdn, (kr) (4.5)

The region (2) is a sphere of Ry radius is determined from the condition of average matter density
preservation. However, to consider the influence of medium we need to “load” the sphere (2) with an
effective complex potential, which defines the fading of electromagnetic waves, thereby modeling the
disordered medium. The region (3) is under the influence of coherent potential. After that we must sew
the wave functions on the border of regions 2 and 3, superposing the Soven condition, which consists in
the statement that disordered medium does not allow the forward scattering. The next step is to find the
dispersion law of the medium and the density of states.

The calculation of DOS using the means of scattering theory is based on the Fridel sum rule,
which is deduced from common physical reasons. Let us examine the electron inside the large sphere with
radius R and moving in the presence of spherically symmetrical potential V(r) (V(r) decreases faster than
#?). Then, the scattered partial wave can be written down in well-known asymptotic form:

vy, (1) = lsin(k'r +9, —%ln) . (4.6)
r

Let us demand from the wave function to fade in infinity:
y(r) >0 forthe r > o . 4.7

and we will receive for the given wave number:

)
k=[] E2 Where n s integer. (4.8)
2 JR R
In absence of the scatterer the corresponding wave number is equal to:
k:[n+ll]1 . (4.9)
2 JR

Then, we can assume that the difference k-k is dependent only of .
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k'-k=-8,(k")/R. (4.10)
Let us point out some interesting properties of S(k):
when k > o, 8 > 0;when k>0, 6> nm; where n is integer or null, » is null for the repulsive or

weak-attractive potential.
Now we can examine the s-wave. Assuming that there exists only one bound state for the V(r)
potential, then §,(0) = w and the difference will be equal to:

! T 2n nm
Vk, =k, -ky=——,—,...—, 4.11
0=%0 TR0 T TR TR R (4.11)
which means that every change in wave number on % nearby the scattering center new state

will appear right up to Fermi level. Then, intending that in many electron system inside the sphere with R
radius V(r) is a self-consistent potential energy of every electron in the field of scattering center and
Fermi gas, we can calculate the effective electronic charge, which should be added to sphere, to
“neutralize” the charge, which appears when the scaterer enters the medium. From (3.33) we can receive:

kp —kp=-R78(kp ), (4.12)

!
where k Fos k r - the Fermi impulses ( wave numbers) in presence of the scatterer and without it.
Then the number of new bonded states for every partial wave:

R o, —kF)z—(21+1)M, (4.13)
T T

where 8, (k F') =~ 9,(ky) since §,(ky) changes slowly nearby the Fermi level.

Consequently, the total invected charge in sphere is:
1 2
Z=;ZZ(21+1)5(1<F)=;Z(21+1)31(ky), (4.14)
S 1 1
where s is the spin quantum number.
Needs to be noticed that this result instantly follows from Levinson theorem, which assume that
between scattering phase values for null and infinite energies there is a defined correlation

(0,(0) =6, (0) = 7N, , where N, is the number of bonded states with impulse momentum /), which is

the scattering matrix analyticities consequence.

So if we examine the scattering potential with a valence Z in the free electron gas and from the
physical reasons we assume that additional states for the electrons, which have to screen the potential are
disposed below the unchanged Fermi level, then we come to received in (4.14) phase shifts limitations.

4.3. DENSITY OF ELECTRONIC STATES (DOS) FOR A SINGLE SCATERER IN VACUUM.

Now we will examine the density of states (DOS) that will produce the single potential-scaterer,
placed into the spherical “potential box”. In that task and later we will use the potential MT-approach.
Then, the real potential energy is simulated, as in Figure 6.

Taking into consideration the spherical symmetry for this task, we can use the traditional
simplification, connected with partial decomposition techniques and from now on, we will take up only
the radial component, do not paying attention to the angular ones.

Let’s write down the expression for the greenian, using the specific units, where n=2m =1:

v2-v®-pE ) =sF-f (4.15)
Considering that:
Gt =3 v, Y, 6 EF) and [Y,OYmBaa-=1,
Im

we can pass to the radial equation:

_1d(24G Id+n n=Lseor
3 dr(r ™ j+(V(r)+ 7 E)Gl(r,r) r2E‘)(r r') (4.16)
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Figure 6. The single MT-potential in vacuum.

We should search for the Green function, which on one hand, will describe the scattered wave
outside the MT-sphere and on the other hand, will be the outgoing wave, i.e. satisfied the asymptotic
condition in infinity. Then:

G, (r,r") = kF (kr, )J, (kr,) (4.17)

J,(kr,) is the certain partial wave, F,(kr.) is the function, which should be find to satisfy the greenian

condition.

We will look for the F; function in the following form:

F=N,+A], (4.18)
where A, — complex coefficient and F;is a linear combination of the following functions:

J, =cosd,j;(kr) —sin §;n, (kr) (4.19)
N, = —cosdn, (kr) +sin §,j, (kr) (4.20)

(N, and J; — have a phase shift 7/2). Besides, we need to preserve the right normalization for G, function.
That is equivalent to the wronskian preservation and can note that:
. ! r. ’ ’ 1
W(GLn) =50 —n jy =W F) =1, F-F 1, =2 (4.21)
r
and the real part of F;must satisfy the (3.21).
If we will examine the &-point region in detail and integrate (3.39), we will pass to:

[T d , dG(rr! T 1(1+1 , ,
1133{ ) TE{rZ%]rzdr+ ,j {kz—V(r)— (r2 )}rg |r}:k2r2(FJ—FJ) (4.22)

-l —&

It was already stated that F; must be an outgoing wave. If we will choose 4,=i, we will certain

that:
_ oikr
F, =N, +iJ, =cosd,(-n, + j,i) +isin &, (-n, + ji) =™ \510 (kr) ~ ol (4.23)

i.e. A;/=i — satisfies the stated condition.
Now using the well-known expression for the density of electronic states:

2k 2,
p(E) ==—=SpImG(E) = = [drImG(r,r, E) (4.24)

o T

after that, we integrate by angular coordinates and receive:
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2k R oo
p(E) ==Y (21+1) [rdeS (kr) . (4.25)
T 1 0

We can check the received (4.25) expression on the “empty lattice” example (absence of
scatterer in a potential “box”). So, J/=j, and, using the identity:

> @l+Dji =1, (4.26)
1

we can state:
2k R .2 2kR’> kV
p(E) ==Y Ql+1)[r’drjf = ——=—~
T 7 0 T 3 21
The result (4.27) corresponds the density of electronic states in a free non-interactive electron
system. After that the integral in (3.25) can be presented as:
le (E7 R)
dE

And finally, the searched correlation for the density of electronic states inside the sphere with R
radius in a presence of the scatterer can be written down as follows:

_2 ds,  RPJF(KR) oy,(k,3))
p(E) = n;(zlm dE 2 ok

where the first item corresponds the scatterer contribution to DOS, the second considers the
effect of undisturbed movement.

E . 4.27)

?erf(kr)dr =-R*J}(R) (4.28)

, (4.29)

4.4. DENSITY OF ELECTRONIC STATES (DOS) FOR A SINGLE SCATERER IN MEDIUM.

Let us now place the spherical “potential box”, which was studied in the previous part in vacuum
into the medium, the properties of which are simulated by the energetically independent effective
potential, or coherent potential (Figure 7.). The presence of this effective medium urges to provide the

attenuation of outgoing electronic wave. If we will pay attention to the asymptotic hf’) (kr) ~ e™ /kr in
(4.23), then the attenuation of the wave is natural to associate with the complex wave number and hence
to describe the outgoing wave in effective medium on infinity as 4" (kr) ~ " / kr . But, as the

function F, =N, +A,J; (4, — complex coefficient dependent from energy) also describes the outgoing

wave, then we should look for 4, from the logarithmic derivatives equality condition for h,m and
Fl = Nl + A1J 1 :

L NiGR) + AT (KR) | by (KR)

where R - the border of spherical “potential box”, or in other words, one-atom cluster.

But the search for 4, is impossible till the moment, we know the dispersion law for the effective
medium E-k. It is worth to note, that the term “dispersion law” should be used very carefully, because in
that case (analogous with crystals) it means the conservation of quasi-momentum also. In disordered
mediums the conservation of momentum law is not implemented, and the usage of this term is only a
tradition.

The effective medium consistency condition is the fact, that the system does not allow the
forward scattering:
<t>medium:O (43 1)

Since it is impossible to calculate the -matrix of the whole system f,,, we are forced to replace
that matrix with a f-matrix of the examined “one-atom” cluster #, because it is accurately known. The
justification for that approach could be the fact that if we’ll remove a small cluster from the large
disordered medium then the scattering properties of the whole system will not change. That is:

, (4.30)

<t>rst7mcdium:03 (4 3 2)
this means that:
<t>, =0. (4.33)
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Figure 7 Single MT-potential in effective medium.
Then:
%211(21+1) exp(id; (k,E))sind,(k,E) =0, (4.34)

where J(k,E) is the complex phase shifts, which characterise the scattering and attenuation in effective
medium. These can be found from the known correlation:

kji (kR ) — v,y (kR )
tgd, (k,B)|, =—b KNIk (4.35)
k< knj(kRyg)—yn;(kRg)

After that, using the (3.24), (3.17) and (3.18), like in (3.29) we can write down the expression for the
“one-atom” cluster DOS in effective medium as:
48, R2IF(KR) ay, (k. 5))
dE 2 ok

Another problem that should be should be solved in our case is the definition of linkage of 4,
coefficient with the reflection coefficient on the cluster border.

The F; function in the “far field” can be written down as a superposition of incoming and outgoing
waves, using the reflection coefficient Q;:

ImA,. (4.36)

p(E) ==X (21 +1)
o

F =C,(h{"e® 1 Qh( Ve ™) (4.37)
or, using the (4.15) formula:
Then, we can express from (4.38) that:
1—
A, :i&. (4.39)
1+Q,
Let us find the imaginary part of 4;:
Q, = X +iY, Q; = X +iY.
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ImA, :Im{im}lm 1= -0,
(1+Q))1+Q)) Q)

XY -X+iY Q) | 1-]Q
1 =

1+Q? 1+Q,[°

This correlation gives us a possibility to state some useful properties of 4;, and to link them with
the electronic wave F; behaviour on the cluster border:

|2 (4.40)

. If O,=0, then, there is no reflection, Im4,=1/ and (4.36) change over to (4.29);

° If O/=1, then, there is a full reflection, Im4,=0 and density of electronic states (DOS) is equal to
zero (3.36); that could correspond to the system’s transparence band,

. If O/=-1, that leads to the origination of bound states.

4.5. RESISTANCE OF LIQUID METALS IN ZIMAN APPROACH

Another possible application for the MT-approach potential calculated is the possibility to
estimate the specific conductivity calculation, using the Ziman theory [2].

If dispersing centers are the atoms of liquid metal (or amophous metal film), their distribution is
not completely random, the amplitude of scattering from two atoms located one from another on a
distance, circumscribed by a radius - vector R, is equal:

[1 +exp (iqR)] £(6), (4.41)
where ¢ is equal to & - k£ ". Thus, if to neglect repeated scattering, the conductivity is given by expression
2

c= Se 3L , where:

121°n
1 1 .

0" N[S(q)(1—cos0)I(6)27sin 6d6. (4.42)

\%

Here N - number of atoms in 1 sm’, a § (g) - structural factor, defined as
S(q) = N7'[[1+exp(igR)]* P(R)d*X, (4.43)
where P(R) - conjugate cumulative distribution function, P(R)d’X is the probability that in volume &°X on
a distance R from the given atom is the one. Using for f( &) the Born approximations and following the
calculations in [3] for a specific resistance p, we can write down the formula:

3 2k 2 g(a)add

— 5 an J' |V(q)| gq)q q , (444)
n°e viQ o 4k

where v(q) = [ V(r)exp(iqR)d* X/ Q,

and the integral undertakes on volume 2.

The Figure 8 schematically illustrates a course of function S (g) and v (g). The possibility of
application of the theory of perturbations is determined by the circumstance, that the magnitude v (g) is
small in area, where S (g) is great.

Thus, the theory of scattering of electrons in liquid metal is identical to the theory of scattering
of X-rays or neutrons in a liquid. The first indication that the resistance of liquid metals can be calculated
that way, was made in work [4] and [5]. Ziman renewed this idea, by taking advantage for V(r) by new
representation of atomic pseudo-potential, and has conducted detail comparison to experiment; one of the
most successful applications of the Ziman theory is the study of resistance temperature dependence. For
univalent metals this dependence is strong, and the resistance grows with temperature; for bivalent
materials this dependence is weak and resistance decreases with temperature. This difference in a
structural factor S (g) behaviour for one- and bivalent metals has the following explanation.
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Figure 8. Structural factor and pseudopotential v(q) for a liquid metal.
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Figure 9. S(q) function for the liquid Pb.

In a Figure 8, constructed on the base of scattering studies for neutrons, the function S(g) for
liquid lead for various temperatures is shown. It is clear, that at univalent metals the resistance is
determined by a left-hand side of peak, and as v(g) passes through zero close to ¢g=2kr (Fig.3.4), that,
apparently, that part of a curve S(g), which is located much below the maximum. It was observed, that the
resistance of univalent liquid metals for constant volume is proportional to absolute temperature; that
specifies that the factor S(g) also is proportional 7 in an interval, where |v(g)|* has a value noticeably
distinct from zero. For very small ¢ the structural factor S(g) is given by the Orstein-Tzernike formula:

kT
S(q) = , 4.45
(@) ey (4.45)
where f - volumetric module of compression and (2 - atomic volume. This formula describes the
contribution macroscopic fluctuations of denseness and is fair for liquids or solids. But it should not be
fulfilled close g=2kr even for univalent metals, and the fig. 3.5 demonstrates, that it is so. Large polemic
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recently took place on the problem, whether can the linear dependence p from 7 be explained with the
help of experimental data for S(g). In work [4] and [6] is stated, that for liquid natrium the value of
d(In(p))/dT , calculated on observational data for S(g), makes a half of an experimentally observable
value. We suppose, that the observable linear dependence p from T is stipulated by that factor, that for
univalent metals |v(g)|* will be converted in zero close g= k.

0,1

Be Zn Hg
\
Mg\
0,0 -4 A o

2. 1,0 :\ B 3.0
£ e
rg \ qf2 k,.-
N \
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=

— 0,1 L~
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Figure 10. Pseudopotentials v(q)(in Ry) for some metals calculated by Animalou and Heine.

The difficulty in use of the theory for numerical studies of conductivity is connected to
indeterminacy as S(g), and in particular v(g), and also with doubtful fitness of a Born approximation. In a
Figure 10 some values v(g), calculated Animalou and Heine [7] are shown. All curves pass through zero
in a neighborhood of a maximum S(g), due to what the conductivity is rather sensitive to a position v(g),
that in details is shown by some calculations, where various aspects of function v(g) were used.

The zero value for v(g) means, that for the defined angle O the scattering disappears, the
amplitude of scattering appropriate to phase shifts of the s- and p-type functions has a form of
A+Bcos(6). In a Born approximation A and B are real, but it not so if to take exact phase shifts.

Therefore success of the theory permitting to receive a good approximation for a resistance,
specifies that the Born approximation appears sufficient, and the phase shifts are really small. On the
other hand, the phase shifts for separate atom should satisfy to a rule of Fridel sums .

Heine in his work [8] specifies, that would be irregular to take exact phase shifts, to calculate
1(6) and to substitute an outcome in the equation (3.22); the scattering on small angles in the
correspondence with a Fridel rule can never be small, and the theory of repeated scattering would give
single-error corrections compared to basic magnitude. The theory of perturbations works only because for
small g the magnitude S(g) is small, and for large ¢ is small v(g).

The similar reasoning allows establishing the difference between univalent and multivalent
metals. In univalent metals the magnitude S(g) is small approximately down to g=2k, so that specific
resistance is small on a comparison with what it would be, if the atoms were arranged chaotically. In
multivalent metals both these magnitudes of a resistance are comparable.

5. Main Results and Analysis
The source file for all calculation is available in Appendix 1. The program made universal for

any structure that will fulfil the method requirements. The program made universal for any structure that
will fulfill the method requirements. The “Quick start” Guide on the program can be found in Appendix 2.
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Figure 11. Logarithmic derivatives. MT-level=0,5 Ry.

This graph clearly illustrates the behaviour of logarithmic derivatives. Unfortunately, the only
thing we can state about these functions is the fact that they must be smooth decay functions. As we can
see this condition is fulfilled. Phase shifts are functions that are dependant of logarithmic derivatives. This
dependence is realised through the tangent function. This function is not very convenient for the
numerical calculations, because we will have a discontinuous jump in the place where tangent function
changes its sign. But we know that these functions must be smooth, so we had to track the sign of tangent
and in the place of jump and translocate the argument on PI.

As we can see from the result on the calculation, the major contribution to the DOS give phase
shifts with / numbers 0,1,2. This result fully juxtaposes to the theory. Theoretical and experimental
studies show that main scattering can be characterised by 1% three phase shifts. This can confirm the
validity of our calculations.

As it is clear from the obtained graph, the density of electronic states (DOS) behaves how it was
supposed in theory. The parabolic character of the given association shows, that we deal with metal.
Thus, the obtained outcome is suitable for further use. However, there is one problem, is the MT-
approximation of a potential is applicable for metals and how to choose the MT-zero level. For this
purpose, we shall estimate the following graph, which shows variations of DOS at a modification of an
MT-potential.

The analysis of the calculated graph gives us an opportunity to understand the behaviour DOS at
a modification of an MT-potential. Varying this parameter we wanted to achieve such DOS dependence,
which on an energy width would correspond the experimental data and previous studies. Thus, it would
be possible to evaluate an MT-level for copper, and in further researches, probably advance this part of
work. Thus, hereafter it would be possible to formulate the concept of an MT-potential for metals as a
material class, not only copper.

In this case, it is possible to state, that MT-zero for copper is about 0,45 Ry, since the width of
DOS graph (positive part) should be hardly less than 0,3 Ry. Later, in our calculations we will abide by
this MT-level for copper.
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Figure 12. Phase shifts. MT-level=0,5 Ry.
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Figure 13. DOS for scatterer in vacuum. MT-level = 0,5 Ry.
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Figure 14. DOS for scatterer in vacuum. MT-level is an object of examination.

For the future task, like DOS for scatterer in medium calculation we need to find Im4; The
search for this complex coefficient needs the knowledge of complex k& wave numbers, which can be
presented as k=kz+k; and these numbers must be the (4.34) equation solution. In other words, we need to
plot the dispersion curves for the scatterer in medium on the cluster border. To plot these curves, we must
solve the (4.34) equation, where & — phase shifts on the cluster border, which are calculated as usual
(4.35). The y0n the cluster border can be found from the following formula:

c08d,jj(kR)—sind;nj(kRy)
c088,j, (kR ) —sindn (kR )

The equation (4.34) was numerically expanded into its real and imaginary part and after that, a
system of two equations was solved using the Newton-Rafson method with a fixed energy level. The
calculated graphs have parabolic character, which is fully compatible with other results (ex. [1]) and gives
us evidence to suppose that future results will be also reliable. These curves will be essential for the DOS
calculation for scatterer in medium for both one-atom cluster and many-atomic cluster.

Now, let’s pass to the next set of graphs, the next step in calculation. This set corresponds to the
specific resistance calculation. As it was mentioned above, we have to calculate potential in k space —
V(q) and the structural factor S(g).

T(E,Ryg) =k
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Figure 15. Dispersion curves on the cluster border.
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Figure 16. v(q) potential. MT-level=0,45 Ry.
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Figure 17. S(q) structural factor. MT-level=0,45 Ry.

It is reasonable to analyze the previous two graphs together. Let’s, first of all take a look on the
graph V(g). This graph can be compared with Animalou and Heine results (Figure 11). This quick
comparison gives us the possibility to state that our calculation process and results are correct. From this
graph we can also estimate the kr value for univalent copper. This value corresponds to the first null of
the function V(g). This value, if estimated from graph, is about /.28 A. Some other studies gives the value
of 1.4 A. This difference is a result of different approaches and methods usage during the V(r) potential
calculation. This result can be also stated as a success of this study.

It is also very interesting to examine the S(g) graph. In the calculation of the structural factor we
used the one-atom cluster and supposed that the probability distribution function, which is a part of the
structural factor (4.33) P(R) is a Gaussian with the following form:

2
P(R) = exp[%} .
o

We suppose that we will definitely find a neighbour at the 2R,,r distance from the examined
atom. Sigma also is an interesting parameter, because it can help us to control ordering in the system.
The next graph shows the behavior of structural factor with the disorder growth in the system. As we can
see, the peaks are degrading with the growth of .

This graph shows us the specific resistance behaviour with disorder growth in the system. It is
obvious that this result is correct. The growth of disorder causes the localisation of free electron gas, this
localisation in its turn causes the specific resistance growth.
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Figure 18. p — specific resistance. Sigma varies. MT-level=0,45 Ry.
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6. Conclusion and main results

We can state that this work was a success. The main goal of this work was achieved. We studied
methods of electronic structure numerical research. One of these methods was developed and successfully
used in copper study. As a result of this part, the graph of pseudo potentials can be presented and their
comparison with self-consistent calculations. The “liquid metal” model was studied also. Now we can
state that we can use both “liquid metal” model and potential MT-approach for copper layers, but the MT-
level choice strategy for metals in general needs to be developed later.

Another success of this works is DOS calculation on the base of pseudopotentials. These
calculations show us that there are alternative, low-resource using methods of electronic structure
calculation. Although, still a lot of research is to be done for this method successful development. The
next valuable result may be the DOS for scatterer in medium calculation.

The developed method has clear perspectives for the electronic structure of defect states and
other close-order defects calculation. On the base of calculated DOS function we could in future calculate
electric and heat conductivity to compare them with experimental results.

The other consecutive step is the examination of “many-atom” cluster, which will bring us on
the new level of disordered matter understanding. This calculation will lead to the properties of matter as
is, it could also be a mechanism of cluster approach adaptability evaluation for the metals in general and
copper specifically.

Another valuable result is specific resistance calculation simulation, the value of it in C units for
copper layers lies between p=1.67...1.9 Ohm/m. So we can state that calculation procedure is correct and
it is another success.

The further development of the presented method can possibly simplify the electronic structure
calculation procedure and, as a result, provides great money and time economy for the different poorly
studied materials analysis.
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APPENDIX 1. CALCULATION PROGRAM CODE (C++, MS VISUAL STUDIO 6.0)

Only calculation part is presented, the interface part may be different, so it does not.
#include "stdafx.h"
#include "calculus.h"
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#define M_PI 3.141592653589793

/* Build: 09.06.01,success. <Vaccuum OK> */

111111 IComplex procedures definitions////////1111111111111111/
#include <complex>

using namespace std;

typedef complex<double> COMPLEX;
M

const
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double A=1.05;

double Beta=0.003;

double AlphaB=0.66;

double Lambda=0.1837,

double mu=0.8853;

double r,dTheta,result, Theta,q,ar,rmx, Vmto,Rmt,En,dx,Alfa;
double Vo06,Vo6a,Vmt,Vmta,Rho vac;
double Gamma[8][3000],Delta[8][3000];
double Vqi[3000], Sqi[3000];

int z,i, imax, 1, k;

char fname[256];

FILE *datafile, *dfile, *datfile, *dtfile;

T T T
I Bessel-Neiman functions block///////1111111111HHHT1HTTT1TTH1TTHTTTT11T]
T T
double j(int I,double k, double R) {
double result;
if (1I==0) {
result=sin(k*R)/(k*R);

else if (I==1) {
result=(sin(k*R)/(k*R)-cos(k*R))/(k*R);
}

else {
result=j(I-1,k,R)*(2*1-1)/(k*R)-j(1-2,k,R);
}

return(result);

}
double n(int 1,double k,double R) {
double result;
if (1I==0) {
result=cos(k*R)/(k*R);
}

else if (I==1) {
result=(cos(k*R)/(k*R)+sin(k*R))/(k*R);
}

else {
result=n(1-1,k,R)*(2*1-1)/(k*R)-n(1-2,k,R);
}

return(result);

}
double dj(int I, double k, double R) {
double result;
if (1I==0) {
result=-(sin(k*R)/(k*R)-cos(k*R))/(k*R);
}

else {
result=j(Lk,R)*(1-1)/(k*R)-j(1+1,k,R);
}

return(result);

}
double dn(int 1,double k,double R) {
double result;
if (1I==0) {
result=(cos(k*R)/(k*R)+sin(k*R))/(k*R);
}

else {
result=n(Lk,R)*(I-1)/(k*R)-n(1+1,k,R);
}

return(result);

}

s

double Quad(double r)

{ return(r*r); }

double mju(int parl){ /*Parl->Parameter 1, Z, atomic number*/
return(mu/pow(par1,0.333333333));

}
double Imju(void){
return(Lambda/mju(z));

¥
double Am(void){

75

SOLID STATE PHYSICS



return((A/mju(z))/(1+(A*r/mju(z))));

}

double f(double r) {

double func;

func=(exp(-Lambda*r/mju(z))/(1 +(A*r/mju(z))));
return(func);

}

double fprim(void) {

double funcl;
func1=-lmju()*f(r)-Am()*f(r);
return(funcl);

}

double fp2(void) {

double func2;
func2=-(Imju()+Am())*fprim()+Am()* Am()*f(r);
return(func2);

}
double fp3(void) {
double func3;

func3=-2* Am()* Am()* Am()*f(r)+2* Am()* Am()* fprim()-(Imju()+Am()) *{p2();

return(func3);

}
double fp4(void) {
double func4;

SOLID STATE PHYSICS

funcd=6* Am()* Am()* Am()* Am()*f(r)-6* Am()* Am()* Am()* fprim()+3* Am()* Am()*fp2()-(Imju()+Am())*fp3();

return(func4);

}

double rho(double r) {
double rf;
rf=(-z/(4*M_PI*r)*fp2());
return(rf);

}

double rhol(double r) {

double rfunc2;
rfunc2=((z/(4*M_PI*1))*(fp3()-fp2()/r));
return(rfunc2);

}
double rho2(double r) {
return((z/(4*M_PI*r))*(fp4()-2*fp3()/r+2*p2()/(1*1)));

}

double Pot_Gash(double r) {
double result;
result=-(2*z/r)*f(r);
return(result);

}

s

/1 1solated atom calculus.////////1/1TT1TTHTTHTTHTTITTTTHTTTTTTH T
s

double G(double r) {

double Gfunc;
Gfunc=4/3*(rho1(r)/rho(r))*(tho1(r)/rtho(r))-2*rho2(r)/rho(r);
return(Gfunc);

}

double Vxs(double r) {
double Vfunc,param;
param=(3*rho(r)/(8*M_PI));
if (param>=0)
Vfunc=-6*pow(param,0.3333333);
else
Vtunc=6*pow(fabs(param),0.3333333);
return(Vfunc);}

double Vo6m(double r) {
double result;
result=-AlphaB*(1+tanh(Beta/AlphaB*Gat(r)))*Vxs(r);
return(result);

double Vo6ma(double r) {
double result_a;
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result a=-6*Alfa*pow((3*rho(r)/(8*M_PI)),0.3333333);
return(result);

}

int Calc_atomic(int A_number, double Alpha,double rmax, double dr, CString strFname, BOOL ctype, BOOL restype) {
r=0.01;
i=0;
z=A_number;
sprintf(fname,"%s" strFname);
datafile=fopen(strcat(fname,".dat"),"w");

while(r<=rmax) {
Vo6=Pot_Gash(r)+Vobm(r);
Vo6a=Pot_Gash(r)+Vo6ma(r);

switch(restype) {

case 0:
fprintf(datafile,ctype?"%f %f %f %f\n":"%f %f\n",r,Voba,r/mju(z),Voba*r/(2*z));
break;

case 1:
fprintf(datafile,ctype?"%f %f %f %f\n":"%f %f\n",r,Vob6,r/mju(z),Vo6*r/(2*z));
break;

case 2:

fprintf(datafile,ctype?"%f %f %f %f %f %f\n":"%f %f
%f\n",r,V06,Voba,r/mju(z),Vo6*r/(2*z),Voba*r/(2*z)),
break;

r=r+dr;

fclose(datafile);
rmxX=rmax;
return 0;}

s
/I Atom system (+1 neighbour) calculus.///////////11111TT1HTIHTTTHTTTTTTTTTTTTTTTTTTTTTTHTTTT T
s

double Gat(double r) {
double Gfunc;
Gfunc=4/3*((rho1(r)-rho1(ar-r))/(rho(r)-rho(ar-r)))*((rho1(r)-rho(ar-r))/(rho(r)-rho(ar-r)))-2*(rho2(r)-rho2(ar-r) )/(rho(r)-
rho(ar-r));
return(Gfunc);

double Vxsat(double r) {
double Vfunc,param;
param=(3*(rho(r)+rho(ar-r))/(8*M_PI));
if (param>=0)
Vtunc=-6*pow(param,0.3333333);
else
Vfunc=6*pow(fabs(param),0.3333333);
return(Vtunc);}

double Vo6m_at(double r) {
double result;
result=-AlphaB*(1+tanh(Beta/AlphaB*Gat(r)))*Vxsat(r);
return(result);

}

double Vobma_at(double r) {
double result_a;
result_a=-6*Alfa*pow(fabs((3*(rho(r)+rho(ar-r))/(8*M_PI))),0.3333333);
return(result);

int Calc_struct(int A_number, double Alpha,double rmax, double dr,double Ivl mt, CString strFname, BOOL ctype, BOOL restype)
{

r=0.01;

i=0;

z=A_number;

sprintf(fname,"%s" strFname);

datafile=fopen(strcat(fname,".dat"),"w");
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sprintf(fname,"%s",strFname);
datfile=fopen(strcat(fname,"_mt.dat"),"w");
ar=2*(rmax/0.529);
Rmt=rmax/0.529;
Vmto=lvl mt;
do {

Alfa=Alpha;
Vo6=Pot_Gash(r)+Pot_Gash(ar-r)+Vo6m_at(r);
Vo6a=Pot_Gash(r)+Pot_Gash(ar-r)+Vo6ma_at(r);
Vmt=Vo06-Vmto;
Vmta=Vob6a-Vmto;

switch(restype) {
case 0:
fprintf(datafile,ctype?"%f %f %f %f\n":"%f
%f\n",r,Voba,r/mju(z),Voba*r/(2*z));
fprintf(datfile,ctype?"%f %f %f %f\n":"%f
%f\n",r,Vmta,r/mju(z),Vmta*r/(2*z));

break;
case 1:
fprintf(datafile,ctype?"%f %f %f %f\n":"%f
%f\n",r,Vob,r/mju(z),Vo6*1/(2*z));
fprintf(datfile,ctype?"%f %f %f %f\n":"%f
%f\n",r,Vmt,r/mju(z), Vmt*r/(2¥z));
break;
case 2:

fprintf(datafile,ctype?"%f %f %f %f %f %f\n":"%f %f
%f\n",r,V06,Voba,r/mju(z),Vo6*r/(2*z),Voba*r/(2*z));

fprintf(datfile,ctype?"%f %f %f %f %f %f\n":"%f %f
%f\n",r,Vmt,Vmta,r/mju(z), Vmt*r/(2*¥z), Vmta*r/(2*z));

break;

r=r+dr;

} while(r<=ar/2);
dx=dr;
fclose(datafile);
fclose(datfile);
rmx=ar/2;

return 0;}

int Fourier(CString strFname, double qmax, double dq, double dr) {
dTheta=0.01;

COMPLEX Fnc;

double Rk, Tst,Vq,qrem,Vmt2;

int norma,qi;

COMPLEX Intl,Int2;

sprintf(fname,"%s" strFname);
dfile=fopen(strcat(fhame," _ft.dat"),"w");

norma=-1;
qrem=0;
q=0;
qi=0;

do {
r=0.01;
Tst=0;
Fne=COMPLEX(0,0);
do {
Theta=0;
Fnc=COMPLEX(0,0);
do {
Int1=exp(COMPLEX(0,q*r*cos(Theta)))*sin(Theta);
Int2=exp(COMPLEX(0,q*r*cos(Theta+dTheta)))*sin(Theta+dTheta);
Fnc=Fnc+(Int1+Int2)*dTheta/ COMPLEX(2,0);
Theta=Theta+dTheta;
Tst=abs(Fnc);
} while (Theta<M_PI);
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Vmt=Pot_Gash(r)+Pot_Gash(ar-r)+Voom_at(r)-Vmto;
Vmt2=Pot_Gash(r+dr)+Pot_Gash(ar-r+dr)+Vo6m_at(r+dr)-Vmto;
Rk=abs(Fnc)*atan(arg(Fnc));
Tst=TstH(Vmt*r-Vmt2*(r+dr))*dr/2*Rk;

r=r+dr;

} while(r<=Rmt);

Vq=3/(2*Rmt*Rmt*Rmt)*Tst;

if (Vq<=dq/10&&(q-qrem)>0.3) {
norma=norma*(-1);
qrem=q; }

if (norma<0) {
fprintf(dfile,"%f %f\n",q,-Vq);

else {

fprintf(dfile,"%f %f\n",q,Vq);
}

Vqilqil=Vq;

q=q+dg;

qit++;

} while (q<=gqmax);

felose(dfile);
return 0;

}

double f1(double xp,double yp,double zp) {
float U,result;

U=(Pot_Gash(xp)+Pot_Gash(ar-xp)+Vo6ma_at(xp)-Vmto);
result=(U-En)*yp-(2/xp)*(1+1)*zp;
return(result);

}

double f2(double xp,double yp,double zp) {
float U,result;

U=(Pot_Gash(xp)+Pot_Gash(ar-xp)+Vo6ma_at(xp)-Vmto);
result=((1*(1+1))/(xp*xp)+U-En)*yp-2*zp/xp;

return(result);

}

double Shroedinger(void) {

double h,dy,dz;

double x[3000], y[3000], z[3000];

double k1,k2,k3,11,12,13;

int i;

h=0.01;

x[0]=dx;y[0]=1;z[0]=0; // Initial conditions; z=y'.

i=1;

while(x[i-1]<rmx) {

if (x[i-11<=1) {
k1=h*z[i-1];
11=h*f1(x[i-1],y[i-1],2[i-1]);
k2=h*(z[i-1]+11/3);
12=h*f1(x[i-1]+h/3,y[i-1]+k1/3,k2/h);
K3=h*(z[i-1]+2*12/3);
13=h*f1(x[i-1]+2*h/3,y[i-1]+2*k1/3+2*h*11/9,k3/h);

dy=k1/4+3*k3/4;
dz=11/4+3*13/4;

x[i]=x[i-1]+h;
ylil=yli-1]+dy;
z[i]=z[i-1]+dz;
}

else {
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kl=h*z[i-1];

1=h*£2(x[i-1],y[i-11.2[i-1]);

K2=h*(z[i-1]+11/3);
12=h*f2(x[i-1]+h/3,y[i-1]+k1/3,k2/h);
K3=h*(z[i-1]4+2*12/3);

13=h*f2(x[i-1]+2*h/3,y[i-1 ]+2*k1/3+2*h*11/9,k3/h);

dy=k1/4+3*k3/4;
dz=11/4+3*13/4;

x[i]=x[i-1]+h;

ylil=y[i-1]+dy;

z[i]=z[i-1]+dz;
i++

; }

return(z[i-1]/y[i-1]);
}

Gamma_calc(CString strFname,int Imax, double Emax, double dE) {
char strTemp[256];

for(1=0;l<=Imax;1++) {
sprintf(fname,"%s",strFname);
sprintf(strTemp,"%i",1);
strcat(fname,strTemp);
dfile=fopen(strcat(fname," gamma.dat"),"w");

k=0;
do {
En=0.001+k*dE;
Gamma([l][k]=Shroedinger();
fprintf(dfile,"%f %f\n",En,Gamma[l][k]);
k++;
} while(En<=Emax);
fclose(dfile);
}
return 0;
}

int Delta_calc(CString strFname,int Imax, double Emax, double dE) {
double q;

double tang[3000];

bool ¢5,¢6;

char strTemp[256];

for(1=0;l<=Imax;1++) {

sprintf(fname,"%s" strFname);
sprintf(strTemp,"%i",1);
strcat(fname,strTemp);
dfile=fopen(strcat(fname," delta.dat"),"w");
En=0.001;
k=0;
do {

En=0.001+k*dE;

q=sqrt(En);

SOLID STATE PHYSICS

tang[k]=(q*dj(l,q,Rmt)-Gamma[l][k]*j(l,q,Rmt))/(q*dn(l,q,Rmt)-Gamma[l][k]*n(l,q,Rmt));

Delta[l][k]=atan(tang[k]);

c5=Delta[I][k]>0&&Delta[I][k-1]<0&&fabs(Delta[1][k]-Delta[1][k-1])>1;
c6=Delta[1][k]<0&&Delta[1][k-1]>08&&fabs(Delta[I][k-1]-Delta[1][k])>1;

if (c5) {

tang[k]=(q*dj(L,q,Rmt)-Gamma[l][k]*j(1,q,Rmt))/(q*dn(l,q,Rmt)-

Gamma[l][k]*n(l,q,Rmt));
Delta[l][k]=atan(tang[k])-M_PI;

}
if (c6) {

tang[k]=(q*dj(l,q,Rmt)-Gamma[l][k]*j(l,q,Rmt))/(q*dn(l,q,Rmt)-

Gamma[l][k]*n(l,q,Rmt));
Delta[l][k]=atan(tang[k])+M_PI;

}
fprintf(dfile,"%f %f\n",En,Delta[l][k]);
k++;
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} while(En<=Emax);
fclose(dfile);

return 0;

}

double J_1(int L,double g, double R) {

double result;
result=cos(Delta[1][k])*j(1,q,R)-sin(Delta[1][k])*n(l,q,R) ;
return(result);

}

int Rho_calc(CString strFname,int Imax, double Emax, double dE) {
double q,sum;
En=0.001+dE;
Rho_vac=0;
sprintf(fname,"%s",strFname);
dfile=fopen(strcat(fname," rho_vac.dat"),"w");
sprintf(fname,"%s" strFname);
datfile=fopen(strcat(fname," rho vac prc.dat"),"w");
k=1;
do {
for(1=0;l<=Imax;1++) {
q=sqrt(En);
sum=(2/M_PI)*(2*1+1)*((Delta[l][k+1]+Delta[l][k-1])/(2*dE)-
(Rmt*Rmt*J_1(1,q,Rmt)*J_1(1,q,Rmt))/2*(((Gamma[l][k+1]-Gamma[l][k-1])*2*q)/(2*dE)));
Rho_vac=Rho vac + sum;
fprintf(datfile,"%f %f\n",En,Rho_vac);

fprintf(dfile,"%f %f\n",En,Rho_vac);

k++;
En=0.001+k*dE;
Rho_vac=0;
} while(En<=Emax-dE);
fclose(dfile);
fclose(datfile);
return 0;
}

int SFactor(CString strFname, double qmax, double dq, double dr, double Sgm) {
dTheta=0.01;

COMPLEX Fnc,Fnct,Fnctl;

double Rk, Tst,Sq,Pr,Prl,Sigma;

int qi;

sprintf(fname,"%s" strFname);
dfile=fopen(strcat(fname,"_str.dat"),"w");

q=0;

qi=0;

Sigma=Sgm;

if (Sigma==0) Sigma=1.5;

do {

r=0.01;

Tst=0;

Fne=COMPLEX(0,0);

do {
Theta=0;
Fne=COMPLEX(0,0);
do {

Fnct=exp(COMPLEX(0,q*r*cos(Theta)));
Fnctl=exp(COMPLEX(0,q*r*cos(Theta+dTheta)));

SOLID

STATE PHYSICS

Fnc=Fnc+(Fnct*Fnct+COMPLEX(2,0)*Fnct+Fnct1 *Fnct1+COMPLEX(2,0)*Fnct1)*0.5*dTheta;

Theta=Theta+dTheta;
} while (Theta<M_PI);

Pr=exp(-(r-2*Rmt)*(r-2*Rmt)/(Sigma*Sigma));
Prl=exp(-(r+dr-2*Rmt)*(r+dr-2*Rmt)/(Sigma*Sigma));

Rk=abs(Fnc);

Tst=Tst+(Pr*r+Prl1*(r+dr))*0.5*dr*Rk;
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r=r+dr;

} while(r<=2*Rmt);
Sq=3/(2*Rmt*Rmt*Rmt)*Tst;
fprintf(dfile,"%f %f\n",q,Sq);
Sqi[qi]=Sq;

q=q+dg;

qit+;

} while (q<=gmax);

fclose(dfile);
return 0;

}

int Resistance(CString strFname,double dq, double kFrm) {
double res,retrn kf;
double e,h,vf;
e=0.511/13.6; // MeV
h=0.659; //*10E-15
vi=1;
i=0;
q=0.0;
res=0;
kf=kFrm;
if (kf==0) kf=1.44;
while(q<=kf) {
res=res+(Vqi[i]*Vqi[i]*Sqi[i]*q*q*q+Vqi[i+1]*Vqi[i+1]*Sqi[i+1]*(q*+dq)*(q+dq)*(q+dq)) *dg/2;
q=q+dg;
1++;
}
retrn=res/(4*q*q*q*q)*(3*M_PI/((4/3*M_PI*Rmt*Rmt*Rmt)*h*h*e*e*vf*vf));
sprintf(fname,"%s",strFname);
dfile=fopen(strcat(fname," res.dat"),"w");
fprintf(dfile,"%f\n",retrn);

fclose(dfile);
return 0;

}
APPENDIX 2. “QUICK START” GUIDE.

&Structure 5'

£ [atomic number] value ; |29

Alpha parameter value I‘I Cancel |

Results file name : IEu_t_

Calculation range [R] : I'I 35 Increment walue [dR T |0.005

¥ Calculation method Wt lewvel: ||:|

V¥ Include reduced calculation results

— Calculation approaches to be used Reszistance

Perform Fourier tranzfarm on results
™ Alpha approach orly -

mawX parameter value:l
" Alpha-Beta approach only u > 30
{* Bath approaches d parameter valug: Ig_-|

— Scatemng factor calculation
¥ Phaze shifts calculation

Energy masimun; |'| dE: IU.UUE L |5

Additional parareters:

k<F3: IU Sigrna: IU

This section covers main parameters of the program and defines main calculation procedures used.
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Common parameters:

Z (atomic number) — this parameter is essential for the pseudopotential calculations, defined by the Mendeleyev table.

a (alpha parameter) — this parameter is used in Xa-Slater calculation of the pseudopotential.

Results file name — defines file name and path for the calculation results to be stored, for every calculation part is created
an individual file.

Calculation range (or Atomic radius) — defines the up-limit in integration on r parameter.

Calculation method checkbox changes calculation objects: isolated atom (Calculation range) or atom in medium (Atomic
radius).

Increment value(dR) — integration step.

Ve level — simulation parameter, defines the MT-level.

Reduced calculation results — includes in main (potential) file relational (to the maximum) calculation results.

Calculation approaches to be used — defines the calculation approaches for potential calculation.

Resistance — group box, defines the calculation parameters for the specific resistance calculation.

QOhax — defines the up-integration level in g-space.

dQ - integration step in g-space.

Scattering factor calculation — group box, defines the calculation parameters for the DOS calculation.

E,.ux(Energy maximum) — defines the up-integration level on energy axis.

dE - integration step on energy axis.

Lo — defines the number of partial contributions to be taken into consideration.

Additional parameters — group box, defines the additional calculation parameters.

Ky — defines the Fermi level in g-space for the material.

Sigma - defines disorder parameter for the structural factor.

All integration procedures were made using the trapezoid method, therefore we do not recommend the number of point >
775, after this value the integration mistake will grow rapidly.
The numerical solution of Shroedinger equation is made using forth-order Runge-Kutt method.

APPENDIX

A. Copper properties overview

TABLE Al. General and Atomic Properties of Copper

Atomic Number 29
Atomic Weight 63.546
Atomic Diameter 2.551x 10"°m
Melting Point 1356 K
Boiling Point 2868 K
Density at 293 K 8.94 x 10° kg/m’
Electronic Structure 3d'%4s
Valence States 2,1
Fermi Energy 7.0eV
Fermi Surface Spherical, necks at [111]
Hall Coefficient -5.12x 10" m¥/(A'S)
Magnetic State diamagnetic
Heat of Fusion 134 J/g
Heat of Vaporization 3630 J/g
Heat of Sublimation at 1299 K 3730J/g
TABLE A2. Crystallographic Features of Copper
Type of Structure Al
Space Group 0,° - Fm3m
Crystal Structure face-centered cubic
Number of Atoms per Unit Cell 4

Lattice Parameters at 293 K Distance of
Closest Atomic Approach

3.6147x 10" m

(Burgers vector) at 293 2.556 x 10"°m
Goldschmidt Atomic Radii
(12-fold coordination) 1.28x 10"°m

Atomic Volume

1.182 10%m’

TABLE A3. Some additional info on copper.
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Bulk properties
Density of solid [/kg m™] 8920.
Molar volume [/cm’] 7.11
Velocity of sound [/m s™'] 3570.

Elastic properties

Youngs modulus [/GPa]: 130
Rigidity modulus [/GPa]: 48

Bulk modulus [/GPa]: 140
Poissons ratio [no units]: 0.34

Hardnesses

Mineral hardness [no units] 3.0.
Brinell hardness [/MN m?] 874
Vickers hardness [/MN m™] 369

Electrical propert

ies

Electrical resistivity [/10® W m; or mW cm] | 1.7
Optical properties
Reflectivity [/%] [ 90
Crystal Structure
Space group: Fm-3m
Space group number: 225
Structure: ccp (cubic close-packed).

Received on the I of September 2001
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DIFFUSION PROCESSES CAUSED BY PLASMA IMMERSION ION
IMPLANTATION AND DEPOSITION (PI’&D)

A.E. KIV and E.P. BRITAVSKAYA

Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva,
74895, Israel, e-mail: kiv@bgumail bgu.ac.il

Plasmon-activation processes accompanying PI’&D are considered. It is shown that an interaction of low-energy ions with
solid surfaces leads to generation of plasmons, which relax by local transferring to crystal lattice the necessary thermal energy for
diffusion activation.

Keywords: plasmons, law energy ion implantation

1. Introduction

The PI’&D technique opens new routs for modification of surface properties of three-dimensional
objects by accelerated plasma ions treatment and allows to form thin surface layers of allows with unique
characteristics [1,2].

The mechanisms of PI’&D are more complex comparing to those involved in conventional ion
implantation technique. This is because of the particular characteristics of plasma ions with regard to their
energetic and charge distributions, because the high ion beam densities, and because the combined effect of
the implantation and deposition processes during PI’. Substantial damage of the atomic lattice caused by the
penetration of the plasma ions reduces its stability and lead to the formation of new crystalline phases or even
amorphous zones. The incorporation of the implanted ions into atomic lattice also results in formation of
regions of high compressive stresses close to the surface. All these changes in the near surface layers caused
by PI’ can produce a significant hardening and strengthening effect, and the mechanical properties of the
material can be substantially modified. In principle, by means of PIII&D technology it is possible to increase
significantly the fatigue lifetime, to enhance the oxidation resistance, to improve the tribological properties,
and to modify a wide range of other materials parameters. Radiation-induced diffusion [3] plays an important
role in the processes of PI’&D. In this paper we presented results explaining plasmon-induced activation
processes, which influence on the final picture of PI’&D. In Sections 2 and 3 we discuss the questions of
plasmons formation and their parameters. In Section 4 plasmon-induced processes of diffusion are considered.

2. Formation of plasmons in processes of PI'&D

Penetration of charged particles to solids leads to formation of plasmons [4]. The plasma oscillations
frequency is determined by characteristics of the valent electrons, but in the case of transition metals the deep
electrons also participate in the formation of plasma oscillations (PO). PO may be caused also by local
charges Z appearing in the processes of irradiation of the matter by charge particles In the last case the
probability of plasmons generation W # 0, if the life time of the local charges t>1/0, (®, is the

frequency of plasmons). The equation of dispersion for the long wave plasma oscillations is
2 2 Y 2
o k)=0;, +—k°,
( ) P mn, M

where Y is the elastic modulus of the electronic gas, m is the electronic mass, #, is the electronic density, X is
the wave vector and
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mﬁ :47te2n0 /m. 2)

The value of the plasmon energy is € »= hw ~10eV . The values of € » for some metals are presented in

the TABLE 1.

TABLE 1

Metal Be Al Mg Cu Ag

no, . eV 19 15 10 20 23
n>

The probability that the local charge Z, which aroused in the irradiated specimen, will result the plasmon
generation is:

2zt 1 3
T Qno, 2’
where Q is the specific atom volume. The final expression is:
z%e’k,
W= , “
e

p

®
where k, =V—p is the limit wave vector of plasmons, V. is the velocity of Fermi electrons. For
F

g, =M ~10eV and k; ~10” sm™” we have W ~0.05-Z°.
The relaxation of plasmons is caused by their interaction with phonons, impurities and various structural

imperfections. The decay of plasmons leads to an energy release in a local volume and in the short time T,

which is less than all relaxation times in the crystal. Thus we may consider a phenomena, caused by the
plasmon energy releasing, as a point flash-up of an energy in a crystal. In metals the thermal conductivity
coefficient of electrons is so large that for the time of electron-lattice relaxation the energy transferred to the
electron subsystem is spreading over the large distances. On the other hand, the lattice thermal conductivity
coefficient is small, and we get in the lattice subsystem a high temperature splash in a short time interval. The
relaxation of this local energy splash results in activation of diffusion processes and structural transformations
in the crystal.

3. Mechanisms of plasmon relaxation

The relaxation of high temperature splash in the crystal lattice may be investigated on the basis of equations
[5]:

e _y AT, — o, -T,) (5a)

Ce

o,
¢j—F = kAT, —olT; - T,) (5b)

which are differed from the usual equations of thermal conductivity by second terms on the right side. ¢ ; is

. ke j
a heat capacity and y; =—=
e.j

electron and atom subsystems. " o " characterizes the energy exchange between mentioned subsystems.
The equations (5) may be solved in limit cases of different correlation of relaxation times t, and t; in

nn

is a coefficient of the temperature conductivity. Indexes "e" and "j" relate to

electronic and lattice subsystems accordingly.
Here we present the qualitative analysis of the system (5). The initial conditions are:

T, (1=0)= 1) (6a)

e
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T;(t=0)= if(r) : (6b)

f(r) characterizes the energy distribution in the energy source region.
On the basis of (5) and (6) and by using the principle of dimensions one can write:

€
Tep%c—", (7a)
€
3 &
Tpls (7b)
J

Here it was assumed that the specific gravity is equal to one.

In fact, equations (7) mean that the plasmon energy transfer to the internal energy of one of e,j subsystems.
The energy relaxation in the electronic subsystem finishes for 10"° — 107 s. Any structural transformations
are impossible during this time interval. The relaxation time for lattice subsystem 10" — 10 sec. This time
is enough for diffusion processes activation and structural changes in the system arising. The last effects may
be large in spite of &;/&, ~3—5%.

Now we shall discuss the evolution of energy flash up in the electronic subsystem and shall discuss a
possibility to get a solution of equations (6). We start from the suggestion that t, <<t;. While we shall

investigate the time intervals, when it is possible to neglect the lattice temperature changes, it reasonable to
use a new variable 6 =T, — T;and then to rewrite (5) as:

C. @ =kAB — ab. ®)
ot

The last equation describes now the electron temperature changes. It may be shown that for T = const p (t) has
a form :

pd =% r(lnl—Btj, )

nc. 0 T

where B=ty/t,,T1=t/ty and ty =¢/4mnc.y.0.(Hereis exe¢,).

(9) is considered only for T < 1, where 7, is a solution of an equation:
1

In—=pr. (10)
T

The dependence p® () may be seen in the Figure 1.

It is convenient for the further analysis to introduce the four-dimensional space-time

volume in which the temperature is larger then the given one:

Q=pt (11)

Another expression for Q is:

82

> (12)

e~ "2
c.Tik.r

(), may be also represented as:

T

Q. = Ip3(r)1dr (13)
0

Then the calculations give:

2
Q, 8—(1—%),9»; (14a)

" 16mrk c262 4k toc,
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3
Q zi 82 ,0<< & .
12 (4nkcr2) 30t 4mrk tc.

(14b)

Figure I. The dependence p’ (1)

0,40
035 The dependence 0 (1)
T found may to substituted
030 - to the equations (5) and by
0.25 1 this way the function Tj(t)
1 in the given volume Q;
oo 00T may be obtained.
0,154 Estimations show that the
T changes of Tj as a result of
010 heat exchange between an
005 electronic and lattice
Il subsystems are not larger
0,00 " } " } ; ! ; ! ; } ; than 100° and cannot lead
0,0 0.1 02 03 04 05

to activation of lattice
processes. This effect can
influence only on some
kinetic characteristics (for
example, heat conductivity). The lattice processes may be activated in the case of the direct transfer of energy
to the lattice subsystem. One of these processes is the radiation - enhanced diffusion.

4. Radiation - enhanced diffusion

The releasing of plasmon energy in the local volume of a crystal and the local increasing of the lattice
temperature leads to activation of processes of defect formation and migration. The resulting effect is
determined by the value of the temperature flash up and by the time of its relaxation We suggest that the
temperature flash up relaxation may be described by the equation of heat conductivity. The diffusion
coefficient change stimulated by plasmon relaxation may be calculated as :

* 7 T U U
D =D 4qr? _ |- -
0;[dt r {dt{exp[ j(rit)J exp( : j}, (15)

where D, is the pre-exponential factor in the diffusion coefficient, 1, is the radius of the region where the
plasmon energy released, U is the diffusion barrier. T, is the initial temperature of the crystal.
The integral (15) may be calculated if to use the following approximation of temperature distribution [6]:

Q 1 .. 2
Tlr,t)= if >,
RN (ow
T(r,t)zO ifi<r. (16b)

N

Q is the amount of heat, which is realized in the temperature-flash region. Then we obtain:

5/3
D*/D=0.0162(gj . (17)
x \U
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In many cases D =~y quantitavely, and the increasing of diffusion coefficient caused by plasmon relaxation
may be of two-three orders.

5. Conclusion

The PI’&D process is linked with complex interaction of the plasma ions with solids. For the low energy ions
inelastic processes become the most important in PI’&D. In particular, these are processes of plasma
excitations inside of solids. The interaction of low energy plasma ion beams with surface layers leads to
generation of the surface plasmons, which transfer their energy to the lattice excitations and accordingly to
acceleration of diffusion and other solid-state reactions. For the plasmon enhanced diffusion one can write an
expression:

D=Wr,09, (18)

where W is given in Section 2, 1, is the time interval between two jumps, v is the velocity of diffusing atom

moving between two equilibrium positions, & is the distance between the nearest equilibrium positions. It is
seen that D may be enough large (107 cm?/s) to determine the important processes in PIP&D.
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RELIABILITY MODELS FOR COMMUNICATION CHANNEL
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Communication is one of the most important domains of air traffic control system from flight safety point of view. The
most fundamental and difficult problem is providing reliability and fault tolerance of such systems. Paper investigates reliability of
repairable voice communication channels (air/ground and ground/ground) of air traffic control systems with periodical sessions of
communications. Three different test strategies is described:

®  Communication channel does not have built-in-test equipment.
®  Communication channel has built-in-test equipment with diagnosis procedures during communication sessions.

®  Communication channel has periodical test in the pauses between communication sessions.

Marcovian models are studded and communication channel availability is examined for each of above mentioned test
strategies. Some numerical examples of real communication systems are presented.
Keywords: communication channels, traffic control systems

1. Introduction

Communication is one of the most important domains of air traffic control system (ATC) from
flight safety point of view. The most fundamental and difficult problem is providing reliability and fault
tolerance of such systems.

Today the redundancy is the main method of reliability improvement of ATC communication
channels (CC). The reliability of the redundant systems in the present time is quite well investigated,
however, concerning the controller channels this task has a specific aspects, which are caused by the used
method of the CC failure fixation and test strategy of the technical condition of ground-based
communication radio aids.

This paper investigates reliability of repairable voice communication channels (air/ground and
ground/ground) of air traffic control systems with periodical sessions of communications for different test
strategies.

2. Notation

ATC Air Traffic Control

cC Communication Channel

MTBF Mean Time Between Failures

MTTR Mean Time to Repair

A Failure Rate

n Repair Rate

A Availability

h; Probability of being in state H;

Tk Periodicity of test operations with parameter of Poisson flow w=1/ Ty
ty Time of test operations

T Parameter of exponential distribution of t,
t Time of failure fixation by human operator
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vi=1/ty Parameter of exponential distribution of tg

tn Time of failure fixation by automatic test system

vo=1/tp Parameter of exponential distribution of tp

T, Periodicity of communication demands with parameter of Poisson flow
¢=1/T,

te Time of communication session

y=1/t, Parameter of exponential distribution of t,

ta Mean time of test interruption in the case of communication session begins

v=1/t, Parameter of exponential distribution of t,

tr Time of repeat demand on communication in the channel with failure

n Parameter of exponential distribution of tg

3. Reliability of communication channel with different test strategies

3.1. STRATEGY 1. COMMUNICATION CHANNEL DOES NOT HAVE BUILT-IN-TEST
EQUIPMENT

In the case when the test equipment is absence the CC failure is detected by controller during the
process of operation. In this case the process of the CC failure detection is possible to clarify by the time
diagram (Figure 1). Communication channel with completely good set of the equipment starts functioning
in the moment of time ty. After some operation time T, in the moment of time t; the failure of the main set
of the on-ground communication radio aids happens. However, due to the absence of the automatic test
system the fixation of the failure does not happen. After some time T, in the moment t, controller obtains
the requirement on communication, for example, in the form of any request from the aircraft. Controller
does not know about the malfunction of the operation of the communication channel. He transmits the
answer on the request to the aircraft. In this case the crew does not receive the answer and after some time
Tr makes the repetitive request. The delivery of the repetitive request in moment t; is the information
about the malfunction of CC for the controller. In such case controller goes over to the operation with the
reserve on-ground communication equipment in this way fixing the failure of the main set of the
equipment. The similar process repeats in case the refuse of the reserve radio station too.

To T Te

- A \/_A \/_M

to t L G

Figure 1. Time diagram of failure detection

The behavior of the examined system is described by the state transition diagram (Fig.2), where:
H; — completely good state of the CC equipment; H, — communication session in CC; H; — failure of the
main CC system; Hy; — communication session in the CC with failure of the main on-ground
communication radio aid; Hs — repeat demand on communication in CC with failure of equipment; Hg —
detection of the failure state of the main on-ground communication radio aid, switch over to the reserve

\‘P

Figure 2. State transition diagram for test strategy 1.

c
'_l

> Hs - H6

Solving the Kolmogorov equation system describing the operation of the examined channel it is
possible to define A, availability of the controller channel with the first test strategy
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A1:(1+al)/(1+al+az), (1)
where arA[n(I+pyF1g],  ar B, =Uplm+iig . Beg/(iy).

Comparing the equation (1) with the equation for the A, availability of the ideal system
(immediate failure detection, immediate switchover, non-failure switch) [Barloy, 1965], it is possible to
get certain that A;=A, with non-limited increase of the intensity of communication ¢ and the reduction of
the failure detection time (v;—>o).

It is possible to evaluate the deterioration of the reliability in the real ATC communication
channel in comparison with the ideal one with the help of reliability deterioration coefficient V,=(1-
A1)/(1-Ayp). The function of influence of average time between communication session T, and average
switch time t; for ATC communication channel are submitted on Figure 3 (line 1- for t;= 2 minute and
line 2- for ts= 10 seconds).

V

1.8

1.6 /
1.4

1.2 /

1.0

20 60 100 TC MIN

Figure 3. Deterioration of the reliability in the real ATC
communication channel with test strategy 1

3.2. STRATEGY 2. COMMUNICATION CHANNEL HAS BUILT-IN-TEST EQUIPMENT WITH
DIAGNOSIS PROCEDURES DURING COMMUNICATION SESSIONS

At present many of the ground-based airport radio centers have built-in test equipment, which
carry out test in the period of the communication sessions. The behavior of the examined system with the
mentioned test strategy is possible to describe by the graph of states submitted on Fig 4, where the entered
earlier symbols of states are saved.
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¢ _H,

Figure 4. State transition diagram for test strategy 2.

The availability A, of the controller channel with the second test strategy may be defined by solution of
the Kolmogorov equation system, which is describing the mentioned graph:

Ay=(1+ay)/(1+a +ay),

a=My(1+B) /], a=B,  PB=@/(Aty), 7y =1/p+l/v,.

The analysis of the reliability deterioration coefficient V,=(1-A;)/(1-Ag) shows the dependency similar to
the one submitted on Figure 3.

3.3. STRATEGY 3. COMMUNICATION CHANNEL HAS A PERIODICAL TEST IN THE PAUSES
BETWEEN COMMUNICATION SESSIONS

In this case process of CC operation could be described by the following states: H; — good
condition of CC equipment, absence of the communication session and test operations; H, — test in the
channel without communication session; H; — communication session; H; — demand on communication in
the test period; Hs — failure of CC equipment in the pause of communication; Hg — test of system with
failure; H;, — demand on communication in the channel with failure of equipment; Hg — failure fact
fixation by automatic test system or by human operator. On Fig. 5 there is a state transition diagram of the
examined system.

H2 (p> H4
AW

Figure 5. State transition diagram for test strategy 3.
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The availability A; of the examined CC is defined by equation:
As= Z hi

Forming and solving the Kolmogorov equation system describing the graph of the states it is possible to
define probabilities h;, i=1,...8, and the availability Aj;:

As=(1+ay)/(1+atay),
where

a1 = o/ M1/ L V) + OV FAG A ) (Lt v ) M (@) 1+o(1/p+1/v:)+
+ (Ut vl (hy)(1+ Avy),

a,=(A+0) [o(A+e+y)/ (A te+1)+)

The reliability deterioration of the real CC may be evaluated by the coefficient Vi=(1-A3)/(1-Ay).
The analysis of the V3(w) shows that it is a unimodal function with the extremes in m, point.

The expression for the definition of Ty o5 =1/®qp is possible to find out from the condition dA;/dw=0. In
general case the expression for the definition Ty o has quite a cumbersome look, but, for the practical
crucial case of the highly reliable systems (A<<p) with the short time of the failure fixation (p<<vi,
[<<v,) the following approximate expression is justified for the definition of the optimal test periodicity:

172

Ty Op{1=v3(p'1 O (-0 v3) +hpt/vi] 2L -¢

Example. Let’s examine the CC availability of the ATC system in the airport area. The channel radio
stations are operating in the day night operation regime. The sessions of communication are carried out in
the random moments of time. The failures of the radio stations could be fixed by the objective technical
test aids executing the periodical test, or subjectively according to the controller’s evaluation. On Fig.6
there are V(T) dependencies for various MTBF T, and typical average meanings of the characteristics of
the ATC communication channel.

V

1.06 \

1.05

Nl
~— |

1.04

1.03
20 60 100 140 Tsec

Figure 6. Function V(Ty) for Ty=3000 h (1), T;=2000 h (2), Te=1000 h (3)

On Figures 7 and 8 there are functions Ty o,(To) for the various T, periodicity of communication session
and time of test interruption t; .
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T, optsS€C T, optrS€C
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Figure 7. Functions Ty o (To,Tc) Figure 8. Functions Ty op (To, t,)

4. Conclusion

e In the ATC communication channel availability for the third test strategy is more than decimal better
as compared with the first and second ones.

e The availability of the in case of the third test strategy is unimodal function of test period.

e The optimal test period in the third test strategy increases with the increase of MTBF, the duration of
test and time of its interruption. It is reduced with the increase of the intensity of communication and
staying practically invariant to the MTTR, duration of the communication session and failure fixation
time.
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PaccMarpuBaioTcst MeToqUIeCKUe PoOIeMsl penoaaBanust kypca Cmamucmuka, HEKOTOPBIE 3a1a41 MPUKJIAAHON CTATHCTHKH.
Kuiouesblie ciioBa: STATISTIKA, SSPS, metoauka npenogaBanus kypca Cmamucmuka

1. BBenenue

Korma HaymHaems dWTaTh Kypc JIEKIUH IO METOAaM KOMIIBIOTEPHOH 00paboTku
CTaTUCTHYECKUX MAaHHBIX, BCErNa HAWIETCSA CIIyIIaTellb, KOTOPBIA 3aX0odeT OJECHYTh OCTPOYMHEM H
HATIOMHHUTH ayJAWTOPUH 3HAMCHUTYIO M yXKe¢ HaOWBIIYIO OCKOMUHY (pazy Mapka TBeHa o Tpex BHIAX
JDKU — JDKH, SIBHOW JDKM M MaremaThuyeckoil craructuke. OIHAKO, OH CBOMM HAIMOMHUHAHHUEM TOJIBKO
MOMOXET JIEKTOPY, MPEBPATUB THIATENFHO IIAHUPYEMYIO MEPBYIO JICKIHUIO B «KAK-OyITO CIIOHTAHHYIO»
MOJEMHUKY C KJIAaCCHMKOM, KOTOPBIii CBOMM OCTPOYMHBIM YTBEP)KACHHEM TOJBKO IOATBEPANII
HEOOXOAMMOCTh BJYMYHMBOTO M3YYEHHs CTATHCTHMYECKUX JAHHBIX W TIPAMOTHOTO HCIIOJIb30BaHHS
pe3ynpTaToB X 00paboTku. Ob6IacTh, M3 KOTOPOIl MOKHO MayKaMH 4epriaTh MPUMEPHl HEKOPPEKTHOTO
WCITIOJIb30BaHUsl CTATUCTUYCCKOTO aHajiu3a - Haima mpecca. Uurtas ee, BOOYHIO BHAMIIB: MPOTHO3BI,
BEPOATHOCTbL OCYHICCTBJICHUSA KOTOPBIX paBHa HYJIO; Ppe3yjbTaTbl CTATUCTHYCCKUX  OIIPOCOB,
IMOCTPOCHHBIC Ha HCPCHIPE3CHTATUBHBIX BbI60pKaX uT.Ao. Tak u xo4eTcs B3BBITH OT HEKOMIIETEHTHOCTH
TeX, KTO UX COCTaBJsUI, ()OPMYJIHPOBAT BHIBOABI HA MX OCHOBE, a TJIABHOE - OT HAMBHOCTH YUTATEINCH,
KOTOPBIC TOTOBBI B HUX BEPUTH.

2. MoTtuBauus B 00y4eHUH MPUKJIATHON CTATUCTHKE

[IpuknanHas cTraTUCTMKa — 3TO pa3/iesl MaTeMaTUKH, KOTOpPbIA ceilyac OJHO3HA4YHO HYKEH
J000My CHENUAIUCTY HE(HUIIOIOTHYECKOro Npoduiisi: OT KOMITBIOTEPIHMKA, aIMUHUCTpAaTopa ceTed 10
MEHe/Kepa 10 IepcoHaiy, Ou3Hec-aAMUHHCTparopa. Ho oco3HaHume HEOOXOJMMOCTH 3TOH HAayKH
NPUXOJUT HE cpady. HadHeM coO CIenuamucToB KOMITBIOTEPHBIX HayK. K coXalleHWI0, OHH CaMbIe
CTPONTUBBIC B BOCHPHUSATHH CTATUCTHKH. [l03TOMYy MM YyXe Ha TEPBOM Kypce BO «BBCACHHUU B
CHENHATBHOCTE» HAl0 Ha XOpOIIUX NpUMepax I0Ka3aTh, YTO KOHEYHOH IIETbI0 CO3MaHUs JIF00O0TO
MIPOTPAMMHOTO MPOIYKTA SBIIACTCS pealn3alliisi HEKOTO CYIIECTBYIOIIETO B YCIOBUSIX HEOMPEISICHHOCTH
mpoIiecca, 9YTo CIIydaifHble MOCIEeI0BATENHHOCTH HAXOAAT MHOKECTBO ITTOJIE3HBIX MIPUMEHEHUH U MPEXIe
BCET0 B MOJICTIMPOBAHUH peanbHbIX cuTyarnuid. (Ha kpaiinuii ciaydail MBI BCceraa nMeeM Opyroro Kjlaccuka
nox pykoit — Jlonanpna O. Kuyra [1]), mouTe mojoBHHA BTOPOTO TOMa KHHUTH KoToporo «MckyccTo
MIPOTPaMMUPOBAHUS MOCBSIEHA TEHEPUPOBAHUIO M TECTUPOBAHUIO CIIyYalHBIX MOCIEI0BATENBHOCTEHN).
Ho »to mepBas cropoHa Menmanu, BTOpas — XOTEJIOCh ObI, YTOOBI CICIUAIUCTBI, YHTAOIIHEC
MPOrpaMMHPOBAHUE HE 3a0bIBAJIM FOBOPUTH CTYICHTAM e€llle 00 OJHOW BaKHOH 007acTH MPUMEHEHHS
CTaTUCTHKH - O HAJCKHOCTH MPOTPAMMHOTO OOECIICUYCHUS U BEPOSTHOCTHBIX MOJENSX, MUCIIOIB3YEMbIX
JUISL OLICHKH €ro Ha/ie)XHOCTH. IIporpaMMHOe obecniedyeHne Takxke SIBISETCsS 00bEKTOM, IOABEPKEHHBIM
cirydaiiHbeIM cOosiM. Musa & Okumoto [6] onpenesnin HaJle)KHOCTD IIPOrPaMMHOTO 0OEcIIeUeHHsT Kak
BEPOSATHOCTH 0€30TKa3HOTO ()YHKIIMOHUPOBAHUS KOMITBIOTEPHBIX POTPAMM B CHENH(DUIECKAX YCIOBHUAX
B TEUCHUH YKAa3aHHOTO Tepuoa BpeMeHH. Pa3paboTano 60mpIioe KOIHIecTBO MOJelNeil B 3TOH o0macTH,
KOTOPBIE TIPEXK/IEe BCETO UCIIONB3YIOT aBTOPETPECCHIo, OaliecoBCKHe (PYHKIMH U IPYTHE CTATUCTHYECKIE
MoJIesH (I0CTaTOYHO MOJHbI 0030p - B ctarbe Nozer D.Singpurwalla and Simon P.Wilson [2]).

OTCyTCTBHE CBOCBPEMEHHON MOTHBAIH CTYIEHTOB HEH30EKHO TNPHBENET K «HACAKICHHUIO)
Kypca TpPUKIAIHOW CTAaTHCTHUKH. MOTHBALMIO 3Ty MHPEXIE BCETO JOJDKHBI IPOBECTH IPEIMETHHKH-
nporpaMMHUCTbl. UM CTyZEHTBI MoBepsaT ObICTpee, 4eM JIEKTOpY IO MpHKIagHOM cratuctuke. Ho Mbl,
npernojaBaTelId 4acTo 3a0blBaeM 00 3TOM M TallUM OJEsUI0 Ha ceOsl, JOKa3bIBas, YTO TOJBKO HalI
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MpeaMeT caMblii BaKHBIA. BcroMHHTE, mpenofaBarenn mo «software», Korga B IOCIEAHUI pa3 BHI
YHOMSHYJIM MaTeMaTHYeCKU MpeaMeT B KadecTBE HEOOOXOAMMOTO U CTYJACHTa-KOMITBIOTEpIIHKa? A
3aTeM MOCMOTPHUTE HA CBOMW IUIAHBI, AUPEKTOPa MPOrpamm, - JOCTATOYHO JIH TaM KypPCOBBIX paboT WM
JIOMAIIHUX 33JaHUN [0 MaTeMaTUYeCKUM TpeameTam?

A 4TO X€ CTOJIb MOMYJISIPHBIE CErOJHS SKOHOMHCTHI M ympaBieHIbl? OKa3bIBaeTCs UX TOXKE
JIOCTATOYHO TPYIHO YOCIUTh B HEOOXOIUMOCTH M3PSAIHOMN TOJM MATEMATHKU B UX CICIHAIbHOCTH. MM
OBI XOTEJIOCh, YTOOBI CTATUCTHKA CBOJIIACH K CPEIHEMY M TaOJIHUIIAM YacTOT ([yMaro, 9TO HE OOMKY MX —
9TO HE WX BUHA, UX BCE BpPeMs AC3MH(DOPMUPOBAIIU, KOT/Ia 3BaJIM HA 3TH CIIEIUAILHOCTH H TOBOPHIIH, YTO
MaTEMAaTHKH 3]IeChb- MUHUMYM). K c4acThio BpeMs TaKWX CIEIUAIHUCTOB MPOuIo. [IporHo3upyeTe 1 BhI
AHATUTHYECKN Pa3BUTHE Bamledl (UPMBI, WIK CTPOUTE MHUKPO- U MAKPOAIKOHOMHYECKHE MOIEIH, HIIH
cocTaBisieTe OW3HEC-IUTaH, CTAaTHCTHYECKHE MOJENH BaM IMOHANOOATCA Tpexne Bcero. TyT -
Kiaccu(uKanus OOBEKTOB, TEOPUS BPEMEHHBIX PAJOB U PErPECCHOHHBIE MOJENH, KakK IIPaBHUIIO,
HEJIMHEWHbIE B 3KOHOMHYECKHX TMPUIIOKEHHUsIX. Bce To, 4TO ceiiuac MpUHATO Ha3biBaTh KPAaCHUBBIM H
MOJIHBIM CJIOBOM «3KOHOMETpHKa». Ho eciam mocMoTpeTh B KOPEHb STOW HAayKH, TO 3TO BCE TE XKe
MIPUKJIATHBIE CTATUCTHYECKUE METOJIBI C OPUEHTAIIUEH Ha DKOHOMHYECKUE TTPHIIOKEHUS.

W moBTOpIOCH, K COXAJCHHWIO, MHOTHE INPENOJABATEIM IO NPOPHIUPYIOIIAM MpeaIMeTaM
MEHE/PKMEHTa M JKOHOMHUKH JaK€ M CIBIIIATh HE XOTAT, YTO CTYJAEHTaM HYXHBl HE TOJBKO
JICTEPMUHUAPOBAHHBIC MOJICNIA. XOTEIOCh Obl MPHUBECTH IUTATYy W3 KHUTH JBYX KPYMHEHIINX
cnemuanuctoB C.A.AiBazsHa u B.C.MxwurapsHa [3] (MHOTME TOIBI YHTAIOUIMX CTaTUCTUYECKHUE
JICHHUTUIAHBI Ha (pakynabreTax 3xkoHoMukr B MI'Y, MOCH):”...B kauecTBe 00s3aTeIbHBIX KOMIIOHCHTOB
B 0JIOKE MaTEeMaTUKO-CTATHCTUYECKOTO MHCTPYMCHTApHs (COBPEMECHHBIX YYCOHBIX IIAHOB MOJTOTOBKH
SKOHOMHCTOB) TIPEACTABICHBI KYPCHl TIO 3/1EMEHMAPHBLIM MEmooaM CHAmUCmuiecKozo aHaiu3d
OAHHBIX, MeopUU 6€POAMHOCHEll, MAMEMAMUUECKOU CMamucmuKe, NPUKIa0Hoi cmamucmuxe (unu
MHO2OMEPHBIM CIMAMUCIMUYECKUM MEeMo0am), IKOHOMempuKe”.

3. TeopeTnueckas 4aCTh Kypca

[To3Bomo cebe yTBEp)KAGHWE, UYTO JIFOOOW S3BIK IPOTPAMMHUPOBAHHS MOKHO OCBOUTH
CaMOCTOSITEIIEHO, TEOPHIO MHKPO- W MaKpPOIKOHOMHYECKOTO aHallM3a TOXE, HO TPOBECTH TPAMOTHBIN
CTAaTUCTHYECKUHA aHaNN3 0e3 MOIy9IeHHBIX B 3TOW OOJACTH TEOPETHIECKAX OCHOB HEBO3MOXKHO. B oTBeT
MOJKHO YCTIBIIIATh BO3PAKEHHE O MHO)KECTBE ITAKETOB CTATHCTHYECKOTO aHAJIN3a, IMEIOIINXCS HA PBIHKE:
OT TIPOCTEHIINX 3NEKTPOHHBIX Tabmui o cnenuann3upoBaHHBIX ARIMA, Cluster n yHHBEpCaIbHBIX
SPSS, StatGraphics, Statistica u T./1. - BBOAU JIaHHBIC U MToay4aii pe3ynbrarel! OHAKO, UCTIOIB3Ys UX 0e3
JIOCTaTOYHOM TEOPETUYECKOMN IOArOTOBKHU, Bbl U IOJIyYUTE TOT TPETUH BUJ JIKH, O KOTOPOM YIIOMMHAJ
Mapxk Tsen.

[TpuBeny mpuMep M3 TEOPUM PETPECCHOHHOTO aHajlM3a: IPH I0A00pe IPOCTOH IMapHOU
perpeccuu nojry4aeM He3HaYMMBbIH KO3(h(UIMEHT MHOXKECTBEHHON JETEPMHUHAINN M, IPUHUMAs [IEpBOE
NpUILE/Iee Ha YM pEUIeHHE - yIAIUTh CBOOOAHBIN WIEH W3 MOJENH, MOJydyaeM KaueCTBO HAMHOTO
IpeBBIIaloNIee npeablyee. Ypa - pesynsrar ecth! OqHako, okaspiBaeTcs (GU3HMYECKUI CMBICT Y 3TOH
MOJIENIA OTCTYTCTBYET U IIPUMEHSTH €€ Ha IPAKTHUKE OMAacHO.

OtMmedy, 4YTO OOBIYHO KypC IO TIPUKIATHONH CTATUCTUKE C FHCIONB30BAaHHEM IAKETOB
CTAaTHCTHYECKOTO aHAJM3a CIIEAyeT 3a KypcaMH TEOPHH BEPOSTHOCTEH M OCHOBAM MAaTEMaTHYECKOU
cTaTuCTUKHU. 1l03TOMy B JEKIIMOHHOW YacTH Kypca IO NPUKIATHOW CTAaTHCTUKE IIPETOJaBaTEIIo
HE00X0anMO 00paTUTh BHUMAHHE Ha CIIEIYIOIIAE MOMEHTHI.

A. Hay‘il/ITb CTyACHTa (bopMaano OIMCBIBATH CTATUCTUYCCKHUE 3aJavu, HaXOAUTb TC AOIMYUWICHUA WU
OrpaHU4YCHHA, KOTOPLIC TMPUBOAAT K HCIIOJB30BAHWIO MMEHHO OJOTOro KpUTCpUA, HWMCEHHO 3TOU
CTaTUCTUYECKON MOJEIH.

B. He 3acTtaBnsTh 3armoMuHaTh OTAEIbHBIE KPUTEPHUH, a YUUTh HOHMMAaTh MX (U3MUECKUH CMBICT U
0TCI0/1a - cila0ble M CHIIbHBIE CTOPOHBI 3TUX KPUTEPHEB.

C. Bce Bpemsi IpoBOANTH MEXYPOBHEBBIE CBS3M MEXIYy MeTojaMH M mpouenypamu. Kiaccnmueckuii
MIpUMep — AUCTICPCHOHHBIN aHaIH3, KOTOPBIH MOXKET UCIIONB30BaThCSI M KaK OTIENbHAS IPOIeaypa, U KakK
YHHUBEpCAIBHBIN anmapaT aHalh3a KadecTBa APYTHX Mojelel (B 3amadax KIacCU(PHUKAINU, PETPECCUU H
T.1.). mm nmpyroit mpumep, MOKa3BIBAOIIWN B3aWMOCBA3b CTAaTHCTHYECKHX TMPOLEAYp, KOTAA IIpH
MPOCTOM TPAHCIOHWPOBAaHMHM MATPHUIBI HMCXOIHBIX JaHHBIX B 3afade (PaKTOPHOTO aHajgM3a MOXKHO
MepeiTH K 3axade KiaccuuKaluu.

D. AkueHTHpoOBaTh BHUMaHKHE Ha aHAIW3€ pPE3yJbTaTOB M YMEHHH (GopMynaupoBaTh BbiBOabL. (Uto
HMMCHHO MpHU 3TUX HAAHHBIX U TIPU ITOM YPOBHC [lOHyCTHMOﬁ 0LlII/I6Kl/I TUIIOTE3a HE MOXKET 6I)ITb
OTBEpPruyTa, MOA€CJIb HC MOXCT CUUTATHCA HEKa4YeCTBEHHOM U T.)l.) O6])§ICH}ITI) HIKOAHChI B COUYCTAHUIX:
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«HE MOXXEM OTBEPrHyTb» M «IIPHHHUMaeM rumoresy». OOpamare BHUMaHWE Ha HPEANONIOKEHHS Ha

KOTOPBIX 0a3upyeTcsi CTaTUCTHIECKAs! IPOLEaypa.
Yuumo nonumanuro mooenu, o00vACHEeHUI) NONYUEHHBIX PE3YALMAMOE - 3INMO  OO0JIHCHO

COCMagAmMb 0CHOGY meopemuyecKkoll yacmu Kypca.
Kakue xe ki1roueBble TOUKH B CaMOM TEOPHHU:

e  OCHOBOIIOJIAraroIIasi poJib 32aKOHOB OOJIBIINX YHCET;

e  BaKHellllee 3HAYEHUE HOPMAJIBHOIO 3aKOHA PaCcIpeeICHNUS;

®  BO3MOXXHOCTH NPUMEHEHHS Pa3JIMuHBIX METO/OB IPH PEIICHWH OJHOW M TOH ke MpoOJeMBbl U Kak
CJIEJICTBHE BO3MOXHOCTb Pa3IMUHBIX PE3YJIbTATOB AN OJHMX M T€X XK€ JAAaHHBIX IIPU UCIOIb30BAHUU
Pa3IUYHBIX METOJOB aHAIN3A;

e OCHOBHBIC IIOHATHUS TPOLEOYP IMPOBEPKH CTATHCTHYECKUX THIIOTE3: 3HAYMMOCTh M MOIIHOCTH,
KpHUTHYECKas 00J1acTh U Ap;

e  (HaxTOpHI, BIUSIONINE HA TOYHOCTh OLIEHOK ¥ BO3MOKHOCTD YIIPABIICHUS UMH.

4. IlpakTHYecKast 4acTh Kypca

[IpakTryeckas 9acTh Kypca JOJDKHA COCTOSATH M3 JTA0OPATOPHOTO IMPAKTHKYMa U 00s3aTEIIEHOTO
npoekTa. JlabopaTOpHBI TPAKTHKYM COCTAaBIICTCS W3 HEOONBIIMX 3aJaHUi, KOTOpBIE CTYICHT
BBITTOJTHSET ITO/T PYKOBOJCTBOM IIPEMOAABATENSI, M KOTOPBIE JODKHBI XOPOIIO HHTEPIPETHPOBATH TEOPHIO
W TIOKa3bIBaTh MPOOJIEMBI, BO3HHUKAIONINE TIIPH HCHOIH30BAHUM CTATHCTUYECKUX IAKETOB. ITOT
1a00paTOPHBIN MPAKTHKYM MPHU3BAH Pa3bsCHATH OTIENbHBIC JIETAIH CTATHCTHYECKUX mporenyp. Kakoit
naker OyaeT BBIOpaH il WIUIIOCTPALMM MPOLENYpP HE CTOJb CYIIECTBEHHO, TIJIABHOE - €ro
COBMECTHUMOCTh CO BceMH Windows-TpHIIOKEHUSIME U JOCTAaTOYHAs YHHBEPCAJILHOCTh. B uueaie, B
1a00paTOPHH CTYJCHT MOXET CaM BBIOPATh OJIMH M3 MPEIaracMbIX MAaKeTOB, U MPEMOo1aBaTellb HA3HAYUT
eMy KOHCYJIbTaHTa W3 dYuclia MaructpantoB. Ocoboe BHHMaHHE Hajo OOpaTUTh Ha TpadUUecKoe
MpEJCTaBICHAC JaHHBIX. HeoOXoauMo HayduTh CTyICHTA VYBHJACTh IO TpaduKy HampaBIICHHE
JIATbHEUIIUX UCCIIEeI0OBAaHUMN TaHHBIX.

Bonpmoe 3HaueHne mMeeT mpoekT. HasHaueHWe MpoekTa - MOMOYb CTYIEHTY OCMBICIHUTH H
PEIINTh CTATUCTHYECKYIO 3a/1a4y OT €€ IIOCTAHOBKH U J0 BBHIPAOOTKH pelieHuH Ha ee OCHOBE. CTYICHTHI
BEIOMPAIOT TeMy MPOEKTa U3 TeX, KOTOphIe MM MpeiaraeT MmpernogaBaTelb, WId (OpMyIHpYIOT caMH,
YYUTBIBasi COOCTBEHHBIE WHTEpECHl. [IpudeM MpOeKT OHU BBITOTHSIIOT B KOMAHIE U3 IBYX-TPEX YEJIOBEK,
B HEIUIAHHUPYEMOE B ayIAUTOPHUSIX BPEMS, CAMOCTOSTEIHHO OCYIIECTBISS MOUCK HEOOXOAWMBIX JaHHBIX,
cbop, obpaborky u aHanu3. OOs3aTe’IbHOE IPEACTAaBICHUE PE3yJbTATOB IPOEKTa Ha CEMHHApax C
HCTIONB30BaHUEM CIalJIOB Pa30BBET y CTYACHTOB CIHOCOOHOCTH K Ipe3eHTalMu M nojeMmuke. Kpatkoe
pe3loMe CBOEro MPOEKTa CTYJEHTHI JOJDKHBI MPEACTaBUTh YYaCTHUKAM CEMUHapa 3apaHee, YyTo Obl Te
MOTJIA TIOATOTOBUTHECS K OO0Jlee KOMIETEHTHOMY OOCYXIeHHI0. I[lpudeM BOMPOCHL, BBIHOCUMBIC Ha
o0cyxaenue, MoryT ObITh 0T «Kak?» 1o « st uero?».

CdopmymupoBaTh TEMBI IIPOCSKTOB JIErde I CTYACHTOB YKOHOMHCTOB W MECHEIKEPOB - MHOTO
CTAaTUCTHKH U TEM, JEKAIINX Ha MOBEPXHOCTH: NMPOTHO3UPOBAHIE YPOBHS HHMIIAINY, YPOBHS PacXo0B
Ha TIMTaHWe, aHAJTN3 3aBICUMOCTH IIeH Ha HEJBIDKAMOCTE U T.1l. Y CTYICHTOB BBI3BIBAIOT BCET/Ia HHTEPEC
MOJIEIH, CBSI3aHHBIE C MHCTUTYTCKON KU3HBIO — IOCTPOUTH MOJIENb JUIS OLIEHKH BEPOSITHOCTH IpOBajia Ha
9K3aMEHE 110 CTaTUCTUKE U T.J.

TpynHee s MPOTrpaMMHUCTOB — IS HUX MOXKHO IPEUIOKUTH TEMBI, CBS3aHHBIC C aHAIH30M
CTAaTUCTHYECKUX MPOIEAYP Ha CXOAUMOCTh M OICHKY BpPEMEHH cdeTra (T.€. HCCIIEIOBaHNE aIrOPUTMOB),
AHAJIM30M CTATUCTHKH MO C0OsM ceTd. Takke MOMKET OBITh HalJCH IPEKPACHBIA BBIXOJ IS HX
MPOrPAMMHUCTCKUX ~ yCTpemiieHH#. Kak mpaBWio, CTYICHTBI-IPOrPAMMUCTBI JIIOOST  BBICTYHATh
KPUTHKaMH HHTEpderica MPUKIATHBIX MaKeTOB. MOXKHO MPEIJIOKHUTh UM CAMHM PEaM30BaTh KaKyrO-
00 CTaTHCTHYCCKYIO MpoIeaypy (Hampumep, MpoIeaypy MOMAroBoro moadopa perpecCUuOHHON
MOJIEIIN ), & TIAKEeT UCTIOJIB30BaTh TS Bepu(HKanuu pa3paboTaHHON IPOTPAMMEL.

5. Dy1eMeHTBI AKaJJEMUYHOCTH B NIPpENOAaBaHUU CTATUCTUKHU

YacTo y CTyA€HTOB CKJIA/JbIBACTCS BIIEYATIEHHE, YTO B CTATHCTUKE BCE yXKE€ CHEIAHO M CTOUT
BOIIPOC TOJIBKO 3a pPealiM3alreil OTAEIbHBIX Uieil. B 3TOM ciryuae o4eHb BaKHO, YTOOBI IIPENOAaBATENb
BCEr/la akIEeHTHPOBAJI BHUMaHHE Ha MpoOiemMax, KOTOpbIe OCTAroTCs HEOTKPBITHIMH B TOH WM WHOM
00JIacTH WM yKa3bIBaJl HOBBIE BO3MOXKHOCTH, KOTOpBIE OTKPBLI Ul TOTO WJIM MHOTO pa3jiena HayKH
KOMITBIOTEPHBIH BEK (HAampuMep, KOMIIBIOTEPHBIE WHTEHCHBHBIE METOABI). Tak MarucTpaHTam IIo
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HANpaBJICHUIO KOMIIBIOTEPHBIE HAyKH, H3ydJaommM Kypc «KommbloTepHas CTaTHCTHKa», OOJBIIYIO
MO0JIb3Y IPUHOCAT CEMUHAPBI C TEMaMH 110 COBPEMEHHBIM JIOCTIKEHHUSIM B 00JIaCTH CTaTUCTUKU. Takumu
TeMaMu MOTyT ObITh «IIprMeHeHHe anmapara HEHPOHHBIX CETEH MUl PEIICHMs 3aa4d PacllO3HOBAHUS
00pazoBy», «[IpuMeHeHne KOMIBIOTEPHBIX MHTEHCHBHBIX METOIOB JJISI OLCHKU HaJEeKHOCTH CHCTEMBD»,
«Hcnonp30BaHNE METO/IOB KJIACTEPHOT'O aHAJIM3a B aITOPUTMAaxX paboThl IOMCKOBBIX cepBepoB». OnnH H3
CEMUHApOB MOXKET OBITh IMOCBALIEH OOCYXIEHHIO CTaTreil, B KOTOPBIX PAacCMaTPUBAIOTCS TEHICHLUH
Pa3BUTHS COBPEMEHHOI ITPUKIIaHON cTaTHCTHKY (Hanpumep, crateid A.M.Opnosa [4] nmu I1.H. [yOnepa

[5D.
6. AHKeTHpOBaHHe
Konewno, mnst rob6oro mpemnoiaBaTensi BaXKHBIM MOMEHTOM SIBIISIETCS OCMBICICHUE PE3YJIBTATOB

MPOYTEHHsI CBOEro Kypca. MHe KaeTcs O4eHb MHTEPECHOH aHKeTa, KOTOPYIO MPHUBOAUT B CBOCH CTAThe
Wise [7]. OcHOBHBIE BOIIPOCHI, HA KOTOPbIE MPEAIAraloT OTBETUTH CTYACHTaM CJIeyIOIIHE.

" Kakoe MHEeHHE UMEJH O IPUKIIAJHON CTATUCTHKE CTYJICHTBI IO U3yUYCHUs Kypca U IOCIe Hero
(OTpHUITUTETHFHOE HITH MTOJIOKUTEIBHOE)?

. [Tpouzonuu a1 3HAUUTENbHBIE U3MEHEHUS TIOCTIe U3yUeHUs Kypca?

u H3meHnunocs M ux MpeACTAaBJICHUEC O IPUMECHECHUHN CTATUCTHUKHU B UX HpO(l)eCCPIOHaﬂbHOﬁ
o0JacTu mocie u3y4eHus Kypca?

= EcTb 1 3HaunMTENBHAS pa3HHUIIA B yCIIEXaX MPU O0YYCHUU CTATHCTUKE MEKIY CTYICHTAMU,

HMMEIOLIMMH CBOM COOCTBEHHBIN KOMIIbIoTep 1 He nMeromMu? (ITOHSITHO, YTO TTOJIOKHUTEIBHBIH
OTBET Ha 3TOT BONPOC 03HAYAET, YTO HEOOXOJMMO MOBBICUTH YPOBEHD KOMITBIOTEPHOM
OCHAILICHHOCTH CTYACHTOB B HHCTHUTYTE).
OTBeTHI Ha 3TH BOIIPOCHI, TPEOYIOT TIIATEILHOTO U3YYEHHS 1 OCMBICTICHHSI Ha Pa3INYHBIX YPOBHSX:
OT JIEKTOPA — 10 JUPEKTOPOB MPOTPaMM.

7. 3aka104eHne

B 3akmroueHuM XO04eTcs OTMETUTh TPYIHOCTh B OCBOCHHHU INpeaMeTa CTaTUCTHKH. IIpudmH 3ToMy
MHOT0. OT OOBEKTHBHBIX - HalpUMep, HE BCErjga Mbl MMeeM aOMTypHEHTOB (CTYAEHTOB) C XOpOILIEH
MaTeMaTH4ecKod MoAroToBKOH. Jlo CyOBEKTHBHBIX: HE YCTaHOBJIEH HEOOXOAWMBIH KOHTaKT JEKTOp-
cryzneHt. Ho Meroauka, KOTOpYIO NPHMEHSET JEKTOp, JOJDKHA ObITh POOACTHOM K 3THM BapuaHTaM
M3MEHEHHH “HCXOAHBIX NaHHBIX . OH JOJDKEH MPOBECTH CTYAEHTA MOCIEA0BATENIFHO, YEPEe3 CIEAYIOIHe
YPOBHHM NOHUMaHUs npeaMeTa. IIepBelii COCTOUT B OCBOGHUH OCHOBHBIX CTATUCTUYECKHX TEPMUHOB H
METO0B. BTOpOl — B 3HAHMU M YMEHUM IMPHUMEHATh CTATUCTHYECKUN amIapar, MCIOJIb3ys IPUKIIAIHbIE
MaKeThl aHaau3a JaHHbIX. TpeTuil — B yMEHUHM IPaMOTHO IIOCTPOUTH MOJENb, aACKBATHO OTPaXKAIOLIYIO
PEABHOCTD M BOCIIONIb30BaThCs PE3YIbTaTaAMH CTATHCTHYECKOTO aHAIIN3a B YIIPABICHUN.
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Sodien eksisté daudz dazadu kriptosistému un $ifrésanas/atiifrésanas metozu. Saja darba ir paraditas ka tradicionalas un
modernas kriptosistémas — Cézara (simetriska kriptosistéma ar parasto ielik§anu), ViZinera (simetriskda kriptosistéma ar sarezgitu
ielikSanu), DES (moderna simetriska kriptosistéma), RS4 (moderna asimetriska kriptosistéma) un citas, ta ari kriptosistémas ar
determinétu haotisku logistikas atspogujoSanas modeju izmantoSanu, kuras tuvakaja nakotn& bis popularas. Visas aug$minétas
kriptosisteémas ir detaliz&ti paraditas un tas priekSrocibas atzimétas. Atkariba no kriptosisttmu priekSrocibam un trikumiem katru no
kriptosistémam ir jaizmanto definta joma p&c droSibas prasibam. DES un determinétu haotisku logistikas atspogulosanas modelu
kriptosistémas ir visdro$akas datu $ifréSanas un autentifikacijas gadijumos, RS4 — datu SifréSanas un ciparu paraksta nodro$inasanas
gadijumos. Logistikas atspogujoSanas modelu haotiskais raksturs var bt par prieksrocibu $ifré$ana, jo sist€ma no viena stavokla cita ir
defingta ar dazadiem vienadojumiem un sakumu parametri tiek izveléti gadijuma. Sistéma izbeidz savu darbibu atkariba no raksturota
stavokla — viena punkta vai vairaku punktu veidoSanas. Eksiste tris atraktoru tipi :1) fiks&tais punkts,®2) ierobezots cikls vai
periodiskums, 3) determin&tais haoss.Jautajums, cik griti ir lauzt determinétu haotisku logistikas atspogujosanas modelu kriptosistému ir
aprakstits un nokomentéts $aja darba. Datoru stacijam ir jaizmégina dazadus parametrus aug§minétas kriptosist€émas uzlausanai — dazadas
sakumu iteracijas, dazadu parametru vertibas, dazadus sakumu nosacijumus, dazadu precizitati, dazadus decimala skaitlus un pozicijas
un, gal&ji, dazadas funkcijas, kas var generét determin&tu haosu. Determinétu haotisku logistikas atspoguloSanas modelu pamata
izveidotais programmnodro$inajums $ifré un atSifré visu veidu datus un atbilst visam modernam prasibam datu aizsargaSanai no
nesakcionétas pieejas .

NoteicoSie vardi: kriptosistémas, logistikas atspogulo$anas modeli, determinétais haoss, $ifréSanas/atSifrésanas metodes

Cero/iHst CyLIECTBYeT MHOTO Pa3HOOOPA3HBIX KPHIITOCHCTEM ¥ aJIrOPUTMOB Inn(ppoBanus/pacumdposanns. B manuoit pabore
paccMaTpUBalOTCS KakK TPAJMIMOHHBIE M COBPEMEHHBIC KPHITOCHCTEMBI — [le3aps (CMMMeTpuyecKas: KPUITOCHCTEMa C IPOCTON
BCTaBKO#), BuHusicepa (CUMMETpUYECKas KpPUNTOCHCTEMA CO CJIOXHOH BcTaBkoW), DES (coBpeMeHHas CHMMETpUYecKas
kpuntocucrema), RSA (coBpeMeHHasi aCHMMETPUYECKasi KPUNITOCHCTEMA) U APYTHe, TaK U KPUITOCHCTEMbI, OCHOBAHHBIC HA MOOEISX
0emepMUHUPOBAHHBIX — XAOMUYECKUX —J02UYeCKUX omobpadcenutl, KOTOpPble B CKOpoM Oymymem OymyT momynsapHbl. Bce
BBILICYIOMSHYTbIE KPUNTOCHCTEMbI JETANbHO PACCMOTPEHBI M IMOKA3aHbl MX MPEHMYIIECTBA. B 3aBUCHMOCTH OT HPEHMYIIECTB U
HEJOCTaTKOB KPHITOCHCTEM KaK/as W3 HUX JTOJDKHA IPHMEHSTHCS B ONPEACICHHONH 00JacTH COMIACHO TPeOOBAaHHSM O OE30MacHOCTH.
DES XpunTOCHCTEMBI M KPHITOCHCTEMBI C MOOEAMU OCMEPMUHUPOBAHHBIX XAOMUYECKUX 102UHeCKUX omobpadcenutl Hanodonee
HA/ISKHBI IPU IH(POBAHUU TAHHBIX U ayTeHTU(GUKAIMHU, RSA - npu mudpoBaHUM JaHHBIX U 00€CTIEYEHUH HJIEKTPOHHOM MOAMUCH.
XaoTuueckuii xapakrep mooesneil 0emepMUHUPOBAHHBIX XAOMUYECKUX JOSUHECKUX ONMOOPAdCceHuil OTHO3HAYHO MOXKET ObITh IIPUMEHHUM B
KpUnTorpagui ¢ HPEHMMYLIECTBOM [0 OTHOIICHHIO K JPYTHM, HOTOMY 9YTO COCTOSHHS CHCTEMbI OINPEICISIETCS Pa3IMYHBIMU
YPaBHECHMSIMH, a HauaJbHOE COCTOSIHHE CHCTEMbl BbIOMpaeTcs ciaydaifHpIM. OOBIYHO CHCTEMa 3aKaHYHBAETCS COCTOSHHEM C OJHUM
MOJIO’KEHHEM WK HabopoM monoxeHuit. CyIiecTBYeT TpH THIIA aTpakTopos: 1) (UKCHpOBaHHAs TOYKA, 2) OTPAaHMYCHHBINA LUK WINA
MEePUOJMYHOCT, 3) JETEPMHUHUPOBAHHBIA xaoc. CIIOXHOCTh B3JIOMAa KPHIITOCHCTEMBI Ha OCHOBE MoOenell OemepMuHUpOSAHHbIX
Xaomuyeckux 102udeckux omobpaxcerutl 00CyKIaeTcs B JaHHOH paboTe ¢ MPUBEACHHEM OKOHYATEIbHBIX BBIBOJIOB. IIpy mpUMeHeHUI
KOMITBIOTEPHBIX CHCTEM IS B3JIOMa BBILICYIIOMSHYTOH KPHITOCHCTEMBI HEOOX0IMMO MepebrpaTh pas3indHbIC MapaMeTphl — pasIndHble
HavaJbHbIC UTEPALMH, PA3JIMYHbIC 3HAYCHHUs 1aPaMETPOB, Pa3JIMYHbIC HAYaJIbHBIC YCIOBHS, PA3IMYHYI0 TOYHOCTH, Pa3INYHBIH HA0Op 1
PACIIONOKEHHE YHCE M, HAKOHEl|, pa3M4Hble (yHKIMH, KOTOpbIE MOTYT MOACIMPOBATH ACTEPMHHHUPOBAHHBINH Xxaoc. Hammcanuoe
porpaMMHoOe 00ecIedeHne, OCHOBAaHHOE Ha MOOeisixX OemepMUHUPOBAHHBIX XAOMUUECKUX NOSUHeCKUX omobpadcerut, WAGPYET u
paciuppoBbiBaeT 000 BHJ JAHHBIX W YAOBICTBOPSET BCEM COBPEMCHHBIM TpeOOBaHHMAM MO 3allUTE€ JAHHBIX OT
HECAaHKIIMOHHPOBAHHOTO IOCTYTIA.

KiioueBble €JI0Ba: KPUIITOCHCTEMBI, JIOTHYECKUE OTOOPaXKEHHsI, AeTEPMUHHPOBAHHEIIT Xa0C, METO/IbI IIM(POBAHHs/ IeIH(POBAHIIS.

Today a lot of different cryptosystems and encryption/decryption methods existsl. In this paper both traditional and modern
cryptosystems — Ceaser (symmetric cryptosystem with simple insertion), Vinigere (symmetric cryptosystem with complex insertion),
DES (modern symmetric cryptosystem), RS4 (modern asymmetric cryptosystem) and others, as cryptosystems based on the
determinated chaotic logistic growth models, are shown. All mentioned cryptosystems are shown in details and their benefits are also
remarked. Depending on the cryptosystem advantages and disadvantages each of these cryptosystems must be used in defined area due to
the security requirements. DES and determinated chaotic logistic growth model cryptosystems is more reliable to use for data encryption
and authentication, RSA — data encryption and digital signature. The chaotic character of logistic growth models can be used to advantage
in cryptography, because the system from one state to another is determined by a different equations, and the initial state of the system is
randomly selected. The system often ends up in a state described by one point or a set of points. There are three types of attractors:

1) a fixed-point, 2) a limit cycle or a periodic, 3) a deterministic chaotic. The question of how difficultly it is to break the cryptosystem,
where determined chaotic logistic growth models are used, is discussed here and clear remarks are made. Computers should be used to
break the system described above by trying out different parameters - different initial iterations, different parameter values, different
initial conditions, different precisions, different numbers and positions of decimals and, finally, different functions that can create
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deterministic chaos should all be tried. The created software, based on determined chaotic logistic growth models, encrypts and decrypts
all kind of data and satisfies all necessary modern conditions for data protection from unauthenticated access.
Keywords: cryptosystems, encryption/decryption methods, logistic growth models, determinated chaos

1. Sifrédanas tehnologiju optimizacija
1.1. DETERMINETIE HAOTISKIE LOGISTIKAS ATSPOGULOSANAS MODELL

Vienadojumu pétisana, kuri veido haosu, ir jauns virziens zinatné p€dgjos 30 gadus. Teorétiskie
pamati tika izstradati XX gadsimta, bet praktiska realizacija bija iesp&jama tikai XX gadsimta, jo tadu procesu
pétisana prasa daudz kalkuléSanu un nav iesp&jams pilnvertigi tos veikt bez datoru palidzibas. Pirmais, kurs
veica skaitliskos eksperimentus, bija Edwards Lorenz 1963. gada, veidojot haotisko laika apstaklu modeli.
Atkariba no izmantotiem modeliem un parametru izmainas ir iesp&jams sasniegt cikliska vai haotiska veida.
Tas dod iesp&ju pétit un izstradat dazadus risinajumus vairakas jomas. Viena no tam ir kriptografija, vai datu
sifréSana un atSifréSana, nodroSinot lielu kriptoizturibu un atrdarbibu. Pamata tiek izmantotas determinétie
haotiskie logistikas atspogulo$anas modeli, vai logistikas atspogulo$anas modeli saisinati. Tads nosaukums
ndca no pirma pielietojuma $iem modeliem, kad bija m&ginats veikt iedzivotaju picaugums. Saja darba mérkis
ir izpétit ciklisko un haotisko modelu raksturojumus ar praktisko pielietoju kriptosistému izstradasana.

1.2. VERHALSTA LOGISTIKAS ATSPOGULOSANAS MODELIS.

Logistikas atspoguloSanas modeli ir vairaki un ir plasi izskatiti literattira, 1idz ar ko TpaSa uzmaniba
biis pieversta tikai daziem no tiem, jo tas ir pilnigi pietickami, lai paraditu So modelu pielietojumu tada
svariga joma, ka kriptografija. Pamata tiek izmantots P. F. Verhulst modelis

X 1=rx(1-x,) , )

kur x, ir skaitliskais stavoklis iteracijas # bridi, » — auguma parametrs, ¢ — iteracijas daudzums. Grafisks attéls ir
redzams Zimejuma I..

Bifurkacijas diagramma

r = 3.00 - cikls ar periodu 2
r = 3.45 - cikls ar periodu 4
r = 3.55 - cikls ar periodu &
r = 2.37 - iestajas haoss
r = 3.83 - cikls ar periodu 3
Ht
1.0
0.8
0.6 T
7
-
7
-
-
0.4 —
0.2
o 0.5 1 1.5 2 2.5 3 r

Ziméjums 1. Bifurkacijas diagramma Verhulsta modelimar 0 <r<4,0< x,<1.
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Analizgjot logistikas atspoguloS$anas modelus ir pienemts vertét tos péc atraktora tipa un stabilitates
krit€rijiem. Ja sistéma pariet no viena stavokla citda p&c vienadojuma noteikumiem ar dazadu sakumu
nosacTjumu parametriem, tad sakot no kadas iteracijas lieluma sisteémas stavoklis var biit aprakstits ar vienu
punktu vai punktu kopas, kas tiek saukt par atraktoru. Atraktora punkti tick saukti par atraktora pamatu.
Eksistg tris atraktora tipi:

- fiks@tais punkts,

- ierobezots cikls vai periodiskums,

- determinétais haoss.
Analizgjot P. F. Verhulst modeli var secinat, ka fiks€tais punkts ir sasniedzams robezas /< r < 3,
periodiskums - 3 < r < 3,57, determinétais haoss - 3,57 < r < 4. Gadijuma, ja >4, tad sistéma pariet negativa
bezgaliguma. Kad pieauguma process sakas no fikséta x,, » (sakuma parametri) un paiet ¢ iteracijas, sist€ma
tiek sagatavota talakam pétiSanam, atkariba no pétjjuma raksturojuma. Parametrs x, nodroSina x, vértibas
sagatavoSanu, r — sist€mas stavokli viena no trim atraktoriem. Pieméram, ja x, = 0.36, r = 2.51, tad x, ir
redzami tabula 1. Sakot ar ¢t = 21 sist€ma iestajas pirma atraktora stavoklt (fiks&tais punkts) un neatkariba no
iteraciju daudzuma parametrs x, = 0.6015936 vienmér biis patstavigs. Otra (ierobezots cikls vai periodiskums)
atraktora stavoklis ir paradits tabulas 2, 3 un 4. Katra tabula atspogulo savu atraktora raksturu, jo ir dazads
periodiskums — 2 (3 < r < 3.45), 4 (3.45 <r <3.55) un 8 (3.55 < r < 3.57) attiecosi. Var redzet, ka pirma
gadijuma, kad r = 3.41, x, ir nemainigi 0.4494620 un 0.8437913 attiecosi no =129, otra, kad r = 3.49, x, ir
0.8291274, 0.4944462, 0.8723924 un 0.3885205 no t = 49 un tresd, kad » = 3.559, x, ir 0.8896760,
0.3493251, 0.8089503, 0.5500424, 0.8808374, 0.3735629, 0.8328546, 0.4954406 no ¢ = 75, un tresa atraktora
stavokli, paradits tabuld 5 ar r = 3.61, ir determin&tais haosa raksturs, kur jau sakot no ¢ = 0 katrs x, ir
atSkirigs.

TABULA 1.

Atraktors: fiks€tais punkts, » = 2.5/, ¢t =21
Xo| 0.3600000 [Xa| 0.6015937 |Xao| 0.6015936 [Xe| 0.6015936
Xi| 0.5783040 [Xau| 0.6015936 |Xa| 0.6015936 [Xea| 0.6015936
Xo| 0.6121099 [Xa| 0.6015936 |Xa| 0.6015936 [Xe| 0.6015936
Xs| 0.5959527 [Xa| 0.6015936 |Xa| 0.6015936 [Xe| 0.6015936
Xa| 0.6043906 [Xas| 0.6015936 |Xas| 0.6015936 [Xes| 0.6015936
Xs| 0.6001475 [Xss| 0.6015936 |Xas| 0.6015936 [Xes| 0.6015936
Xs| 0.6023259 [Xss| 0.6015936 |Xas| 0.6015936 [Xes| 0.6015936
X7 0.6012188 [Xs| 0.6015936 |Xa7| 0.6015936 [Xe| 0.6015936
Xs| 0.6017844 [Xss| 0.6015936 |Xas| 0.6015936 [Xes| 0.6015936
Xo| 0.6014962 [Xa| 0.6015936 |Xa| 0.6015936 [Xe| 0.6015936
Xio| 0.6016433 |Xs0| 0.6015936 |Xso| 0.6015936 |Xw| 0.6015936
Xii| 0.6015683 |Xsi| 0.6015936 |Xsi| 0.6015936 |X71| 0.6015936
Xiz| 0.6016065 |Xs2| 0.6015936 |Xs2| 0.6015936 |X»| 0.6015936
Xiz| 0.6015870 |Xss| 0.6015936 |Xs3| 0.6015936 |Xss| 0.6015936
Xia| 0.6015970 |Xs4| 0.6015936 |Xs4| 0.6015936 |Xa| 0.6015936
Xis| 0.6015919 |Xss5| 0.6015936 |Xss| 0.6015936 |Xss| 0.6015936
Xis| 0.6015945 |Xs6| 0.6015936 |Xss| 0.6015936 |Xs| 0.6015936
Xiz| 0.6015932 |Xs7| 0.6015936 |Xs7| 0.6015936 |X#| 0.6015936
Xis| 0.6015939 |Xss| 0.6015936 |Xss| 0.6015936 |Xss| 0.6015936
Xio| 0.6015935 |Xs| 0.6015936 |Xs9| 0.6015936 |X| 0.6015936

TABULA 2.

Cikliskais atraktors ar periodu 2, r = 3.41, ¢t = 129
Xo | 0.3600000 |Xa0| 0.4528682 |Xao| 0.4498607 |Xeo| 0.4495110 [Xso| 0.4494695 [Xioo| 0.4494646 |Xizo| 0.4494640
Xi| 0.7856640 | Xa1| 0.8449250 | Xa1| 0.8439274 | Xei| 0.8438074 [Xsi| 0.8437931 |Xioi| 0.8437914 |Xia1| 0.8437912
X2 | 0.5742306 | X22| 0.4468012 | Xa2| 0.4491444 |Xe2| 0.4494259 | Xs2| 0.4494594 |Xioz| 0.4494634 [Xiz2| 0.4494639

102



MATHEMATICAL STATISTICS AND RELIABILITY THEORY

X5 | 0.8337103 | Xa3| 0.8428493 | Xa3| 0.8436808 | Xes| 0.8437781 [Xsz| 0.8437897 |Xios| 0.8437910 |Xizz| 0.8437912
Xa| 04727537 | Xaa| 0.4516693 | Xaa| 0.4497229 | Xes| 0.4494946 [Xsa| 0.4494676 | Xioa| 0.4494643 |Xioa| 0.4494640
Xs | 0.8499686 |Xas| 0.8445347 | Xas| 0.8438802 | Xes| 0.8438018 [Xss| 0.8437925 |Xios| 0.8437914 |Xias| 0.8437912
Xeo | 0.4348501 |Xa6| 0.4477187 | Xas| 0.4492552 |Xes| 0.4494391 | Xse| 0.4494610 |Xios| 0.4494636 [Xizs| 0.4494639
X7 ] 0.8380262 | Xa7| 0.8431793 |Xar| 0.8437191 | Xez| 0.8437827 [Xs7| 0.8437902 |Xioz| 0.8437911 |Xi2z| 0.8437912
Xs | 0.4628676 | Xas| 0.4508973 | Xas| 0.4496329 | Xes| 0.4494840 [Xss| 0.4494663 | Xios| 0.4494642 | Xizs| 0.4494640
Xo | 0.8477982 | Xa9| 0.8442782 |Xao| 0.8438494 | Xeo| 0.8437981 [Xso| 0.8437920 |Xios| 0.8437913 |Xizs| 0.8437912
Xio| 0.4400141 [Xs0| 0.4483212 | Xs0| 0.4493276 | Xo| 0.4494477 | Xeo| 0.4494620 [Xio| 0.4494637 [Xiso| 0.4494639
Xii| 0.8402298 | Xa1| 0.8433929 [Xsi| 0.8437442 | X71| 0.8437856 | Xo1| 0.8437906 [Xin| 0.8437911 | Xisi| 0.8437912
Xiz| 04577710 [X52] 0.4503972 | Xs2| 0.4495743 | X2| 0.4494770 | Xe2| 0.4494655 [Xiiz| 0.4494641 [Xis2| 0.4494639
Xiz| 0.8464190 [X53| 0.8441099 | Xs3| 0.8438292 | X73| 0.8437957 | Xes| 0.8437918 [Xus| 0.8437913 [Xiss| 0.8437912
Xia| 04432791 | Xza| 0.4487163 [ Xsa| 0.4493748 | Xga| 0.4494533 | Xoa| 0.4494627 [Xia| 0.4494638 | Xiza| 0.4494639
Xis| 0.8415292 [Xss| 0.8435317 | Xss| 0.8437605 | X7s| 0.8437876 | Xos| 0.8437908 [Xuis| 0.8437912 [Xiss| 0.8437912
Xis| 0.4547502 | Xs6| 0.4500723 [Xss| 0.4495360 | X76| 0.4494725 | Xos| 0.4494649 [Xie| 0.4494640 |Xizs| 0.4494639
Xiz| 0.8455179 [X57] 0.8439996 | Xs7| 0.8438160 | X77| 0.8437942 | Xez| 0.8437916 [Xiw| 0.8437913 [Xisz| 0.8437912
Xis| 0.4454053 [Xss| 0.4489751 | Xiss| 0.4494057 | Xas| 0.4494570 | Xos| 0.4494631 [Xiis| 0.4494638 |Xiss| 0.4494639
Xio| 0.8423362 [Xs9| 0.8436219 | Xs9| 0.8437712 | Xm| 0.8437888 | Xeo| 0.8437909 [Xis| 0.8437912 |Xise| 0.8437912
TABULA 3.
Cikliskais atraktors ar periodu 4, r = 3.49, t = 49
Xo | 0.3600000 |Xa0| 0.3895296 |Xa0| 0.3885208 | Xeo| 0.3885205
Xi | 0.8040960 |Xa1| 0.8299091 | Xat| 0.8291276 |Xei| 0.8291274
Xo | 0.5497644 | Xa22| 0.4926484 | Xaz| 0.4944458 |Xe2| 0.4944462
X5 | 0.8638570 | Xa3| 0.8723114 | Xaz| 0.8723923 | Xes| 0.8723924
Xa| 04104522 | Xo4| 0.3887310 | Xa4a| 0.3885206 | Xe4| 0.3885205
Xs | 0.8445143 | Xos| 0.8292910 | Xas| 0.8291275 | Xes| 0.8291274
Xo | 0.4582715 | Xas| 0.4940703 | Xas| 0.4944462 |Xes| 0.4944462
X7 | 0.8664230 |Xa7| 0.8723773 | Xaz| 0.8723924 | Xe7| 0.8723924
Xs | 04039124 | Xas| 0.3885597 | Xas| 0.3885205 |Xes| 0.3885205
Xo | 0.8402774 | X29| 0.8291579 | Xao| 0.8291274 |Xeo| 0.8291274
Xio| 0.4683973 | Xs0| 0.4943762 [Xso| 0.4944462 | X70| 0.4944462
Xii| 0.8690144 | Xa1| 0.8723896 [Xsi| 0.8723924 | X71| 0.8723924
Xiz| 03972609 | Xs2| 0.3885276 [Xs2| 0.3885205 | X72| 0.3885205
Xiz| 0.8356619 [Xs3| 0.8291329 [Xs3| 0.8291274 | X73| 0.8291274
Xia| 04792854 [Xaa| 0.4944335 | Xsa| 0.4944462 | X74| 0.4944462
Xis| 0.8710025 | Xss| 0.8723919 [Xss| 0.8723924 | X75| 0.8723924
Xis| 03921265 | Xs6| 0.3885218 [Xse| 0.3885205 | X6| 0.3885205
Xi7| 0.8318880 | Xs7| 0.8291284 [Xs7| 0.8291274 | X77| 0.8291274
Xis| 04880778 [Xss| 0.4944439 | Xss| 0.4944462 | Xzs| 0.4944462
Xio| 0.8720039 |Xs9| 0.8723923 [Xso| 0.8723924 | X | 0.8723924
TABULA 4.
Cikliskais atraktors ar periodu 8, r = 3.559,t =75
Xo | 0.3600000 |Xa0| 03512763 | Xao| 0.3735638 [Xeo| 0.3493251 | Xso| 0.3735629 |Xioo| 0.3493251
Xi| 0.8199936 |Xa1| 0.8110294 | Xa1| 0.8328554 | Xei| 0.8089503 [Xsi| 0.8328546 [Xioi| 0.8089503
X2 | 0.5253230 | Xa2| 0.5454548 | Xa2| 0.4954387 [Xe2| 0.5500423 | Xs2| 0.4954406 |Xioz| 0.5500424
X5 | 0.8874678 | Xa3| 0.8823966 | Xa3| 0.8896760 |Xes| 0.8808374 [ Xss| 0.8896760 [Xios| 0.8808374
Xa| 0.3554328 | Xas| 03693275 | Xaa| 0.3493253 | Xea| 0.3735628 | Xsa| 0.3493251 |Xios| 0.3735629
Xs | 0.8153680 | Xos| 0.8289790 | Xas| 0.8089505 | Xes| 0.8328545 | Xss| 0.8089503 [Xios| 0.8328546
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X6 | 0.5357826 | Xas| 0.5045694 | Xas| 0.5500420 |Xes| 0.4954408 | Xss| 0.5500424 |Xios| 0.4954406
X7 | 0.8851931 |Xa7| 0.8896757 | Xaz| 0.8808375 |Xez| 0.8896760 | Xs7| 0.8808374 |Xio7| 0.8896760
Xs | 03616880 |Xas| 0.3493260 |Xas| 0.3735625 | Xes| 0.3493251 [Xss| 03735629 |Xios| 0.3493251
Xo | 0.8216655 |Xa9| 0.8089513 |Xaw| 0.8328542 | Xeo| 0.8089503 [Xso| 0.8328546 [Xios| 0.8089503
Xio| 0.5215048 | X30| 0.5500403 [Xso| 0.4954415 |Xq0| 0.5500425 | Xoo| 0.4954406 [Xiwo| 0.5500424
Xii| 0.8881041 | Xa1| 0.8808382 [Xsi| 0.8896760 | X71| 0.8808374 |Xo1| 0.8896760 [Xin| 0.8808374
Xi2| 0.3536763 | Xa2| 0.3735608 [Xs2| 0.3493250 | X72| 0.3735629 | Xez2| 0.3493251 [Xiiz| 0.3735629
Xiz| 08135496 [X53| 0.8328528 [ Xis3| 0.8089502 | X73| 0.8328546 |Xes| 0.8089503 |Xis| 0.8328546
Xia| 0.5398528 | Xza| 0.4954450 [Xsa| 0.5500426 | X74| 0.4954405 | Xoa| 0.5500424 [Xi1a| 0.4954406
Xis| 0.8840974 | Xss| 0.8896762 [ Xss| 0.8808373 | Xs5| 0.8896760 |Xos| 0.8808374 |Xiis| 0.8896760
Xis| 03646877 | Xas| 0.3493247 [Xse| 0.3735631 | Xas| 0.3493251 | Xos| 0.3735629 [Xie| 0.3493251
Xi7| 0.8245868 | Xa7| 0.8089499 [Xs7| 0.8328548 | X77| 0.8089503 |Xo7| 0.8328546 |Xiz| 0.8089503
Xis| 0.5147859 [Xss| 0.5500433 [ Xiss| 0.4954403 | X7s| 0.5500424 | Xoes| 0.4954406 |Xis| 0.5500424
Xio| 0.8889719 | X39| 0.8808371 [Xso| 0.8896760 | X79| 0.8808374 |Xoo| 0.8896760 |Xis| 0.8808374
TABULA 5.

Determinétais haotiskais atraktors, » = 3.61,¢t = 0
Xo | 0.3600000 |X20| 0.4426432 |Xao| 0.3425239 | Xeo| 0.3404588 [Xso| 0.3389355 |Xioo| 0.5167856 |Xizo| 0.5157232
Xi| 0.8317440 |Xa1| 0.8906238 |Xa1| 0.8129766 | Xei| 0.8106132 [Xsi| 0.8088502 [Xioi| 0.9014829 |Xia1| 0.9016075
Xo| 0.5052048 | Xa22| 03516611 |Xaz2| 0.5488847 [Xez| 0.5542051 [Xs2| 0.5581477 | Xioz| 0.3206096 |Xiz2| 0.3202481
X5 | 0.9024022 | Xa3| 0.8230640 |Xa3| 0.8938731 | Xes| 0.8918931 [Xsz| 0.8902940 [Xios| 0.7863269 |Xiaz| 0.7858582
Xa| 03179416 |Xaa| 0.5257230 | Xaa| 0.3424589 | Xea| 0.3480754 [Xsa| 0.3525907 |Xioa| 0.6065411 |Xi2a| 0.6075091
Xs | 0.7828456 [ Xas| 0.9001114 |Xas| 0.8129027 | Xes| 0.8191773 [ Xss| 0.8240565 |Xios| 0.8615229 |Xizs| 0.8607748
Xo| 0.6136941 |Xas| 0.3245784 |Xas| 0.5490517 |Xes| 0.5347344 [Xss| 0.5234043 [Xios| 0.4306774 |Xizs| 0.4326278
X7 | 0.8558359 | Xa7| 0.7914104 |Xa7| 0.8938141 | Xezr| 0.8981446 [Xs7| 0.9005226 [Xior| 0.8851517 | Xiez| 0.8861142
Xs | 0.4454048 | Xas| 0.5959388 | Xas| 0.3426268 | Xes| 0.3302459 [Xss| 0.3233898 [Xios| 0.3669860 |Xizs| 0.3643062
Xo | 0.8917399 | X29| 0.8692726 |Xa9| 0.8130935 | Xeo| 0.7984726 [Xso| 0.7898999 [Xios| 0.8386293 |Xize| 0.8360297
Xio| 0.3485089 | Xao| 0.4102321 [ Xs0| 0.5486205 |X70| 0.5808999 |Xoo| 0.5991085 [Xito| 0.4885421 |Xiso| 0.4948733
Xii| 0.8196521 | X51| 0.8734096 [Xsi| 0.8939661 | Xa1| 0.8788733 | Xei| 0.8670408 |Xin| 0.9020261 [Xis1| 0.9024051
Xi2| 0.5336394 | X52| 0.3991405 [Xs2| 03421944 | X752| 0.3843026 | Xe2| 0.4161646 |Xitz| 0.3190339 [Xis2| 0.3179331
Xiz| 0.8984149 | Xa3| 0.8657768 [ Xs3| 0.8126015 | X3 | 0.8541770 | Xes| 0.8771276 |Xums| 0.7842771 | Xizz| 0.7828345
Xia| 03294687 | Xaa| 0.4195085 [ Xs4| 0.5497318 | Xa| 0.4496568 | Xoa| 0.3890670 [Xiia| 0.6107634 |Xisa| 0.6137168
Xis| 0.7975179 | X5s| 0.8791113 [Xss| 0.8935716 | Xss| 0.8933507 | Xoes| 0.8580749 |Xiis| 0.8582106 [Xiss| 0.8558172
Xis| 0.5829540 | X5s| 0.3836515 [Xse| 03433162 | Xss| 0.3439436 | Xos| 0.4396344 |Xie| 0.4392834 [Xise| 0.4454527
Xiz7| 0.8776583 | Xa7| 0.8536315 [Xs7| 0.8138751 | X77| 0.8145835 | Xo7| 0.8893451 |Xuiz| 0.8891917 | Xisz| 0.8917588
Xis| 0.3876210 | Xss| 0.4510506 [Xss| 0.5468515 | Xus| 0.5452443 | Xes| 0.3552614 | Xus| 0.3556926 | Xiss| 0.3484555
Xio| 0.8569092 | Xao| 0.8938503 |Xso| 0.8945758 | X9 0.8951102 | Xoo| 0.8268732 [Xio| 0.8273230 |Xiso| 0.8195937

19}
S

Tabulas ir paraditas x, veidoSanas atkariba no sakuma parametriem un ir redzama izmainas tendence,
kad sakot ar » = 3 fiks€ta punkta atraktors paliek nestabils (zim. 1.) un izveidojas divi jauni punkti, formgjot
stabilu ciklisku atraktoru ar periodu 2. Sis fenomens tiek saukts par perioda dubultosanu. Ar talako parametra
r palielinasanu cikliskais atraktors ar periodu 2 paliek nestabils un veidojas jauni 4 punkti, veidojot stabilu
ciklisku atraktoru ar periodu 4, talak ar periodu 8, 16, 32, 64 un ta tas notiek ar soli 2" 1idg bridim, kad r =
3.57 un izveidotie punkti ir tik daudz, kad sist€éma jau nav redzama cikliska punktu palielinasana un veidojas
haotiskais atraktors. Haoss ir determingts un atkariba no sakuma parametriem veidojas punktu kopa, kura
punkti cikliski neatkartojas. Ta ir haotiska atraktora biitiska prieksrociba kriptosistému izstradasanai, kad nav
iespgjams paredzets nakamo punktu un atliek tikai visu simbolu parlikSana. Detalizgtak tas tiks paradits
nakamajas nodalas. Ir dazi iznémumi, kad haotiskaja atraktora paradas dazi cikliskie periodi, bet tas Tpasi
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neietekme uz kopgja haotiska atraktora fona. Pieméram, kad » = 3.83, paradas cikls ar periodu 3, bet tas ir loti
maza haotiska atraktora josla.

1.2. CITI LOGISTIKAS ATSPOGULOSANAS MODELL

Verhulsta logistikas atspoguloSanas modelis ir pirmais no pargjiem pieciem logistikas
atspogulosanas modeliem, kuri bija izmekl&ti. Visi ir paraditi zemak ar atraktoru robezu noradi.

Eksponencialais modelis

Xer 1 =xexp(r(1-x,) @
Bifurkacijas diagramma

r = 2.00 - cikls ar periodu 2
r = 2.53 - cikls ar periodu 4
r = 2.66 - cikls ar periodu 8
r = 2.70 - iestajas haoss
r = 3.12 - cikls ar periodu 3

Kt

Bl

4

3

2

1

o 0.5 1 1.5

Ziméjums 2. Bifurkacijas diagramma eksponencialam modelimar 0 <r<4,0< x,<5.

Polinominalais modelis
Xer1=X(1+r(1-x) 3)
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Bifurkacijas diagramma

r = 2.00 - cikls ar periodu 2
r = 2.435 - cikls ar periodu 4
r = 2.355 - cikls ar periodu 8
r = 2.37 - iestajas haoss
r = 2.83 - cikls ar periodu 3

Ht

1.25

1

0.75

0.5

0.25

o 0.5 1 1.5 2 3.5 4’r

Ziméjums 3. Bifurkacijas diagramma polinominalam modelimar 0 <r<3,0< x,<1.3.

Blackman-Fisher-Pry modelis
X 1=xexp(r(L-x,) @

Bifurkacijas diagramma

= 0.67 - cikls ar periodu 2
L = 0.85 - cikls ar periodu 4
L = 0.89 - cikls ar periodu 8
L = 0.90 - iestajas haoss
Ht
2.5
2
1.5 /////j
1
o
0.5 =
o 0.2%5 0.5 0.75

Ziméjums 4. Bifurkacijas diagramma Blackman-Fisher-Pry modelimar0 <L <1,0< x,<2.5,r=3.
MacLaurin power modelis

Xp=x(1+rx-1,75x7) Q)
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1.88 cikls ar periodu 2

r o= -
r = 2.09 - cikls ar periodu 4
r = 2.13 - cikls ar periodu 8
r = 2.14 - iestajas haoss
r = 2.27 - cikls ar periodu 3

Ht

2

1.6

1.2

0.8
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o 0.5 1 1.5 2 2.5 3 3.5 4’r

Ziméjums 5. Bifurkacijas diagramma MacLaurin power modelim ar 0 <r <2.5,0 < x,< 1.75.

Otrais MacLaurin power modelis

Xev1=x4(1 +1,5xrx;” ) 6)

Bifurkacijas diagramma

r =1.12 - cikls ar periodu 2
r = 0.90 - cikls ar periodu 4
r = 0.87 - cikls ar periodu 8
r = 0.86 - iestajas haoss
r = 0.77 - ecikls ar periodu 3
Ht
2.5
2
h
5,
\
1.5 &
.
1
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o 0.5 1 1.5 2 2.5 3 3.5 4’r

Ziméjums 6. Bifurkacijas diagramma otram MacLaurin power modelim ar 0.6 <r<1.4,0< x,<2.8.
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TABULA 6.
Logistikas atspogulosanas modelu visu atraktoru stavokli
.. . Analiz&to Atraktora Iestajas Iestajas Iestajas .
Logistikas atspoguloSanas _ . . . Iestajas
. parametru fiks&ta punkta cikls ar cikls ar cikls ar
modelis R _ .. _ . . . haoss
intervals regiona sakums | periodu2 | periodu4 | periodu 8
1| Xer=rx(1-x) re(0,4) 1,01 3,00 3,45 3,55 3,57
2 | xer=xexp(r(1-xy)) re[0,4] 0,00 2,00 2,53 2,66 2,70
3 | xer=x(141(1-x) re(0,3) 0,01 2,00 2,45 2,55 2,57
4 | xer=xexp(r(L-x)) Le[0,1],r=3 0,00 0,67 0,85 0,89 0,90
5 | xer=xd(141x¢1,75%°) re(0,2.5] 0,01 1,88 2,09 2,13 2,14
6 | xw=x(1+1,5%-1x7) ref0.6, 2] 2,00 1,12 0,90 0,87 0,86
TABULA 7.
Logistikas atspogulosanas modelu determin&tu haotisku atraktoru stavokli
Modela nosaukums Logistikas a‘tsp?gu‘losanas Haosa 1es‘t§sana_s parametru Iesp&jamas kombinacijas r
modela vienadojums intervals parametram
1 Verhulsta X1 =IX(1-X¢) re(3.57,4) 0,43-10°
2 | Eksponencialais X1 =X€Xp(r(1-xy)) ref2.70,4] 1,30-10°
3 | Polinominalais X1 =X(1+1(1-X,)) re(2.57,3) 0,43-10°
4 | Blackman-Fisher-Pry X1=XXp(3(L-Xy)) Le[0.90,1] 0,10-10°
5 | MacLaurin power X=X 141%-1,75% %) re[2.14,2.50] 0,36-10°
6 | Otrs MacLaurin power X=X 1+1,5%1x) ref0.6, 0.86] 0,26-10°

Lai veiktu objektivu analizi, darba tiek paraditas ari citi logistikas atspoguloSanas modeli, kuru
atraktoru stavokli ir paraditi fabula 6 un attieco$ds bifurkacijas, raksturojusas katru no logistikas
atspogulosanas modeliem, ir arT paraditas zemak. Kriptosistémas izstradasanai vissvarigaka dala ir tieSi
haotiska atraktora robezas, jo tas laus nodroSinat loti augstu kriptoizturibu. Aptuvena haotiska atraktoru
robezas r parametram ar iesp&jamo kombinaciju daudzumu katram logistikas atspoguloSanas modelim, kas
tika izmantots programmnodro$inajuma izstradg, ir paraditas tabula 7. Kombinacijas daudzums ir atkarigs no
vairakiem sakuma parametriem, katrs no kuriem detalizgtak tiks apspriest nakamaja nodala.

2. SifreSanas tehnologiju optimizacijas algoritms

Kriptosisteémas algoritma izstrade, balstoties parsvara uz haotiska atraktora Tpasibam atkariba no
sakuma parametriem veido punktu kopu, kurd punkti cikliski neatkartojas, dod iesp&ju optimizet esosas
simetriskas kriptosistemas, izveidojot jaunu virzienu simetriskas kriptosist€mas vidii. Galvenas prasibas jeb
kurai kriptosistémai ir:

- liels atslégas garums (no 70 bitiem),

- algoritma atklatums (zinams kriptoanalitikim).
Izstradata kriptosistéma atbilst §im prasibam. Lai paskaidrotu smalkak, tiek izmantota Verhulsta logistikas
atspogulosanas modelis (1).

Pirmais solis — ir nepiecieSams aprakstit sakumu parametrus x,, 7, ¢, [, p, katrs no kuriem bis
kriptosist€mas slepena atsléga, kopa veidojot vienu atsleégu.

TABULA 8.
Sakuma parametrs t Xo r / p
Robezas 1..10° (0,000001 .. 1.00000001 .. 4,00000000 (10%) 1..12 1..12
1,000000) (10°)
IzvEl&tais parametrs 150 0.36 2.56, 3.26, 3.51, 3.56, 3,66 6 4

Otrais solis — izvéleties simbolu daudzumu, kuri aizvietos atvérto tekstu. Universalam gadijumam tiek
piedavats izmantot ASCII tabulu ar 256 simboliem (Pielikums A).

TreSais solis — gener&t x, ¢ reizes. Sakot ar i = ¢t +/ veikt nobides parametra k kalkuléSanu péc
sekojosa principa

k = x;64 mod 256, (6)
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Defingjot E; ka Sifréjamais simbols, D; - Sifrétais E; simbols, ASCII (E;) - E; simbola ASCII kods un ASCII (D)
- D; simbola ASCII kods tiek veikta sekojosa simbolu aizvietosanas operacija, nodrosinot simbola $ifrésanu
ASCII (D;) = ASCII (E)) + k, (7
Izmantojot dazadus parametrus r ir iegiiti dazadi rezultati, kuri ir atspoguloti tabulas 9, 10, 11, 12 un 13.

TABULA 9.
Atraktors fiks€tais punkts, r = 2.56
i t x, ] p k E, ASCII(E) | ASCII (D) D,
1 151 0,609375 609375 9375 159 1 49 208 I
2 152 0,609375 609375 9375 159 1 49 208 1
3 153 0,609375 609375 9375 159 1 49 208 I
4 154 0,609375 609375 9375 159 1 49 208 1
5 155 0,609375 609375 9375 159 1 49 208 I
6 156 0,609375 609375 9375 159 1 49 208 I
7 157 0,609375 609375 9375 159 1 49 208 I
8 158 0,609375 609375 9375 159 1 49 208 I
9 159 0,609375 609375 9375 159 1 49 208 1
10 160 0,609375 609375 9375 159 1 49 208 I
TABULA 10.
Cikliskais atraktors ar periodu 2, » = 3.26
i t X / P k E; ASCII(E) ASCII (D) D;
1 151 0,814789 814789 4789 181 1 49 230 0
2 152 0,491959 491959 1959 167 1 49 216 +
3 153 0,814789 814789 4789 181 1 49 230 i
4 154 0,491959 491959 1959 167 1 49 216 +
5 155 0,814789 814789 4789 181 1 49 230 u
6 156 0,491959 491959 1959 167 1 49 216 +
7 157 0,814789 814789 4789 181 1 49 230 u
8 158 0,491959 491959 1959 167 1 49 216 +
9 159 0,814789 814789 4789 181 1 49 230 u
10 160 0,491959 491959 1959 167 1 49 216 +
TABULA 11.
Cikliskais atraktors ar periodu 4, r = 3.5/
i t X / P k E; ASCII(E) ASCII (D) D;
1 151 0,877341 877341 7341 173 1 49 222 I
2 152 0,377722 377722 7722 42 1 49 91 [
3 153 0, 825018 825018 5018 154 1 49 203 I
4 154 0,506713 506713 6713 57 1 49 106 ]
5 155 0,877341 877341 7341 173 1 49 222 |
6 156 0,377722 377722 7722 42 1 49 91 [
7 157 | 0,825018 825018 5018 154 1 49 203 I
8 158 0,506713 506713 6713 57 1 49 106 ]
9 159 0,877341 877341 7341 173 1 49 222 |
10 160 0,377722 377722 7722 42 1 49 91 [
TABULA 12.
Cikliskais atraktors ar periodu 8, r = 3.56
i t X / P k E; ASCII(E) ASCII (D)) D;
1 151 0,880783 880783 0783 15 1 49 64 @
2 152 0,373813 373813 3813 229 1 49 22 —_—
3 153 0, 833314 833314 3314 242 1 49 35 #
4 154 0,494490 494490 4490 138 1 49 187 Bl
5 155 0,889891 889891 9891 163 1 49 212 E
6 156 0,348824 348824 8824 120 1 49 169
7 157 | 0,808639 808639 8639 191 1 49 240 =
8 158 0,550881 550881 0881 113 1 49 162 o
9 159 0,880783 880783 0783 15 1 49 64 @
10 160 0,373813 373813 3813 229 1 49 22 —_—
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TABULA 13.
Determinétais haotiskais atraktors, r = 3.66
i ! x, ! P k E, ASCII(E) | ASCII (D) D;
1 151 0,747938 747938 7938 2 1 49 51 3
2 152 0,690006 690006 0006 6 1 49 55 7
3 153 0,782864 782864 2864 48 1 49 97 a
4 154 0,622154 622154 2154 106 1 49 155 ¢
5 155 0,860386 860386 0386 130 1 49 179
6 156 0,439645 439645 9645 173 1 49 222
7 157 0,901667 901667 1667 131 1 49 180
8 158 0,324506 324506 4506 154 1 49 203 I
9 159 0,802280 802280 2280 232 1 49 25 |
10 160 0,580574 580574 0574 62 1 49 111 0

Rezultata var redzet, ka visdrosakais Sifrteksts ir determin&ta haotiska atraktora robezas (tabula 13),
kur simbols ‘7’ tiek katru reizi aizvietots ar citu simbolu. Analizgjot pargjas tabulas var manit, ka drosiba
samazinas ar tabulas numuru samazinaSanos un visbistamaka no droSibas viedok]a ir sapemtais rezultats
tabula 9, kur simbols ‘I’ katru reizi tiek aizvietots ar vienu un to pasu simbolu. Tas ir parastas apmainas
Cezara Sifrs, kur§ Sodien izmantojas tikai apmacibas. Tabula 10, 11 un 12 ir redzams jau komplicetaks
rezultats, kur simbols ‘7’ tiek aizvietots ar periodu 2, 4 un &8 attiecosi. Tas ir sarezgitu apmainas $ifrs ar soli 2,
4 un § attiecosi un varétu but ka Vizinera §ifréSanas sisteémas atsevisks gadijums. AtSifré$ana notiek pretgja
virziena.

Tada pasa veida tiek nodro§inata algoritma darbiba arT par&jiem logistikas atspoguloSanas modeliem.
Pielikuma B ir paraditi detalizétaks teksta faila SifréSanas rezultati visiem modeliem. Programmnodrosinajums
CRYPTO dod iespéju sifrét un atsifret jeb kadu faila datu formatu un apjomu abos virzienos ar kopgjo atslégas
garumu [1dz 72 bitiem.

3. Sifresanas tehnologiju optimizacijas algoritma rezultatu pétisana
3.1. KRIPTOIZTURIBA

Vissvarigakais  kriptosisttmas  parametrs ir  kriptoizturiba.  Izstradata
programmnodro$inajums CRYPTO uz logistikas atspogu]oSanas mode]Ju pamata nodroSina
5 slepenas atslégas — sakumu parametri. Katrs no parametriem ir paradits tabula 14.

TABULA 14.
Katras atslégas (sakuma parametra) kombinaciju daudzums.

Lodistikas at log Iesp&jamas Iesp&jamas Iesp&jamas Iesp&jamas kleslf.ja_m.@

0%151} as atspogwosanas kombinacijas x, kombinacijas r kombinacijas / kombinacijas p 0;n Lacyas
modehs parametram parametram parametram parametram veracyas

parametram

X1 =Tx(1-Xy) 10° 0,43- 10° 12 12 10°
Xe=xexp(r(1-x,)) 10° 1,30- 10° 12 12 10°
X=X 141(1-X,)) 10° 0,43-10° 12 12 10°
X1 =X€Xp(3(L-x,)) 10° 0,10- 10° 12 12 10°
X=X 141x-1,75% ) 10° 0,36- 10° 12 12 10°
X=X 141,50 1%) 10° 0,26- 10° 12 12 10°

Kriptoizturiba ir atkariga no atslégas garuma. Piedavataja algoritma datu $ifréSanai un atSifréSanai
izmantojas 5 slepenas atslégas. Katra no tam nodrosina kadu atsleégu kombinacijas daudzumu, kas var€tu biit

parveidots bitos, tabula 15.
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TABULA 15.
Katras atslégas (sakuma parametra) garums.

Logistikas atspoguloSanas étSIi‘%zrsni?:;;ls Atslégas garums r | Atslégas garums/ | Atslégas garums p Atsfe%fi;jir;ms
modelis o para ’ parametram, bitos | parametram, bitos | parametram, bitos yas

bitos parametram, bitos
X =X 1-Xy) 20 25 3 3 20
X =XeXp(r(1-xy)) 20 26 3 3 20
Xe=x(11(1-x,)) 20 25 3 3 20
X1 =X€Xp(3(L-xy)) 20 23 3 3 20
X=Xl 141x-1,75%) 20 25 3 3 20
X=X 1+1,5%01%°) 20 24 3 3 20

Kopsumma 5 atslégas nodrosina lidz 72 bitiem garu atslégu, kas tiek izmantota datu Sifré€Sanai un
atSifréSanai, fabula 16. Tas ir loti labs raditajs, jo Sodien absoliits dross atslégas garums ir 75 biti.

TABULA 16.
Programmnodrosinajuma CRYPTO atslégas raksturojums.

;Z%i:;iii(as atspogulosanas Kopgjais atslégu kombinaciju daudzums Kopgjais atslégas garums, bitos
X =TXo(1-X,) 6,192 -10*! 72
Xe1=X€xp(r(1-xy) 18,720 -10* 73

X1 =Xi(1+1(1-x0)) 6,192 -10*! 72

X1 =X€Xp(3(L-x,)) 1,440 -10*' 70
Xt+l:Xt(l+rXt'la75Xt2) 5,184 10% 72

X1 =X(141,5%¢1x,) 3,744 -107! 71

Analizgjot algoritma teor&tisko puse var manit, ka atslégas garumu teorétiski var palielinat tik daudz,
cik atlauj datoru sist€mas jauda un programmnodro§inajuma iesp&jas. Pe&c nokluséSanas tiek uzskatits, ka

prasibas ir lidzigas noraditam tabula 17.

TABULA 17.
Katras atslégas (sakuma parametra) teorétiskais kombinaciju daudzums.
. _ L _ lespgj

Logistikas atspoguloSanas Iequ_aryas lespgft mas Iesp.e Jamas lespg_a mas ko?l%?%ﬁ?is

deli kombinacijas x, kombinacijas r kombinacijas / kombinacijas p erdcii
modelis parametram parametram parametram parametram p;f;;zl{:;in
X =1x((1-X,) 10% 0,43-10% 39 39 10%
X1 =xexp(r(1-x,)) 10% 1,30-10% 39 39 10%*
X=X 1+1(1-Xy)) 10% 0,43-10% 39 39 10%
X =X@Xp(3(L-x,)) 10% 0,10-10% 39 39 10%
Xe =X 141x-1,75% ) 10% 0,36:10% 39 39 10%
X =X(1+1,5%1x) 10% 0,26-10% 39 39 10%

Parrekinot atslégu teoretisko kombinaciju daudzumu bitos, sanemam rezultatus, kuri ir atspoguloti tabula 18

TABULA 18.
Katras atsleégas (sakuma parametra) teorétiskais garums.
Logistikas atspoguloSanas Atslegas garums Atslegas garums | Atslégas garums / | Atslégas garums p Atsl-éga_s garums
. X parametram, . . . iteracijas
modelis . parametram, bitos | parametram, bitos | parametram, bitos .
bitos parametram, bitos
Xer =X 1-Xy) 128 128 5 5 128
Xen=Xe€Xp(r(1-xy)) 128 129 5 5 128
Xer =Xe(1+1(1-X¢)) 128 128 5 5 128
X =X€Xp(3(L-x¢)) 128 126 5 5 128
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Xe=X(1+1x-1,75%) 128 128 5 5 128

Xe =X(111,5%¢ 1) 128 127 5 5 128

Kopsumma 5 atslégas nodrosina Iidz 399 bitiem garu atslégu, kas tiek izmantota datu $ifréSanai un
atSifréSanai, tabula 19. Tas ir burvigs raditajs, jo, ka jau tika minéts ieprieks, Sodien absoltits droSs atsleégas
garums ir 75 biti, bet lai vin$ paliktu dross arT nakamos 20 gadus, tad atslégas garumam jabiit no 90 bitiem.
legtitais rezultats pieckarsi parsniedz Sodienas prasibas.

TABULA 19.
Programmnodrosinajuma CRYPTO teorétiskais atslégu raksturojums.
11;1?,%11:;115 as atspoguloSanas Kopgjais atslégu kombinaciju daudzums Kopéjais atsl&gas garums, bitos
Xer1=1X( 1-X¢) 6,5403-10“9 308
X1 =X€xp(r(1-x,)) 19.7330-10'" 399
X =X 141(1-%,)) 6,5403-10'"° 308
X1 =X€Xp(3(L-xy)) 1,5210-10'" 305
X=X 141x-1,75% ) 5475610 o7
X=X 141,50 1%) 3,9546-10'"° 397

Uzlaust Sifrtekstu, izmantojot sakumu parametrus no determin&ta haotiska atraktora (vai slepenas
atslégas), ir iespgjams tikai tados gadijumos, kad ir zinams atverta teksta att€ls un pieejami jaudigi un loti
dargi instrumenti (datorsist€ému kompleksi, veidoti uz SIS - specializetas integralds shémas vertiba virs 300
000 000 USD). Tabulas 20 un 21 satur informaciju par jaudigiem datoru sisttmu kompleksiem un tas spgjas
uzlaust slepenas atslégas ar pilnu parliksanu.

TABULA 20.
Jaudigu datorsist€ému saraksts
Valsts Jauda (Mflops) Instalacija Mikroprocesoru Datora nosaukums
daudzums
ASV 1 068 000 1997 7264 Intel ASCI Red
_ Hitachi/Tsukuba
Japana 368 200 1996 2048 CP-PACS/2048
C e SGI/Cray T3E900
Lielbritanija 264 000 1997 696 LC696-128
_ .. SGI/Cray T3E
Vacija 176 000 1996 512 LC512-128
. SGI/Cray T3E750
Francija 115500 1997 256 LC256-128
TABULA 21.
NepiecieSamais laiks (gados) jaudigam datorsist€mam visu atslégu parlikSanai
Datora Jauda 56biti= | 64biti= | 70biti= | 75biti= | 90biti= | 256 biti =
72-10"° | 1,8-10” | 1810 | 3,78-10% | 1,24-10 | 1,15-10”
nosaukums (flops) _ _ _ _ _ _
atslégam | atslégam | atslégam | atslégam | atslégam atslegam
Intel ASCI Red | 1,068:10" | 0,002 0,534 35 1122 36,8-10° | 3,4-10%
Hitachi/Tsukuba 1 6 57
CP-PACS 3,68-10 0,006 1,55 101,7 3257 106-10 9,9-10
SGI/Cray T3E 2,65-10" 0,008 2,15 141 4523 148-10° 1,37-10%
Fujitsu
Numerical 2,3-10" 0,0099 2,48 162 5211 170-10° | 1,58-10*
Wind Tunnel
Hitachi SR2201 | 2.2-10" 0,0103 2,56 170 5448 179-10° | 1,66-10
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Ka redzams, sakot ar 70 bitu atslégas garumu slepenas atslégas atklaSana ar pilnu parlikSanu ir
iesp&jama tikai péc vairakiem gadiem. Tapat ir janem véra tas fakts, ka katru gadu datoru sistému kompleksi
paliek visjaudigaki un slepenas atslégas atklasanas laiks var&tu biit samazinats. Péc kriptoanalitiku p&d&jiem
datiem, tuvakajos 20 gados atslégas garumam jabit no 90 bitiem, lai informaciju 20 gadu laika biitu pasargata
no nesankciongétas pieejas.

3.2. ATRDARBIBA.

Algoritma atrdarbiba bija pétita vairaku failu kriptéSanas laikd un var nakt pie secindjuma, ka
atrdarbiba ir laba, jo $ifréSanas process notiek ar katru simbolu atseviski loti 1sa laika. Rezultati ir paraditi
tabula 22.

TABULA 22.
Programmnodro$inajuma CRYPTO atrdarbiba (datu SifréSana un atSifréSana) sekundgs,
izmantojot Pentium 111 450 Mhz
Logistias atspogulosanas |y g fits, 5 SO0 KB fails,s | 200 kB fails, s 100 kB fails, s 20 kB fails, s
Xer =X 1-X) 45,16 22,58 9,03 4,52 0,90
Xer=xexp(r(1-x,)) 53,87 26,94 10,77 539 1,08
Xer =X 1+1(1-x,)) 45,16 22,58 9,03 4,52 0,90
Xe 1 =xexp(3(L-xy)) 53,87 26,94 10,77 539 1,08
X =X(141x-1,75%) 45,16 22,58 9,03 4,52 0,90
X =x(1+1,5%01x5) 45,16 22,58 9,03 4,52 0,90

4. Secinajumi

Vienadojumu pétisana, kuri veido haosu, ir jauns virziens zinatné pedgjos 30 gadus. Ir detalizeti
izpétiti determinétie haotiskie logistikas atspogulo$anas modeli (Verhulsta, eksponencials, polinominalais,
Blackman-Fisher-Pry, MacLaurin power un otrs MacLaurin power). Balstoties uz plasam iesp&jam, ko var
nodrosinats determingtais haotiskais atraktors, ir izstradats jauns simetriskais kriptosistémas algoritms un
programmnodrosinajums CRYPTO. Ir izanalizéta algoritma kriptoizturiba, paraditas prieksSrocibas virs
par€jam kriptosistémam, Tpasa uzmaniba ir veltita slepenu atslégu veidoSanai. Bifurkacijas diagrammu
analize dod iesp&ju vizuali redz&t atraktoru raksturojumus, palidzot atri atrisinat iesp&jamas problémas
pétisanas laika. Atkariba no izmantotiem modeliem un parametru izmainas ir iesp&jams sasniegt cikliska vai
haotiska veida atraktorus, kur determinétais haosa atraktors nodro§ina visaugstaku droSibas kriptoizturibu.
Sasniegtais atslégas garums ir 1idz 70 bitiem, teorétiski to ir iesp&jams palielinat Iidz pat 400 bitiem, kas
pieckarsi parsniedz Sodienas prasibas. Uzlaust Sifrtekstu, izmantojot sakumu parametrus no $T atraktora (vai
slepenas atslégas), ir iesp&jams tikai tados gadijumos, kad ir zinams atverta teksta att€ls un pieejami jaudigi
un Joti dargi instrumenti.

Algoritma analize un salidzinasana ar citiem moderniem simetriskiem Sifré€Sanas algoritmiem rada,
ka haotiskais atraktors sp€ nodroSinat lidzigu un augstaku p&c kvalitates Sifrteksta kriptoizturibu. P&c
kriptoanalitiku p&dgjiem datiem, tuvakajos 20 gados atslégas garumam jabit no 90 bitiem. Izstradatais
algoritms var bt pielietojams ikdiena p&c ta modificEsanas saskana ar ISO standartizacijas prasibam,
programmnodrosinajuma uzlabo$anu un specialu iekartas veidosanu.

5. Noslegums

Saja darba tika paradita svariga informacijas tehnologiju nozares dala — informacijas nodroginasana
no nesankcionétas pieejas. Ar katru gadu $1 probléma ir visaktudlaka un tirgu paradas vairakas jaunas
Sifrésanas algoritmu realizacijas. Viena no tadam realizacijam ir atspogulota $aja darba. Tika veikta izp&te par
visam esoSam Sodien kriptosisttmam un izanaliz&tas tas priekSrocibas un trukumi. Balstoties uz apkopotas
informacijas, tika izstradats jauns simetriskais datu SifréSanas un atSifréSanas algoritms ar determinétu
haotisku logistikas atspogulo$anas modelu (Verhulsta, eksponenciala, polinominala, Blackman-Fisher-Pry,
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MacLaurin power un otra MacLaurin power) palidzibu. Algoritma Ipasiba ir 5 atslégu izmantoSana, kas
nodro$ina augstu algoritma kriptoizturibu.

Izstradata kritpsistéma atbilst simetriskas kriptosistémas prasibam, jo tiek izmantota viena un ta pasa
atslégas izmantoSana ka §ifréSana, ta arT at$ifréSana. Parasta Sifra izejosa teksta katrs simbols tiek aizvietots ar
simbolu no ta pasa alfab&ta vienmerigi visa teksta garuma. Simbola aizvieto$ana ir atkariga no atraktoru
izmantosanas konkréta gadijuma, vai sakumu nosacljumiem. Visvienkarsaka SifréSanas metode izstradata
kritptosistema balstas uz Cézara Sifru, pec tam Viziniera un beidzot ar haotisku simbolu aizvieto$anas
raksturu, kas ir iesp&jams tikai haotiska atraktora robezas. Izstradatais algoritms pilnigi der ka Sifrésanai, ta ar1
datu autentificeSanai. Dati tiek aizsargati no iepazisanas ar §ifréSanu, bet datu izmainas tiek parbauditas ar
autentifikaciju, kuru algoritmu var pielietot ka pie atverta teksta, ta arT pret Sifréta.

Darba ir paraditas arT asimetriskas kriptosisteémas (RSA, El Hamala un citas), kur datu SifréSanai
izmantojas viena atsléga, bet atsifréSanai otra. Pirma atsléga var biit atklata un public@ta visu sisteému lietotaju
izmanto$anai datu SifréSanai. AtSifrét datus ar atklatu atslégu nav iesp&ams. Datu atSifréSanai sanémgjs
izmanto otro atslégu, kura ir slepena. AtSifréSanas atsléga nevar biit definéta no SifréSanas atslégas. Tas
nodroSina elektroniska paraksta funkcion&Sanu, kas ir baitisks tritkums visam simetriskam kriptosistémam.

Aizsardzibas Iimenis ir atkarigs no vairakiem faktoriem: kriptosistémas kvalitate, tas izmantoSanas
programmatiira un iekartas (ipasi tas droSiba atslégu izvéles veids), iesp&jamo kop&jo atslegu daudzums.
Atslégu garums tick mérits bitos, bet visu iesp&jamo atslégu parlikSanas griitiba picaug eksponenciali ar bitu
piecaugumu. Modernas tehnologijas nodro$ina dro$u §ifréSanu gandriz par tadu pasu izmaksu, ka vaju, lidz ar
ko visparastakais, vispiesardzigakais un visekonomiskakais risinajums ir izmantot vienotu §ifréSanas Itmeni.
Izstradats programmnodrosindjums CRYPTO ir spgjigs to nodrosSinat un $ifrét jeb kadu datu formatu un
apjomu ar kopgjas atslégas garumu Iidz 70 bitiem. Determingtais haotiskais atraktors teortiski ir sp&jigs
nodro§inat visiem determinétiem haotiskiem logistikas atspoguloSanas modeliem loti augstu Iimenpa
kriptoizturibu Iidz pat 400 bitiem ar 5 slepenam atslégam, vai sakumu parametriem.

Ka papildinajums simetrisku un asimetrisku kriptosistému drosibas palielinasanai ir izstradata

kombinéta (hibridu) SifréSanas metode, kas lauj apvienot augstas slepenibas prieksrocibas, kas nak no
kriptosistémas ar atklatu atslégu, un simetrisku kriptosistému ar slepeno atslégu augstas atrdarbibas
prieksrocibam.
Eksisté dazadas iesp€jas kriptosistému uzlauSanai sakot no parastiem datoriem un beidzot ar lielu
datorkompleksu palidzibu. Ir pieradits, ka Sodien vairaki algoritmi ir vel spécigs, bet ar katru ménesi zaude
savu speku, jo datoru jaudas palielinas katru gadu un atrast nepiecieSamo atslégu ir visvienkarsak. Piem&ram,
jau Sodien DES algoritmu ir Joti vienkarsi uzlaust no korporativa vai valsts uzbrukuma. Lai pasargatu
informaciju vairakus gadus simetriskam sist€mam iesaka izmantot atslégas garumu no 90 bitiem. Tas pats
attiecas art uz kriptosistemu izstradi. Izstradatais programmnodroSinajums atbilst §im prasibam peéc koda
modificeSanas un var biit komerciali pielietojams ikdiena p&c ta modific€Sanas saskana ar ISO standartizacijas
prasibam, programmnodro$indjuma uzlabosanu un specialu iekartas veidoSanu, kas nodroSinatu algoritma
realizaciju iekartas [Tmeni.
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Pielikums B

Detalizeti paraditi katra logistikas atspogulo$anas modela (Verhulsta modelis, eksponencialam modelis, polinominalam modelis, Blackman-Fisher-Pry modelis, MacLaurin power
modelis, otrs MacLaurin power modelis) teksta faila feksts.txt $ifré8anas rezultats ar sakuma nosacijumiem x, = 0,36, t = 15000, [ = 12, p = 6. Visiem modeliem tika mainits parametrs
r Cetros gadijumos, lai paraditu Sifrteksta raksturu sekojoSos atraktoros: fiksétais punkts, ar periodu 2, ar periodu 4 un determinéto haosu. Paraditajos rezultatos ir redzama tendence, ka
Sifrteksts ir izturigaks, tuvojoties determinéta haosa zonai.

Faila teksts.txt saturs:

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

[1] How to save FAR properties

[2] How to switch keyboard to national language

[3] Why FAR does not accept Windows 95 clipboard pasting

[4] How to make panels half-screen

[5] How to switch panels time format to 12-hour

[6] How to show seconds in file time

[7] How to show all folders in uppercase

[8] I want wide panel with 4 name columns

[9] Twant network names and disk labels in "Change drive" menu
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1. Verhulsta modelis
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= 3,51 (Cikliskais atraktors ar periodu 4)
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r = 3,66 (Determinétais haotiskais atraktors)
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2. Eksponencialais modelis

r = 1,21(Atraktors fiksétais punkts)
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r = 2,56 (Cikliskais atraktors ar periodu 4)

oLe [LoLe [FoLe [koLe [tLe [ELe [F°Le [FLe [FLe [FOLe [FOLe [FOLe Lo Lo FoLe oL Lo-L<#53S5 @ 40574 1

2500 418" 08 Lp95p D+ 3 +-a—=[ .’ 80,54 L [ ey =Csm Ll Ohusd §9140

<=4Q-] 4{8 p8 p9):ﬁ)f°®a+ﬂ| +rd~=[ rn.Vap?¢ FI8NAnSY El: [ py=aw'=C>grtluOhptadl s2144L

vz rmays alee{: ol 4N ROV f@uerrtop FI8NE {'m (425§ Frull pep pH3oopu ﬁ>y+:J +oomrq<m

+= Erllpghptaa= rzum] tedk+600 Ep2mio/oqe+, 2 a05%0=<< pC8ypfda+A ] +:-4~.] +9=z4nd +
I-aq/~=gr+: [ Lp Lo-LB#144S5 @ 4051 s5 @ élZEé’quSJ—LpSléM‘/z.{6%1‘-1—|—TJLEPBhp‘/z»+—w Eop @ Lo+ pla=qr+
= psp ay°5eH) 63 Ml fhptari=o Eapgra=sfvp: bxrmildnao/ms+200 Lp2mitd 4N o kr+ky o 5
WOTFY;

r = 2,96 (Determinétais hagtiskais atraktors) )
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3. Polinominalais modelis

r = 1,21 (Atraktors fiksétais punkts)
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r=251 (Ctkltskals atraktors ar pemodu 4)
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r = 2,66 (Determinétais haotiskais atraktors)
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4. Blackman-Fisher-Pry modelis
r = 0,36 (Atraktors fiksétais punkts)
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r = 0,76 (Cikliskais atraktors ar periodu 2)
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r = 0,875 (Cikliskais atraktors ar periodu 4)
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r = 0,96 (Determinetais haotiskais atraktors)
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5. MacLaurin power modelis
r = 1,36 (Atraktors fiksétais punkts)
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r = 2,06 (Cikliskais atraktors ar periodu 2)
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r = 2,19 (Determinétais haotiskais atraktors)
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6. Otrais MacLaurin power modelis

r = 1,36 (Atraktors fiksétais punkts)
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r = 1,06 (Cikliskais atraktors ar periodu 2)
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r = 0,88 (Cikliskais atraktors ar periodu 4)
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r = 0,79 (Determinétais haotiskais atraktors)
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MATHEMATICAL STATISTICS AND RELIABILITY THEORY'.

Computer Modelling & New Technologies, 2001, Volume 5, No.1, 119-123
Transport and Telecommunication Institute, Lomonosov Str.1, Riga, LV-1019, Latvia

OCOBEHHOCTHU JTMATHOCTHYECKHUX CUCTEM
C OJIEMEHTAMH UCKYCCTBEHHOI'O HHTEJIVIEKTA

E. KOIIBITOB, B. JABEH/IUK, H. KABEJIEB

Hnemumym mpancnopma u cesasu
ya. Jlomonocosa 1,xkopnyc 4, LV-1019, Puea, Jlameus

ITpu BceM MHOroo0pasuM 3ajad, PelIaeMbIX B COBPEMEHHBIX CHCTEeMaX IMArHOCTUPOBAHHS aBHAIIMOHHOH TEXHMKH, y HUX
HMeeTCs OJUH CYIIECTBEHHBIN HEJOCTATOK — JKECTKOCTh alrOPHTMOB, HCIIONB3YEMBIX B KOMIIBIOTEPHBIX IIporpaMmax. B pesynbrate
B TAKUX aITOPUTMaxX HoTepsi HHGOpMaK XOTs ObI 10 OAHOMY U3MEpPHTEIbHOMY KaHAIy IIPUBOAUT K OTKA3y B pelICHUH 3a/1aul, B
KOTOPOH HCII0JIb30BAJICS PaHee MOTEPSHHBIIM mapaMerp.

PaccmaTpuBaercst 3agadya MOBBINICHUS] HAJEKHOCTH AUArHO3a ITyTeM HCIOIB30BAHMS B CHCTEME JHATHOCTHPOBAHMUS
TaKHX OJIEMEHTOB HCKYCCTBEHHOIO UHTEIEKTa, Kak HelpoHHble ceTd. IIpemmaraercs cmoco0 OOydYeHHS HCKYyCCTBEHHBIX
HEHPOHHBIX  CeTell pAaclO3HABaHMIO  0Opa3oB-IC(EKTOB W HEHUCIPABHOCTEH MPOTOYHOH YacTH JBHIaTels C IIOMOIIBIO
JIMarHOCTHYECKUX MATPHI HA OCHOBE (PU3UUECKOI JIMHEHHOW MaTeMaTHYeCKOW MOJEIH ABUTATEINS.
KiioueBble ¢10Ba: Heliponnbvle cemu, HA0eICHOCHb, OUACHOCIMUKA ABUAYUOHHBIX Ogueamenetl

1. BBenenue

Hane)xxHocTh NIeTaTebHBIX alapaToB 3aBUCHT HE TOJIBKO OT 00ECIeUeHHUs HaJJeKHOCTH paboThI
ero vactedl (IuaHepa, ABUTATeNel), HO M OT HAIEKHOCTH OOECICUMBAIONIMX JTy pabOTy CHCTEM, B
YaCTHOCTH, CUCTEM KOHTpOJIs. I1oTepst KOHTPOIISE CTaBUT I10]] BOIPOC o0ecriedyeHrne 0e30MacHOCTH 0JIeTa
JIETAaTEIBHOTO alapaTa, 0COOCHHO, C JBUTATENISIMH 5-TO MOKOJICHUS, UMEIOIMMHU BBICOKHE ITapaMeTphl
pabouero mporiecca (CTEHEHb CXXAaTHS BO3AyXa B KOMIIpeccope mopsiaka 45, TeMmeparypa rasa nepen
TypOuHO#t mopsiaka 850K). Jlnst cBOeBpeMEHHOTO NPHHATHA PEIICHHS B IOJIETE IMPH HAPYIICHUH
HOpMaJIbHOH paOoTHl aBHAABUraTelss HEOOXOAWM IOCTOSHHBIA MOHHUTOPHHI €ro TEXHHYECKOro
COCTOSIHMSA, T.€. 00paboTKa IOCTyHaloIled OT Hero MHGOPMAalUH B PEKUME PEATLHOTO BPEMEHH IS
BBIJICTICHUS] OTTACHBIX HEHCIIPAaBHOCTEH, KOTOPhIE MOTYT MPUBECTH K OTKa3y JBUTATENs B IOJIETE.

2. MeToanl AMArH032 ABHAIMOHHBIX ABHUraTejei

OnHoil 13 3a7a4 aBTOMaTH3MPOBAHHBIX cHUCTeM auarHoctupoBanus (ACJ) camorera sBisieTcs
KOHTPOJIb TEPMOra30AMHAMHYECKHX TapaMeTPOB MO TPAKTy ABuratess. [IpocTas oLeHKa 3aMepseMbIX B
nojere napameTpoB jBurarens (mo 3ammcsiM MCPII) — sro donyckoswiti kommpons (00paboTKa
CPEIHECTATUCTHICCKUX 3aMEPSIEMBbIX B IOJETE OTKIOHCHHH MapaMeTpoB OT HOpMBI). Ilpu sToMm, dem
GoJIblIe TOBTOPEHUI 3aMepOB, TEM JOCTOBEPHEE KOHTPOJIb, HO, BO-IIEPBHIX, IOJIET HA Pa3HBIX YyYacTKax
TPAEKTOPHHU OTPAHUYCH 110 BPEMEHH, 4, BO-BTOPBIX, YBEINYCHHE BPEMEHH PaOOThI IBUIATEIISI HPHBOAUT
K M3HOCY €ro 4acTeil W, BCJICIACTBHE ITOrO, AOMONHHUTEIFHOMY HM3MEHEHHIO Iapamerpos. Ilociennue
HPOBEPSIOTCS OT MMONeTa K IOJNETYy — 3TO TaK HAa3bIBAaGMbI mpenooswlii konmpons. Hemocratok
JIOITYCKOBOTO KOHTPOJIS 1O 3aMepsieMBbIM IIapaMeTpaM — 3TO OLICHKa paboThl JBUratesist B IenoM 0e3
JMATHOCTUPOBAHUS (JIOKAIU3AIMK) MPUYHHBI 3THX OTKJIOHCHHWH. [IJisl YCTaHOBIICHHUS AMArHO3a dalle
BCEr0 MPHUMEHSIOT CTATUCTHYECKUE MOJICNH, YBSI3BIBAIOIINE OTKIOHCHHUSI KPHTEPHEB, OICHUBAIOIINX
JeheKThl B y3lax, C OTKJIOHEHHMSAMH 3aMepsieMbIX [apaMeTpoB, (BBIOOpD KpHTEpHEB — 3TO
CaMOCTOSITeNbHAS 33/1a4a) B BUAE PErPECCHOHHOI MOEIHN Ne(hEKTOB:

SA =W, -0x; +W,, -8x, + W,5 -0x5 +...+ W, -0x, @)
3B =W, -8x, + Wy, -8x, + W5 -8x5 +...+ Wy, -8x 2)
rie W, Wao Wan, Wo, Wy, Wy, Wis,, Wy, - KodbduIMeHTs BIHSHUSA (BECOBBIE
KO3 (HUTITHEHTHI).
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MATHEMATICAL STATISTICS AND RELIABILITY THEORY'.

Tabnuiry k03 PUIIMEHTOB BIUSHUAS HA3BIBAIOT OuacHocmuyeckot mampuyet (IAM). 3nech xe
BCTaeT BOMPOC 00 ONTHUMAJIBHOM 4YHCIIe 3amepseMbix TmapameTpoB. C OJHON CTOPOHBI, YeM OOJIbIIe
YHCIIO 3aMEPOB, TEM JAOCTOBEPHEE MArHo3, HO U TeM OOJIbIlIE BEPOATHOCTh OTKa3a KaKoro-Iubo KaHasia
NOCTYIUIEHNs] HHPOpMalKK (3acopeHHe JaTyuKa 3aMepa JaBJieHUs, OOPBIB 3JIEKTPUYECKOM 1IeNH H T.1.).
B pesynbprare AuarHoCTUpOBaHHE IO BCEM KPHUTEPHsIM IpekpaTurcd, T.e. anroputM ACJ] mo maHHOM
3ajaye nepecraer paborarh. IIpoOiiema OCIIOKHSETCS elle TeM, YTO JJIsl HOBBIX JBHrareseil Takoi
cratucTuku 1o aedekram eme Her. B pabore [1] paccmorpeno monmydenue JIM Ha oOcHOBe He
CTaTHUCTUYECKOH, a (M3MUYECKOH JMHEIHOW MareMaTnieckod mozaenu asurarens (cMm. Tabmumy 1). Tam
ke 0OOCHOBAaHO HEOOXOIMMOE ISl PEIICHUS CHUCTEMBbl JIMHEHHBIX YpaBHEHUH YHCIIO 3aMepsieMBIX
[apaMeTpoB, 3aBHCAIIEC OT KOHCTPYKTHBHOM CXEeMbl JABHraTtens (Yucia BaJioB, CTCIICHH
JBYXKOHTYPHOCTH H T.IL.).

TABJIMLA 1. Anarnoctuueckas Mmarpuua asuratens TB7-117C ¢ 10noIHUTENBHBIMU 3aMepaMu [TapaMeTpOB
P*TK u T*K (N:1470 KBT)

e[| o, | W | ar, [ ar - |,
o 0,189 0,148 0,097 0,482 0,000 -1,148
oGy -2,480 -1,490 0,927 0,053 0,000 -0,105
o' 0,000 -0,708 0,000 -0,551 0,551 0,805
OFIK 0,000 1,176 1,000 -1,000 0,000 0,037
e 0,000 0,530 -1,000 0,000 -0,947 0,130
OIS 0,000 -1,030 1,000 0,000 -1,000 -0,130

3. Hel‘ipomn,le CE€TH B CUCTEME THATHOCTUPOBAHUSA

Ho u B mociegnem ciydyae mpu pelIeHNH CHCTEMBI ypaBHEHHHA B mporpamMme DBM ¢ 00brdHOM
JIOTHKOW JOIDKHO COOJIFOJAThCS OJHO YCIIOBHE: YHCIIO OMNpPENeNseMbIX (HEH3BECTHBIX) MapaMeTpoB HE
MOJKeT IPEBHINIATh YHCIA YPAaBHEHHH, 3al0KEHHBIX B IporpaMmy. Mcuesno wium MOSBHIOCH OJIHO
HEM3BECTHOE — M MAalllMHA 3aXOIUT B TYNMHUK. « DIEMEHTHI COBPEMEHHBIX EKTPOHHBIX MAIIUH UAMOTCKU
JIOTWYHBDY — CKasaJl Mo 3ToMy mnoBoxy kubepHetuk IlImuar [2]. OmuH m3 cnocoOoB, IO3BOJISIOLIMX
PaCIIUPUTh «UHTEJIEKTYalbHbIE BO3MOXHOCTH» OBM — 3T0 3BpUCTHUYECKHM HOAXOX, NMPH KOTOPOM
MalllUHE MPUXOAUTCS B ONPEAEICHHBIH MOMEHT HAPYLIMTh JKEIE3HYIO JIOTMKY CBOUX PACCyKICHUU U
HadaTh JCHCTBOBATH «HAyram», HampuMmep MetogoM Monte-Kapmo. Ho u 3meck monoOHBIE nedcTBHS
OBM nomkHBI OBITH CIIEMUANFHO 3aIPOTPAMMHUPOBAHBI. AKTYallbHOCTh MPOOJIEMBI COCTOUT B TOM, YTO
nmo0aBJIeHHE HOBBIX MIPOTPaMM BCTYMaeT B IPOTHBOPEYHE C BO3MOXKHOCTSAMH OOpTOBEIX DBM mpm
HEO0XOIUMOCTH UX pabOTHI B MOJIETE B PEXKHUME PEaTbHOI0 BPEMEHH, OCOOCHHO AJIST KOHTPOJI Oyaymux
BBICOKOHArPYKEHHBIX IBHTaTeNiel 5-r0 W 6-TO MOKOJeHWH. BBIXOJOM W3 3TOr0 HaMH BHIWTCS B
npuMeHeHHHn B 60pToBBIX ACJ] KOMITBIOTEPHBIX CHCTEM C 3JI€MEHTaMH HCKYCCTBEHHOTO WHTEIUIEKTA B
BUJIe UCKYyCCTBEHHBIX HelpoHHbIX cetell (MHC) [3-6] He BMecTe, a BMECTO NPOrpaMMbl OOHAPYKEHHUS B
MOJICTE OMACHBIX Ne(EKTOB, ¢ MOMOIIbI0, Hanpumep, JIM. OnHako 3To He 03HadaeT oTkaza oT M, a
IpeJylaraeTcsl uX UCMoyb30BaTh B HazeMHOM yactu AC/] misa o6ydyenus MHC noucky (pacro3HaBaHHIO)
nedeKkToB W HEUCNpPaBHOCTEH aBHAIMOHHOrO mBWMrarens. Hamu npoaHanM3upoBaHBI aJITOPUTMBI
opranuzauuu juarHoza no M u c¢ nomombto MHC  u BbIsIBIEHa ~ MHTEpECcHas aHaJOTHsl.
UckyccrBennblii HeiipoH (PucyHok 1) ymMHOXaeT Kakaplid - BXox Xx; Ha Bec W; M CyMMHpYET
B3BCIICHHBIC BXOJBI, T.€. €0 ACUCTBHS aHAIOTUYHEI ITOUCKY AedeKTa 1Mo ypaBHeHHI0 Monend (1).

X1 BEC W1 >
X2 BEC W2

> pBbIXOT Y
X, Bec W, >

Pucynoxk 1. VickyccTBeHHbIH HEHPOH
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A B menoM, mokanu3anus AedekrtoB ¢ momombio JM momoOHa paboTe crcTeMBl HEWPOHOB,
KOTOpas moiydmia HazBaHue mepcentpoHa (Pucynok 2). Ilpm sToM KaXKaplii HEWpPOH B MPOCTEHUIIEM
ciyyae MOIU(UIMPYET BHIYUCICHHYIO CyMMY C ITOMOIIbIO aKTUBU3ALMOHHON (DYHKIIMK B BHJE CUTHAA
Hanmmuust (1) wm orcyrerBust (0) nedexra. Ho Ha srom aHanorust B pabore /IM u mepcentpoHa
3akaHuuBaercs, T.K. [IM HMeerT >KecTKuil anroputM oOpadOTKM HH(pOpMalLWK, a HCKYyCCTBEHHBIE
HEWpOHHBIE CETH MOI'YT MEHATh CBOE IIOBEJICHME B 3aBHCMMOCTH OT BHemiHed cpensl. [locne
IPEABSIBICHNSI BXOJHBIX CHUTHAJIOB COBMECTHO C M3BECTHBIM BBIXOJIOM OHHM MOTYT CaMOHACTPauBaThCS

X1 Z | » | » V1
X2 2 | - | - )4
X, 2 ‘ - T I e Vi

(oOyuatbes), 9TOOBI MONYyYnTh TpeOyemyro peakmuio. OZHAKO OpraHm3amus Iporecca OOy4eHus B
Ka)KJIOM KOHKPETHOM CJIy4ae sIBJIeTCs IpoOIeMOii.

Pucynok 2. OTHOCTIONHBIN MEPCENITPOH C 71 BXOAAMH U k BBIXOIaMH
4. Cnnocod o0y4eHuUs1 HelipOHHBIX ceTell ¢ MOMOIIBIO TMATHOCTHYECKUX MATPHIL

Hwxke paccmorpen cmoco6 o60yuenuss HMHC pacnosnaBanmio 00pazoB-aeekToB u
HEHCIPaBHOCTEHl NMPOTOYHOW 4YacTW JABUTATeNsl C MOMOUIbI0 pa3paboranHoid Hamu JIM  Ha ocHOBe
(usnyeckoit nuHeitHON MatemaTrueckor mMoxaenu (MM) neuratens [1]. OcoOEHHOCTBIO MpeIaraeMoi
MM siBnsiercsi ee criocoOHOCTh (YyBCTBUTEIBHOCTh) K M3MEHEHHIO TEXHUUECKOTO COCTOSIHUS IBHIATEs.
OTO JOCTUTHYTO ITyTEM BBEJICHHS B YPAaBHEHHE CUCTEMBI WICHOB, YUUTHIBAIOIINX OTHOCUTEIBHBIA CABHUT
XapaKTepPUCTHK KOMIIPECCOPOB B BHJIE YacTHOIO  OTHOCHTENIBHOTO H3MEHEHHs  Ko3(h¢uuneHra

(vl — ¥ T~
MOJIE3HOTO AEUCTBUS  OM, U MPOU3BOJUTENBHOCTH KomIpeccopa (pacxona Bo3ayxa)0Gy . IIpu sTom

o0Iee M3MEHEHUE 3TUX BEIUYUH MOXET OBbITh BBI3BAHO MOSIBICHUEM Je(EeKTa B JPYroM y3Iie JIBUraTeIst
U B CBSI3M C DTUM M3MEHEHHEM PEXKHMa TEUEHMs 10 BCEMY TPAKTy JIBHUrareis. XapakTepHCTHKa y3Ja
M300pakaeTcsi Ha IIIOCKOCTH, CIBUT €€ XapaKTepU3yeTcsi He OJHHUM, a JABYMsI [IPEACTABICHHBIMH BBIIIE
KPUTEPHSIMH KOMIUIEKCHO B BH/I€ BEKTOPOB BO3MOXKHBIX fedexToB (PucyHoK 3).

&y
6
aq Bl BZ

(05)

S | 4

Dzk D2t

SGB OFca

Pucynox 3. Bextopa BO3MOXKHBIX JIe(eKTOB: @ — KOMIIpeccopa, O — TypOUHEI

Jnst TypOMH, COmIOBBIE ammapaTbl KOTOPHIX OOBIYHO PadOTAalOT Ha KPUTHUYECKHX PEXHMAX,
C/IBUT XapaKTEPHCTHK HECYIIECTBEHEH, IOATOMY HX Ae(EKThl MOXKHO OIEHMBATh B BHJE KOMIUIEKCA
00X M3MeHeHnH K03 PUIIMEHTOB MMOJIE3HOr0 AEHCTBUS M IIPOXOAHBIX TUIOIAIEH COIUIOBBIX aIapaToB
(Pucynoxk 3 6). IIpu 5TOM MOKHO YCTaHOBHTH NPEIEIHHO OITyCTHMBIE U3MEHEHHSI ITapaMeTpOB, UCXOMS
U3 BO3MOXKHOCTH ONACHOTO HapyIIeHWs PabOThl OBHTaTeNs B LeJOM B mosiere. [Ipudem BakHO, 4TO
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Ipe/ieNbHbIE OTKIOHEHUSI MOXKHO BBECTH B JIM 1o pe3yipTaTaM HCHBITAaHWH OTACNBHBIX Y3J10B (M HX
Jertaiieil), a He 10 MCIBITAHUSM JIBUIATENS B LIEJIOM 0 pa3pyLICHUs.

Wudopmarus s HazeMHOro oOyuenusi MHorocioiubix WHC npousBomutcst B cieayrolei
nocienoarenbHocTd. Cam  anroputM mnoctpoeHus JIM Ha OCHOBe (Qu3MuUecKoi uHelHoW MM
JBUrarens u3noxeH B [1] u anamormyeH paborte MHorocnonHoit MHC. [lns noxydenus M cucrema
JIMHEHHBIX YpaBHEHUI mpeoOpasyercs ciieayromuM o0pa3oM. B neBylo 4acTb ypaBHEHHH MEpEHOCSTCS
YJICHBI C OTKJIOHEHHUSMH I1apaMETPOB, KOTOPbIE HE U3MEPSIOTCS (B TOM YHUCIIE C KpUTEPHUAMH JehekToB), a
B INIPaBYI0 4YacTb - C OTKJIOHEHUSIMHM 3aMEpsAeMbIX NapaMeTpoB. Jlajee COCTaBISIOTCS JBE TAOJMIIBI
(matpunpl) Ko3((UIMEHTOB BIHMSHUS NpH 3THX mapamerpax. [Ipm 3toM Ko3(UIMEHTH BIMSAHUA
BBIYUCIIIOTCS TI0 CIIEHATBEHBIM (OPMYJIaM Uil UCXOTHOTO (0e3MeeKTHOT0) TEXHUIECKOTO COCTOSHHS
neuratens. Matpury Ko3(Q(UIIMEeHTOB MpH KPUTEPHsX Ne(EKTOB MOXKHO ITPEACTaBUTHh Kak TaOIHIry
BECOBBIX KOY()(OUIIMEHTOB EAMHUYHOTO CJIOS MEPCENTPOHA (TaK ke KaKk U MaTpuiy Ko3pPHUIneHTOB mpu
OTKJIOHCHHUSIX  3aMepsieMbIX MapameTpoB), a camy JIM - kak pesyibTar paboThl MHOTOCIOHHOTO
nepcentpoHa. Ilpu 3ToM i 00ydeHus npeasaraeTcss B JaHHOM CiIydae HCIOJIb30BaTh CeTh 0OPaTHOrO
pacnpoctpaHeHus. OOydaromuil alropuT™M MNPeACTaBiIseT CcOOOH IOCIENI0BATENBHOCT OTKIIOUEHUS
CAVMHUYHOI'0 WJIM MapHOIro CUrHajloB (OTKJ’IOHGHI/II‘/II SaMCPOB) JAaTYUKOB IPHU 3aJJaHHBIX OTKJIOHCHUAX
KPUTEpUEB BBIOpPAHHOrO IJisi OOyueHHsi Ne(eKTa - <OKEJIaeMbIX» BBIXOJHBIX CHUTHAJIOB CETH. 3ajaya
OCJIOXKHSIETCSL TE€M, 4YTO eciu s JeeKToB, OOHAPY)KEHHBIX B IPOLECCE HCIBITAHUN JBUTATENS,
M3BECTHBI OTKJIOHEHHsI OCTABIIMXCS M3MEPSEMBIX IapaMeTPOB, TO IUISI MOJAEIHUPYEMBIX TEOPETHUECKH
OTKJIOHEHUH KpUTeprueB Ae(EeKTOB TaKue OTKIOHEHWs Heu3BecTHBl. [loatomMy Uit oOydeHHs
npeanaraercs (OpMHPOBaTH BCIHOMOTATENbHYI0 MaTpUIy KOI(QQHIMEHTOB BIUSHHUS KPHTEPHUEB
ne(eKkToB Ha OTKJIOHEHHUS 3aMepsIeMBbIX ITapaMeTpoB. it 3TOro ncxoHas IMHEHHas CHCTeMa YpaBHEHUH
(MM) npeoOpasyeTcst Tak, 9TO B JIEBYIO YacTh YPaBHEHHA IIEPEHOCSTCS WICHBI C OTKIOHCHUSMH BceX (B
TOM 4YHCIIE M 3aMEpsIeMbIX) TEPMOANHAMUYECKHX I1apaMETPOB, a B MPABYI 4YacThb — TOJBKO WICHBI C
OTKJIOHEHUSIMH HE3aBHCHMBIX APYT OT Apyra napaMeTpoB (K03(Q(UINEHTOB MOTeph B OTAENBHBIX Y3/ax
M T.I), B TOM 4YHCIE U C BBIOPAaHHBIMH KOMIUIEKCHBIMH KpuTepusaMu aedexToB y3nos. Ilocie
MaTeMaTHYeCKHX IpeoOpa3oBaHMN OOpallleHHs MEepBOW MaTpHLBl U TEPEMHOXKEHHsS €€ CO BTOpOii
MaTpHIICH MMoJydaeTcss HeoOxomumas Matpuila Ko3((HUIMEHTOB BIUSHHUS OTKIOHCHHI HE3aBHCHMBIX
napaMeTpoB Ha OTKJIOHCHHS TEPMOTrazoAMHAMUYCCKUX (B TOM YHCJIC U 3aMEPACMBIX B pPa3HbIX CCUCHUAX

10 TPAKTy JIBUraTelsl 3HAYEHUI p* u T IapamMeTpoB:
8p; =Wy, 8Ky + Wy +8kgy + Wy 8K gy +...+ W, -8k (3)

ST: = WIT '8X1 +Wb2 'Skzl +Wb3 6k31 +...+an 'Skni (4)

r/1e i- HoMep i -To nedeKTa KaKoro-To y3Ia.

3amaBas KOMIUIEKCHO pa3Hble BENMYMHBI KpurepueB aedekroB (Pucynox 3) w momydas
BEJIMYMHBI OTKIOHEHMH 3aMepsieMbIX Ha JBUraTele MapamMeTpoB, MOXKHO IPOM3BECTH MEPBBIM 3Tal
oOyuenns guarHocTmdeckod WTC. Bropoit 3tam o0ydeHHs 3akiIodaeTcs B IOCIEIOBATEIEHOM
OTKJIIOUCHUU CUTHAJIOB 3aMEpsieMbIX [apamMeTpoB, HPH 3TOM LENbI0 IMPOLEXYpbl OOyUCHUS CETH
ABIISIETCSI TaKasl TIOACTPONKA €€ BECOB, YTOOBI NMPHUIIOKEHHE HEKOTOPOTO MHOXECTBA BXOIOB IPUBOAMIO
K TpeOyeMOMy MHOXKECTBY BBIXOJIOB (BeKTOpOB JedekToB). Jlaxe eciu 3a KaKUM-TO Y3JIOM IPOHajH
3aMepbl, a B Apyrux ysnax Her nedexroB, MHC mocie moxbopa BecoB 1O COUETAHUSAM OTKIOHEHUI
OCTaBILMXCS 3aMEPSEMBIX IapaMeTpPOB Iocie 00yYeHNs YKa3bIBaeT HE TOJNBKO Hann4ue aedeKra B ysie,
HO W TperoyiaraeMblid xapakrep aedexra). Baxkuoiv cBoiictBom MHC siBisieTcst HEUyBCTBUTEIBHOCTh
(to HEKOTOPOI1 CTENIEHN) OTKIIMKA CETH MOoCie 00y4eHHsl K HEeOOJIbIINM U3MEHEHHSIM BXO/IHBIX CUTHAJIOB
(morpemHocTsIM M3MepeHust). Takas cucTeMa HO3BOJSIET IPEOAOJIETh TPEOOBAaHWE CTPOTOH TOYHOCTH,
MIPEBSABIIEMOE OOBIYHBIM KOMITBIOTEpAM, M OTKPBIBACT IyTh B3aWMOJICHCTBHS C MHUPOM Xaoca, B
KOTOPOM MBI JKUBEM.

5. BeiBOaBI
Baxno ormetuts, uto MHC nenaetr 00001ieHrs aBTOMATHYECKH O1arofapsi CBOCH CTPYKTYpe, a
HE C TMOMOIIbIO HKCIOJb30BAHUSA «YEJIOBEYCCKOI0 HMHTEIUICKTa» B (OpME CICIHAIBHO HAMCAHHBIX

komibtoTepHbix nporpamMm. MHC moryT addexTHBHO CyniecTBOBaTh, 00bEIUHSSACH C DKCIEPTHBIMU
CUCTeMaMH, IAe KaXAbll MOAXOX HCHOIb3YeTCs AN pPEUIeHus TeX 3aJad, ¢ KOTOPBIMHM OH JIydlle
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cupasisiercs. [lodToMy TEpCHEKTHBHON Ml JOBUTATENEH CIEAyIOmero 6-ro TOKOJEHHS Oyner
IpUMEHeHHe Ha OOpTy HE TOJNBKO KOMIBIOTEPHOH INPOTHORHUPYIOMIEH CHUCTEMBI, a KOMITBIOTEPHOM
cuctemsl npunsaTus pemennid (CIIP), a yenoBexy octaHeTcs GyHKIUS KOHTPOJS ATHX CHCTEM U B3STHE
Ha ce0st PYHKIMKM TPUHATHS PEIICHUS B CIy4ae 0TKa3a CUCTEMBI.

Jlutepatypa

(1]

(6]

Kysnenos H.C., Jlabenauk B.I1. (1993) OcobGennocty (hopMHUpOBaHUS TUATHOCTHUECKUX MaTPHIL
JUIsL KOHTPOJISL COCTOSIHUSI NMPOTOYHOU 4yacTu aBuanuoHHeix ['TH. H36. BY30OB “Asuayuonnas
mexnuxka’”, 3, 89-93.

Yoccepmer @. (1992) HeiipokommbroTepHast TexHuKa: Teopus u npakTuka. MockBa

Kopytov E., Kabelev N. (2000) A method of adaptive re-configuration of multi-layer perceptron in
real-time learning system/ Computer Modelling & New Technologies 4, No.1, 7-14.

Kopytov E., Labendik V., Kabelev N.. (2001) Neural Network Applications in Aircraft Engine
Diagnostics. In: Scientific Proceedings of the Scientific-technical Union of Mechanical
Engineering, vol. 2 (57). Third International Congress “Mechanical Engineering Technologies’01”,
June 24-26, 2001, Sofia, Bulgaria, pp. 558-560.

Haykin S. (1994) Neural Networks: A Comprehensive Foundation. Macmillan College Publishing,
New York

Zurada J.M. (1992) Introduction to Artificial Neural Systems. West Publishing C., St.Paul

Received on the 17" of December 2001

123



APPLIED ELECTRONICS

Computer Modelling & New Technologies, 2001, Volume 5, No.1, 124-131
Transport and Telecommunication Institute, Lomonosov Str.1, Riga, LV-1019, Latvia

BBICOKOU3BUPATEJIBHBIE IU®POBBIE ITOJINPA3HBIE
PUJIbLTPbI

B.II.LEPEMEEB, 2.B. MATOCOB, C.I'. TUMOHHUH

Hucmumym mpancnopma u césiu, 0enapmameHm dNeKmpOoHUKU
ya. Jlomonocosa 1, LV-1019, Puza, Jlameus

IlpennoxxeH  HOBBIH  crOCOO  MOCTpOeHHMs  LU(GPOBBIX  MHOTOKAaHANBHBIX ~ (HIBTPOB Ha 0aze  HU(POBBIX
BbICOKOM30MparTenbHblx pekypcuBHbix OHY. [lokazaHa BO3MOXHOCTh yHpolleHus mnoiaudasHoil CTPyKTypsl. BriOpana
ONITUMAJIbHAs TPOLEAypa PacIIEIUIIOero Ipeodpa3oBanus. IIpoBefeHO HETaNIbHOE CONOCTAaBIEHHE pealH3aldii Ha OCHOBE
PEKYPCHUBHOTO U HEPEKYPCHBHOT'O MPOTOTHIIOB.

Ki1ioueBble cjioBa: 1u(ppoBbie MHOTOKAHAIBHBIX (QUIIBTPBI

We suggest the new method design of digital multichannel filters that based on digital high selection low-band FIR filters. We
showed also possibility for polyphase structure simplification. Filters have optimal procedure of decompose transform. In article we
compare in detail the FIR and IIR filter realialization.
Keywords: digital multichannel filters

1. Bseaenmue

D¢ dexTrBHOE pa3lielieHHe CUTHajJOB Ha OT/AEJbHbIE YaCTOTHBIC IIOJIOCHI SIBIISIETCS aKTYyaJIbHOM
3ajayeil BO MHOTHX NpHioxeHuwsx [1,2,5,6]. Hanbonee panronansHO sSBIsieTCsl CTPYKTYpa, OCHOBAHHAs
Ha monudazHoil dopme mnocrpoenust [2,4,5,6-9]. [l HEpEeKypCHBHBIX CTPYKTYp OIIpeieseHUE
noH(a3HBIX KOMIIOHEHT OCYIIECTBIISIETCS JOCTATOYHO TPUBUAIIBHO — MPOPEXHUBAHUEM KO3 (PHUINEHTOB
UMITYyJIbCHOW XapaKTepUCTHUKH (MiIbTpa C HHTEPBAIOM, PAaBHBIM OOLIEMYy YHCIy KOMIIOHEHT. Jlis
PEKYPCHBHBIX BEICOKOM30MPATEIFHBIX CTPYKTYp 3Ta 33a4a Oojiee akTyajabHa U CIOXHA [2, 5, 6].

Panee Hamu ommcaH HOBBIN CIIOCOO BBIIEICHUS TOJMU(A3HBIX KOMIIOHEHT IE€PEIaTOYHON (QyHKIUH
uudpoBeix  pekypcuBHBIX  GuiabTpoB [3]. PaspaboraHa MeroJMKa CHHTE3a MHOTOKaHAJIbHBIX
PEeKypCUBHBIX MoiH(pa3HbIX (UIBTPOB, IpPHYEM MoJ3ajada pa3OMeHUS MCXOOHOTO PEKYPCHBHOTO
MPOTOTUNA Ha ToyM(a3Hble KOMIIOHEHTHl XOPOIIO alroputMu3upoBaHa. CHHTE3MpyeMble (UIBTPHI B
MOJTHOM Mepe HaclenyloT CBOMCTBa mnporotuna. HamoMuHaeMm, 9TO HMeEEeT MECTO OrpaHHUYEHHE:
KOJIMUECTBO IOJU(A3HBIX KOMIOHEHT M KOJMYECTBO KaHAJIOB CUCTEMBI JIOJDKHBI OBITH KpaTHBIMH
CTEeNeHW  JIBOWKU. BHauane paccuMThIBaeTCss YCTOWYMBBIM PEKYPCUBHBIH LHM(PPOBOM HPOTOTUI C
4eOBIICBCKOW, OAaTTEPBOPTOBCKOM, 30JIOTAPEBCKOM, OecCeneBCKOM, Jmbo Apyroil TpeOyeMoi
xapaktepucTukoil. [lamee, mnepematouHass (yHKOMS TNPOTOTHIIA paszaensercs Ha mnoiudaszHbe
KOMITOHEHTHI U, HAKOHEIl, HCIIOJb3YEeTCsl COOTBETCTBYIOIIEE pa3jersioniee npeodpasoBanne (ObIcTpoe
BemiecTBeHHOE O/IT1D).

B npunooicenuu mpuBOOUTCS TPUMEP W TNPOTPAMMBI JIETAIM3UPOBAHHOTO pacdeTa MapaMeTpoB
ONTUMAJIFHOW peajn3alid BOCBMUKAaHAIBHOW (uibTpyromeid nupoBoi moaudasHONH CTPYKTYPHI.
OnrtuMu3aIys CBsA3aHa C yMEHBIICHUEM YHCIIa ONEPali PacIIETIISIONIEr0 IPeoOpa3oBaHusl.

2. CpaBHeHHe HEepPeKYPCHBHBIX H PeKYPCHBHBIX MOJH(AZHBIX CTPYKTYP 10 BHIYHCIUTEIBHOMH
CJI0KHOCTH

TpamunuoHHsle moMMQa3HbIe CTPYKTYPHl CTPOIOTCS Ha OCHOBE IM(PPOBBIX HEPEKYypPCHBHBIX
(UIBTPOB, KOTOPBIE PACCUMTHIBAIOTCS, HAIPUMEp, C IOMOINbI0 airopurma Pemesa wim MeTomamu
JWHEHHOTO mporpaMmupoBanus. [Ipu 3TOM Al TMOJTydeHHs BBICOKOM3OMPATEIBbHBIX XapaKTePHCTHK
TpeOyroTCsA (QIIBTPHI BEChbMa OOIBIIOTO MOPSAAKA, YTO OOYCIOBIMBAET BBICOKYIO BBIYHCIUTEIBHYIO
CJIO’KHOCTB TOJIN(a3HON CTPYKTYPHI B IIETIOM.

W3BecTHO, 9YTO PEeKypPCHBHBIC (PHIIBTPHI 00ECIEUNBAIOT TPeOYyEeMYI0 M30HMPaTENbHOCTD MPH TOopa3io
MeHbIIMX mnopsiikax. [lodTomy, npumeHsisi pekypcuBHbll nmdpooit HY-nporortun s cuHTE3a
noyn(a3Hol CTPYKTYpBI, MOXKHO OXKHIATh YIPOLIEHHS MHOTOKAaHAIBbHOM peaan3alyy.

Hwxe B Tabnune 1 mokasaHsl pe3ynbTaThl CPABHEHHS PEKYPCUBHBIX U HEPEKYPCHUBHBIX CTPYKTYP IO
BBIYUCIIUTENBHON clIOKHOCTH. [IpenMeToM cpaBHEHHMS SBISAIOTCS KOJIMYECTBO YMHOXXEHUMU, CIOKEHUU U
SIYCCK IMaMsTH.
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Obosnauenus :

e M — 4ncIO KaHAJIOB.

e Ne - macnopT MHOTOKAaHAIBEHOTO (UIBTpA.

e Jlanee yka3aHsl napameTpsl udposoro HU ¢unbrpa-npororuna:

w1l — uacrora cpe3a, Wk — KOHTpOJIbHAs yacToTa, Amin — MHUHHMMYM 3aTyXaHHUs B [10JIOCE 3aJIEPKKH,
Amax — MakCHUMyM 3aTyXaHusi B IoJioce mpomnyckanus, Ko — kod(¢HUUMeHT NpsSMOYyrojibHOCTH 110
ypoBHAM Amin u Amax, N — mopsuok, N; — nopsiiok nosnudasHoit yactu ¢uibrpa.

TABJIMIIA 1
TpCGOBaHHS{ K 4aCTOTHOM H36MpaTCﬂbHOCTVI I'IOJ'IVICbéBHHX (pl/lﬂl:Tp()B HCpCKprHBHbIC I'IOJ'IVICbéBHHC (I)Vlﬂprbl PCKprMBHbIC I'IOJ'IHCbaiSHbIC Cbl/lﬂprbl
Ne | M Wk Kn wl Amax Amin N Ymuoxe | Crnoxe Slueex N Ymuoxe | Crnoxe Slueex N1
HUH HUHU TIaMsATH HUH HUHU TIaMsATH
1 8 0,0625( 0,08601 0,0053756(  0,0851412 40, 55 28 48 55 3 52 36 51 49
2 8 0,0625| 0,04418( 0,0027613|  0,0272554 50 71 36 64 71 3 52 36 51 49
3 8 0,0625| 0,05099 0,0031869| 0,0428964 60 79 40 72 79 3 52 36 51 49
4 8 0,0625( 0,02083( 0,0013019] 0,0160815 75,1 95 48 88 95 3 52 36 51 49
5 8 0,0625( 0,02684 0,0016775| 0,0136463 70 95 48 88 95 3 52 36 51 49
6 8 0,0625( 0,01923 0,0012019 0,015568 81,6 103 52 96 103 3 52 36 51 49
7 8 0,0625| 0,01666( 0,0010413 0,013962 95,57 119 60 112 119 3 52 36 51 49
8 8 0,0625( 0,01562 0,0009763| 0,0131676 102,43 127 64 120 127 3 52 36 51 49
9 16 0,03125| 0,08601 0,0026878|  0,0851328 40, 111 56 96 111 3 100 68 99 97
10] 16 0,03125| 0,04424| 0,0013825|  0,0272874 50 143 72 128 143 3 100 68 99 97
11] 16 0,03125| 0,02499| 0,0007809( 0,0141221 61,76 159 80 144 159 3 100 68 99 97
12] 16 0,03125| 0,02083| 0,0006509| 0,0162089 75,45 191 96 176 191 3 100 68 99 97
13 16 0,03125| 0,01923|  0,0006009]  0,0156528 82,3 207 104 192 207 3 100 68 99 97
14] 16 0,03125| 0,01666( 0,0005206|  0,0140098 95,89 239 120 224 239 3 100 68 99 97
15] 16 0,03125| 0,01562  0,0004881 0,0132058 102,73 255 128 240 255 3 100 68 99 97
16] 32| 0,015625| 0,08601 0,0013439|  0,0851275 40, 223 112 192 223 3 196 132 195 193
17] 32| 0,015625| 0,04426] 0,0006916( 0,0272921 50 287 144 256 287 3 196 132 195 193
18 32| 0,015625| 0,02286] 0,0003572|  0,0068999 60 319 160 288 319 3 196 132 195 193
19] 32 0,015625| 0,01938] 0,0003028( 0,0014273 70 383 192 352 383 3 196 132 195 193
20| 32| 0,015625| 0,00843| 0,0001317 6,48E-04 80 415 208 384 415 3 196 132 195 193
21| 32| 0,015625| 0,00684| 0,0001069 1,36E-04 90 479 240 448 479 3 196 132 195 193
221 32 0,015625| 0,00296( 4,625E-05 6,18E-05 100 511 256 480 511 3 196 132 195 193
23] 64| 0,0078125| 0,08602 0,000672]  0,0851415 40, 447 224 384 447 3 388 260 387 385
24| 64| 0,0078125| 0,04427| 0,0003459( 0,0272943 50 575 288 512 575 3 388 260 387 385
25| 64| 0,0078125| 0,02345( 0,0001832| 0,0068208 60 639 320 576 639 3 388 260 387 385
26| 64| 0,0078125| 0,01882 0,000147]  0,0014113 70 767 384 704 767 3 388 260 387 385
27| 64| 0,0078125| 0,00856(  6,688E-05 6,41E-04 80 831 416 768 831 3 388 260 387 385
28| 64| 0,0078125| 0,00687 5,367E-05 1,34E-04 90 959 480 896 959 3 - - - -
29| 64 0,0078125| 0,00312 2,438E-05 6,11E-05 100 1023 512 960 1023 3 - - - -
30| 128 0,0039063| 0,08603| 0,0003361 0,085157 40, 895 448 768 895 3 772 516 771 769
31] 128 0,0039063| 0,04427| 0,0001729 0,02729 50 1151 576 1024 1151 3 772 516 771 769
32] 128 0,0039063| 0,0238(  9,297E-05 0,00678 60 1279 640 1152 1279 3 772 516 771 769
33] 128 0,0039063| 0,01924 7,516E-05 0,001403 70 1535 768 1408 1535 3 772 516 771 769
34| 128 0,0039063| 0,00863 3,371E-05 6,37E-04 80 1663 832 1536 1663 3 772 516 771 769
35] 128 0,0039063| 0,00689( 2,691E-05 1,34E-04 90 1919 960 1792 1919 3 - - - -
36| 128 0,0039063| 0,00308 1,203E-05 6,07E-05 100 2047 1024 1920 2047 3 - - - -

B Tabnume | mpuBeneHBl JaHHBIE ONTHMANBHBIX TI0 XapaKTEPHCTUKAM ¥ BBEIYUCIHATEIHEHBIM
3arpaTaM PEeKypCHBHBIX U HEPEKYPCHBHBIX HHU(POBBIX MoaudazHbIX GUIBTPOB
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Ha Pucynke 1 paHoO comocTaBlieHWE BBIYMCIUTENBHBIX 3aTpaTr s peKkypcuBHBIX (PD) u

HepekypcuBHbIX (H®D) 8-kaHanbHbIX monudasHeix GHILTPOB. BUIHO, 4TO peKypCHUBHBIC peai3aluu
3HAYUTEIbHO dpdekTuBHee. [t CTPYyKTYp ¢ OONBIINM KOJINYECTBOM KaHAJIOB PE3yJIbTaThl AHAIOTHYHBI.
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Pucynox 1. TlapameTps! peanu3anuu 8-KaHAIBHBIX CTPYKTYD.

Taxum o6pa30M, opu OJHHUX M TCX KE HCXOIAHBIX Tpe6OBaHI/ISIX CJIOKHOCTh peajin3aliluid HOBOT'O

Kjacca MHOTOKaHAJIbHBIX (WIBTPOB CYIIECTBEHHO HIKE [0 CpPaBHEHHIO CO CTPYKTYpaMmH,
0a3MpyIOIUMHCS HA TPAJULIUOHHBIX HEPEKYPCUBHBIX HU(PPOBHIX (PriIbTpax.
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IIpumep onmumanvhoii peanuzayuu 8-KaHAILHO20 PEKYPCUGHO20 NOAUPA3HO20 YUPPOBO20 PuUALMPA C ORMUMATILHBIM
onoxkom OJIID
Hcxonnbie TpeOOBaHUS K HU3KOYACTOTHOMY (PHIIBTPY-TIPOTOTHILY :

3aTyXaHHE B [0OJIOCE TIPOILYCKaHUs
3aTyXaHHE B [0JIOCE HENPOITyCKaHUs
K03 GUIHEHT NPIMOYTOIBHOCTH

HOpMHPOBaHHAasA KOHTPOJIbHAS YacTOTa

HOpMHPOBaHHAas 4aCcToTa Cpe3a

Amax

=0,01 o1b
Apin = 40 1B
K,=0,7

0.=0,0625

£2,=0,04375

Koaddumuents! 8-xananbpHOTo GuibTpa:
TABJIMLIA 2. Koa¢hdpuuueHTsl BXOJHBIX OJIOKOB.

Peanuzanus 6iioka OIID: a=0.923879532 ;

Howmep xackaza Ko3¢-Tb1 iput 2’ Kosd-Te1 ipu 7' Koa¢-Tb1 ipu 72

1 1 -0.0911 0

2 1 0.0711 0.0328

3 1 0.6924 0.2121

4 1 1.3657 0.6580

TABJIULIA 3. KoabduuneHts! nonudasHeix OI0KOB.

Ne nonud. Kom. 7 Z' 72> 7 7% 2% 7% z'?

1 0.0027 | 0.0354 | 0.1086 | 0.1320 | 0.0705 | 0.0152 | 0.0009 | 1.8116e-006

2 0.0046 | 0.0417 | 0.1149 | 0.1309 | 0.0660 | 0.0133 | 0.0007 | O

3 0.0038 | 0.0424 | 0.1157 | 0.1272 | 0.0612 | 0.0116 | 0.0006 | O

4 0.0041 0.0452 | 0.1180 | 0.1239 | 0.0567 | 0.0100 | 0.0004 | O

5 0.0050 | 0.0493 | 0.1210 | 0.1208 | 0.0523 | 0.0086 | 0.0003 | O

6 0.0064 | 0.0542 | 0.1243 | 0.1175 | 0.0482 | 0.0074 | 0.0003 | O

7 0.0081 0.0594 | 0.1274 | 0.1142 | 0.0443 | 0.0063 | 0.0002 | O

8 0.0100 | 0.0647 | 0.1301 0.1105 | 0.0405 | 0.0054 | 0.0001 | O

9 0.0119 | 0.0700 | 0.1323 | 0.1067 | 0.0370 | 0.0045 | 0.0001 | O

10 0.0140 | 0.0752 | 0.1340 | 0.1026 | 0.0336 | 0.0038 | 0.0001 | O

11 0.0161 0.0801 0.1351 0.0983 | 0.0304 | 0.0032 | 4.7905 | O
e-005

12 0.0183 | 0.0848 | 0.1357 | 0.0938 | 0.0274 | 0.0026 | 3.2300 | O
e-005

13 0.0205 | 0.0892 | 0.1356 | 0.0892 | 0.0245 | 0.0022 | 2.1155 | O
e-005

14 0.0228 | 0.0933 | 0.1350 | 0.0845 | 0.0219 | 0.0018 1.3407 | 0
e-005

15 0.0251 0.0972 | 0.1338 | 0.0797 | 0.0195 | 0.0014 | 8.2077 | O
e-006

16 0.0275 | 0.1007 | 0.1321 0.0748 | 0.0172 | 0.0011 | 4.8872 | O
e-006

b =10.382683432 ;

¢=0.707106781.

Pucynox 2. T'pad cepxObicTporo npeodpaszoBanus Dypbe (BeleCTBEHHAS YacTh).
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Frequency characteristic of the Multichannel Filter

-20

-25

Magnitude in dB

-30

-35

-40

-45 ﬂ A,

L

—~| | —

e A

|

0.4 0.5 0.6 0
Norm alized frequency

N

0.8

0.9 1

Pucynox 3. AMIUIATY JHO-4aCTOTHBIE XapaKTEPHCTUKH 8-KaHAIBHON CHCTEMBI (PUIIBTPOB.

IIporpaMma onTHMAJIBLHOIO BelleCTBEHHOr 0 npeodpa3oBanus @ypbe Ha 16 Touek B koaax cuctemsl MATLAB-5

function R = vhrfft (x)

a = 0.923879532; b = 0.382683432; ¢ = 0.707106781;

R = zeros(le, 1);

M= x(1); x(1) = x(1) + x(9); x(9) =M - x(9);

M= x(2); x(2) = x(2) + x(10); x(10) =M - x(10);

M= x(3); x(3) = x(3) + x(11); x(11) =M - x(11);

M= x(4); x(4) = x(4) + x(12); x(12) =M - x(12);

x(5) = x(5) + x(13);

M = x(6); x(6) = x(6) + x(14); x(14) =M - x(14);

M= x(7); x(7) = x(7) + x(15); x(15) = M - x(15);

M= x(8); x(8) = x(8) + x(16); x(16) =M - x(16);

M= x(1); =x(1) = x(1) + =x(5); =x(5) =M - x(5);

M= x(2); x(2) = x(2) + x(6); x(6) =M - x(6);

M= x(3); x(3) = x(3) + x(7);

M= x(4); x(4) = x(4) + x(8); x(8) =M - x(8);
x(16) = x(10) - x(16);
x(15) = x(11) - x(15);
x(14) x(12) - x(14);

M= x(1); x(1) = x(1) + x(3); x(3) M - x(3); $R5

x(2) = x(2) + x(4); x(8) x(6) - x(8)

M= x(1); x(1) = x(1) + x(2); x(2) =M - x(2); $R1

x(8) = c*x(8); x(15) = c*x(15);

M = x(5); x(5) = x(5) + x(8); x(8) M - x 2R3

M= x(9); x(9) = x(9) + x(15); x(15) =M - x(15);

M = x(14) + x(106); M = b*M;

x(14) = (a + b)*x(14); x(l6) = (a - b)*x(1l6);

x(16) = M + x(16); x(14) = M - x(14);

M= x(9); x(9) x(9) + x(16); x(106) M - x(16); SR2

M = x(14); x(14) = x(14) + x(15); x(15) =M - x(15); %R4

R(1) = x(1);

R(2) = x(9);

R(3) = x(5);

R(4) = x(14);
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R(5) = x(3);
R(6) = -x(15);
R(7) = x(8);
R(8) = x(16);
R(9) = x(2);

for k = 2:8, R(18 - k) = R(k); end

IIporpamma pacyera 8-KaHAJBLHOIO LINNTHYECKOT0 GUILTPA

clear, home

o°

o°

KonmmuecTBO KaHaAJIOB M NOJMPa3HEIX KOMIIOHEHT B MHOT'OKaHAaJIbHOM @Mm:mpe

NCh = 8; M = 2*NCh;

o

o

TpeGoBaHMs K YaCTOTHOM M3bupaTesbHOCTM umdposoro HU-nporToTmmna

Ko = 0.7;
amax = 0.01;
wk = 1/M;
wl = Kp*wk;
amin = 40;

o

amin = amin + 0.13*amin; % xoppekumsa AUYX B [OJIOCE 3aIEPXKU

clear Kp

o°

o°

OnpegnesnieHue nopsanka uudppororo HU-npoToTHUIIa

K = cot(0.5%pi*wl);
Wk = K*tan(0.5*pi*wk);
k = 1/Wk;

k1l = sqgrt(1-k"2);

Q0 = (1 - sqgrt(kl))/(2*(1 + sqgrt(kl))):;

Q = 0Q074;

Q = ((((569*Q + 50)*Q + 5)*3*Q + 2)*Q + 1)*Q0;
Y = (10~(0.l*amin) - 1)/(10”7(0.1l*amax) - 1);

N = ceil(logl0(16*Y)/1ogl0(1/Q));

o°

o

OnpegneneHue kosdpdmumeHTOB UMPpOoBOTO HU-npoTOTMIA

MO = 10*1ogl0(1 + 16* (10" (0.1*amin) - 1)*Q"N);
L = log((107(0.05*MO) + 1)/(107(0.05*M0) - 1))/ (2*N);
T = 2*Q*0.25/sqrt (k) ;

f0 = T*sinh (L) ;
f = 2*cosh(2*L);

G =1;
for J = 1:25
G = fO*G*(1 - £*Q"(2*J) + Q™ (4*J)) /(1 - £*Q"~(2*J - 1) + Q*(4*J - 2));
f0 = 1;
end
G = abs (G);
if rem(N,2) ==
R = N/2;
m = 0.5;
HO = 10~ ( - 0.05*MO) ;
else
R = (N - 1)/2;
m = 0;
HO = G;
end
for i = 1:R
S(i) = T*sin(pi* (i - m)/N);
C(i) = 2*cos(2*pi* (1 - m)/N);
X =1;
for J = 1:25
X = X*(1 - C(1)*Q"(2*J) + Q" (4*J)) /(1 - C(1)*Q*(2*J - 1) + Q*(4*J - 2));
end
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W(i) = S(i)*X;
V(i) = sqrt((1 - (k*W(i))"*2)*(1 - W(i)"2));
A(i) = 1/((k*W(i))"2);
B(i) = (2*G*V(1))/(1 + (k*G*W(1))"2);
C(i) = (G2 + W(1)"2)/ (1 + (k*G*W(1))"2);
HO = HO*C (1) /A (1) ;
end
if rem(N,2) == 0
b{1l} = HO;
a{l} = 1;
else
g =G + K;
a{l}(2) = 1;
a{l} (1) = (G - K)/g;
b{l}(2) = HO/g;
b{1} (1) = b{1l}(2);
end
for i = 2:R + 1
d = K"2 + B(1i - 1)*K + C(1 - 1);
af{i}(3) = 1;
af{i}(2) = 2*(C(i - 1) - K*2)/d;
a{i} (1) = (d - 2*B(1i - 1)*K)/d;
b{i}(3) = (K2 + A(i - 1))/d;
b{i}(2) = 2*(A(1 - 1) - K"2)/d;
b{i} (1) = b{i}(3);
end

clear ABCSVWGHO JKLMOQOQOTZXYWkdEf f0hkklIhmwg

o°

% PacumensieHre pPeKypPCHUMBHONM [NepemaTOuYHOM OGyHKLUMM Ha OoJmbas3HbElE KOMIIOHEHTH

it = nextpow2 (M) ;
for i = 1:R+1
for k = 1:it

y = afi};
len = length(y);
if 1 == 1, len = 1; else len = (len + 1)/2; end
y(len) = - y(len);
a{i} = conv(y, afil});
b{i} = conv(b{i}, y);
end

end

clear len y

o°

% JlesleHMe UYMCIUTENS epelaTouyHOM QYHKLUMM Ha HoJMdasHEE KOMIIOHEHTE
;
for i = 1:R + 1
Xm = conv(Xm, b{i});

Xm = [zeros(1,M - 1) Xm]; Xm = fliplr (Xm);
Xp = reshape(Xm, M, N + 1); Xp = fliplr(Xp);

clear b Xm

o°

o°

PazbueHne nosmbasHEIX KOMIIOHEHT Ha COMHOXUTEJIM

for k = 1:M

if k == 1, ¢ = 1; else ¢ = 2; end
f =Xp(k, c:N + 1);
[p{k}, s{k}, a{k}] = polyfact(f);

p{k} = fliplr(p{k});

s{k} = fliplr(s{k});

if isempty(p{k}) == 1, p{k} = 1; else p{k}

if isempty(s{k}) == 1, s{k} 1; else s{k}
end

pi{k}; end
s{k}; end

clear £ ¢ Xp
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% VMoyJibCHas XapaKTEepUCTMKa BXOOHEIX OJIOKOB NoJmubaszHOTO GuibTpa

o°

Ym = 1;
for i = 1:R + 1, Ym = conv(Ym, a{i}); end
Ym = fliplr (Ym);
NP = 64*M;
X = [1 zeros(l, NP - 1)];

X = filter(l, Ym, X);

clear Ym a

o°

% VMoyJbCHas XapaKTepMCTUKA NOJMba3HEIX KOMIIOHEHT

Pc = zeros (M, NP); dch = 2"it - 1;
X = X (find (X)) ; lng = length(X);
for k = 1:M
x = X; x = x*q{k};
sz = size(p{k});
for n = 1:sz (1), x = filter(p{k}(n,:), 1, x); end
sz2 = size(s{k});

for n = 1:s2z2(1), x = filter(s{k}(n,:), 1, x); end
ch =k - 1;
for i = 1l:length(x), Pc(k, 1 + ch) = x(i); ch = ch + dch; end
end

clear x X

sz = size(Pc);
for k = 1:s2(2), y(:, k) = vhrfft(Pc(:, k)); end
y =y ty;
y(l,:) = 0.5*y(1l,:); y(NCh + 1,:) = 0.5*y(NCh + 1,:);

clear p s gq sz

o

o°

YacToTHada XapakKTepmnucTMkKka MHOT'OKAaHAaJIbHOI'O (DMJ'H:Tpa

figure(2), hold on, NP = NP/2 - 1;
for k = 1:NCh + 1
Sy = 20*1ogl0 (abs (fft(y(k,:))));
plot ((0:NP) /NP, Sy (l:NP + 1))
end

grid on, hold off

title ('Frequency characteristic of the Multichannel Filter')

ylabel ('Magnitude in dB')

xlabel ('Normalized frequency')

axis ([0 1 —-amin 01])

zoom

o
]

l'[porpaMma pa3ﬁl/leHl/lﬂ l'l0.]'ll([(l)a3]-ll>IX KOMIIOHCHT HAa COMHOKHTE/IH

function [ap,as,h] = polyfact(a)

n = length(a)-1;

z = roots(a); y = imag(z);
m=1; 1=1; ap = []; zp = ap; zs = ap; as = ap;
for k = 1:n
if abs(y(k)) > 2*eps, zp(m,1) = z(k,1); m = m+l;

else, zs(1l,1) = z(k,1); 1 = 1+1; end, end
for k = 1:(1-1), as = [as; poly(zs(k,1))]; end

for k = 1:2:(m-1), h = poly([zp(k,1) zp(k+1,1)]);
ap = [ap; h]; end

h = a(l);
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HOBBIE CTPYKTYPbI MAJIOYYBCTBUTEJ/IBHBIX
HUPPOBbLIX ®PNJIBTPOB

B. EPEMEEB, A.'YMEHIOK, T. MAMHUPOB

Hucmumym mpancnopma u ceasu, 0enapmamenm 21eKmpOoHUKU
ya. Jlomonocosa 1, LV — 1019, Puea, Jlamsus

IIpemioxxeHsl HOBBIE CTPYKTYPHI JUIS peali3aluy H(POBBIX QHIBTPOB - KaCKaJHOE COSAUHEHUE CYOCTPYKTYp HEPBOrO
nopsiaka. Ilepenarounsie QyHKINKM TakuX (UIBTPOB MMEIOT KOMILUIEKCHBIC KO3 duuuentsl. [IpakTnueckn peanusyemble MOJIOCHI
MPOITYCKAHUSI NIPH IPOYHX PABHBIX YCIOBHSIX HA HECKOJIBKO MOPSAKOB MEHBIIE, YeM y OMKBAJHBIX peaTn3aLuii.

KiioueBble c10Ba: ipoBble GHIBTPEL, IEPEAATOYHBIE (HYHKIIHI

We propose new structures for digital filters realization — cascade combination of first-order substructures. The transfer
functions of these filters have complex coefficients. Practically realized pass-bands in equal conditions are some orders lower than
biquad realizations passbands.

Keywords: digital filters, transfer functions

[Ipu npoeKTHPOBAHUU MaJIOYyBCTBUTEIBHBIX HHU(POBBIX (GUIBTPOB C OONBIINM AMHAMUYECKUM
JMara30HOM BO3HMKAIOT IPOOJEMBI, CBSI3aHHbIE Kak C BBIOOPOM COOTBETCTBYIOILErO Kiacca
NepelaTOuHbIX XapaKTePUCTHK, TaK M BBHIOOPOM CTPYKTyphl peanusanuu. Ha Hamn B3rjsin, co3maHue
POOACTHBIX CUCTEM - 3TO, IIPEXKE BCEro, MpodiemMa Bbioopa () (HEeKTUBHON CTPYKTYPHI.

OpueHTanusi Ha MalOYyBCTBHUTENIFHBIE peallM3alliil CBsA3aHa JaXe HE CTOJBKO C TEM, YTO
IpeAroaraeTcsl MCIoiIb30BaTh B Ipoleccopax "KOPOTKyo apu(METHKY', HO B OOJNbILIECH CTEIEeHH C
JKEeJIaHUEM IOJY4UTh HU(PPOBBIE (DMIBTPBI C PEKOPAHBIMHM XapaKTEPUCTHKAMH: JIMOO C OYEeHb KPYTHIMHU
aMIUTUTYOHO-YaCTOTHBIME ~ Xapakrepuctukamu (AUX), nmubo ¢ MakcuMmu3amued JAHHAMIYECKOTO
Jaras3oHa, JTH00, HAKOHEI, C TpenenbHO y3komoinocHeiMA AUX. B nmampHeimeM Ui WILTIOCTpAINH
3((eKTUBHOCTH HOBBIX MpeIiaraeMbIX CTPYKTYp MBI OCTAHOBHMCS Ha CHHTE3€ CBEPXY3KOMOJIOCHBIX
U (pPOBBIX QUIBTPOB HIKHUX YaCTOT C KIIACCHYECKUMH XapaKTePUCTUKAMHU.

EnvHCTBEHHBIM CErOfHS W3BECTHBIM TEXHWYECKHM peIIeHHeM IOA0OHOTO Kiacca 3ajgad
SIBJIIETCS TIpPUMEHEHWE BOJHOBBIX GWiIbTpoB [1]. OmHako dYpe3MmepHas H30BITOYHOCTH, CIOKHOCTH
MMPOCKTUPOBAHUA W MOACIHUPOBAHUA OCTABJIAIOT aKTYaJbHBIM IIOUCK aJIbTCPHATHBHBIX peHleHIdﬁ.
KonuentyanpHo mpobiieMa BbIOOpa HOBOWM CTPYKTYpPBI pellicHa OOOOIIEHHBIM COMOCTABICHHEM JBYX
TPaIUIMOHHBIX peaau3auuii - mpsMoil u ouxsagHoM [1-4].

Onna w Ta Ke mepeparodHas (QyHKIUS MOXKET OBITh 3amucaHa Uil NpSIMOH peann3alyn
CJIE/TYFOLIIM 00pa3oM:

H ) = by +b,z7 +byz? +..+byz N |
l+a;z7 +a,27% +..+ayz " (M
JInist SKBUBANEHTHOW OMKBAIHON PEANM3AIMU COOTBETCTBEHHO YETHOTO M HEYETHOTO TOPSIKOB
nMeeM:
-1 2
Hz) < N/2h g +bp 27 +by 2
(z7) = =y =) (2)
k=1 l+apz +ayz
el = Dot b 2z ND2p bz by 27
(z7) = 3)

1+alz’1 k=l l4+a), 7! +aq 77
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Brok-nmuarpaMMHBIe peann3anyy MpsMON 1 OMKBAIHOM CTPYKTYp MoKa3aHbl Ha Pucynkax 1 u 2.

ho + bo +
O

Pucynok 1. briok-auarpamma npsiMoit CTpyKTYpbl

MHOKUTETH [T HEUSTHOTO TIopsiia 1-i1 Grxsay 2-11 Grxear N1 Orxsat

[ N N

g + @ b2
-az bz

Pucynok 2. brnok-nquarpaMmma OUKBaIHOH CTPYKTYpbI

Jns  onpenesieHHss 4YacTOTHBIX XapaKTEPUCTHK [EJecO0Opa3HO HCIOJb30BaTh BCTPOCHHYIO
¢ynkimio freqz.m makera MatLab-6, B xoTopyto mnepenatorcsi paboumii quana3oH YacTOT, a TaKKe
BEKTOPHI KOI(PQUITMEHTOB YHUCIUTENS W 3HAMEHATeNs NepelaTouHoN (YHKIMH, U KOTOpas BO3BpamiaeT
KOMIUIEKCHBIM BEKTOP paCCUMTAHHBIX 3HaYEHHH nepenatouHoi GyHknuu. C ee IOMOIIbIo sl GUIBTPOB
UYeobpmmena I-ro u II-ro poxa, a Takke syumnTadeckoro Obiu nccnenoBanbl AUX HY — dunbtpoB npu
YMEHBIICHUH UX IT0JIOC ITPOITYyCKaHUs.

AUYX ¢uneTpoB mpamoii peanmnzanmu  (puc.l) NpU MOCTENEHHOM YMEHBUIEHHH IIOJIOCHI
IMPOIYCKaHUsl BHAadale HE HMMEIOT MCKAXEHHUH B MOJOCaX INPOIMYCKaHUS M 3aAEPKUBAHMS, HO IpU
JIOCTHXEHUH HEKOTOPOTO KPUTHYECKOTO 3HAYCHUs MOSBIIOTCS CIepBa ciadble, a 3aTeM M Bce Ooiee
3aMmeTHble nckaxkenuss AUX. Ilpu nanpHeleM CyXK€HUU MOJIOCHI IPOITyCKaHUs XapaKTEPUCTHKA TEPSET
CBOIO II€PBOHAYAIBHYIO (OpMYy M, HAKOHEN, IIOJHOCTBIO «pa3BanuBaercs». /[l craHmapTHBIX
TpeOOBaHMI K XapakTepucTHKaM (GWIBTPOB HIDKe B Tabnunax OyayT NpHBEACHBI 3aBUCUMOCTHU
KPUTHYECKUX TI0JIOC TMPOIYCKaHUsl OT mopsaka. OTMETHM Takke W HW3BECTHBIM (aKT, 4TO IpsMas
CTPYKTypa peaju3aluyl NPaKTHYeCKHd Hepeaansyema MpH OOJbIIMX MOpSIKax M3-32 OYeHb OOJIBIIOHN
YyBCTBUTEIBHOCTH K TOYHOCTH YCTAaHOBKH €€ KO3()(UINEHTOB U KpaiiHe IUIOXOH TNHAMUKH.

TpaauIMOHHBIM THUIIOM NPAKTUYECKUX peanu3anuii nuppoBbIX (UIBTPOB SBIAETCA KacKaaHasd,
T.H. OukBagHasa peanuzaius (PucyHok 2). OHa MO3BOJSET KaYECTBEHHO CHHU3UTH YYBCTBUTEIHHOCTH
CTPYKTYpBl K HETOYHOCTSM YCTaHOBKM IapaMeTPOB Ha HECKOJIBKO IOPSAAKOB. B wacTHOCTH, BIOJHE
peamuzyeMmbl LITOHY ¢ xpuTuueckuMH IOJOCaMHU IPOMYCKAaHUsS, YCTAHOBICHHBIMU MM MPSIMOI
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peamu3anuu. [loockl mporryckaHWs, NpU KOTOPBIX W y OWKBAaTHBIX pealu3aliiii TOTO JKe MOpsaKa
HaYMHAIOT NOSIBIATHCA UcKaxeHuss AUX, Ha HECKOJIBKO MOPSIAKOB MEHbIIIE.

Hccrnenys rene3nc OMKBagHBIX CTPYKTYp M3 IPSMOHM W PACCUUTHIBAS HA HACIEIyeMBIE MIPH STOM
MpoLiecce CBOWMCTBA, HAMH CJENaH CIEAYIOIINNA JIOTHUECKUN IIar ¢ HaMEpPEeHHEeM MOJMYUYUTh JIy4dIIyro
cTpykrypy. [Ipennaraercs kackaJHO BKJIIOYATh 3BE€HBSI TOJILKO MEPBOTO MOPSJIKA, KOTOPHIE B OTIIMYUE OT
OMKBAJIOB ECTECTBEHHO HMCHOBATh Kak oOuiaiinsl (biline):

[epenarodnast GyHKIUS HOBOW pear3aiuy MOXKET OBITh IIPEJCTaBICHa B (OpMeE:

N b +bz!
Hz) = ok T O
v (4)

Koaddunmentsr nepenatrouHoi GpyHKIKH MPY 3TOM OyIyT B 00IIEM CiTyuyae KOMILUIEKCHBIMH.

Oto ycnoxHsAeT peann3anuio. Kakosa ke 1ieHa takoro mnepexona?. MccnenoBaHue KpUTHYECKUX ITOJIOC
npornyckanus GUIbTpa Ha OMIIaliHAX [TPU Pa3IMYHBIX TPEOOBAHUSIX K €r0 XapaKTEPUCTHKAM MOITBEPIUIIO
MIPEIONI0KEHNE O MOJYYSHUH 3aMeYaTeNIbHbIX IPEUMYIECTB ATOT0 TUMA PEaNTH3alliH, TI0 CPAaBHEHUIO C
npsiMod 1 OukBamHOW. IIpy NMpoUYMX paBHBIX YCIOBUSX KPUTHYECKAs MOJIOCA MPOIYyCKAHUsI CTPYKTYPBI
Mr000ro mopsiika Ha OujlaliHax ropas/io MEHble (Ha HECKOJIBKO ITOPSAKOB!), 4eM Y COOTBETCTBYIOIICH
TPaAMIIMOHHOW CTPYKTYpbl Ha OukBanax. IlogpoOHoe comocraBienue napamerpoB AUX anst mpsmoH,
OWKBaJHOW W OWIAHHOBOM peanu3anuii MPUBEACHBI B TaOIMIaxX HiKe. blok — muarpamMma OwiaiiH -
peanu3anuu npuBeneHa Ha Pucynke 3.

1-71 Ovaiis 2-1 Gl NH1 Ormaiie

Pucynox 3. biok-quarpamma biline - CTpyKTypBbI

TABJIMLA 1. KputHdeckue nosiocsl MpOoIyCKaHus JUTs PsIMOW, OMKBaAHOM U OWTaiiH — peanusanuii GuibTpa
Yebpimiesa I-ro poaa

3atyxamue s mooce) g 0,01 0,01 0,01 0,01 0,01 0,01 0,01
nponycxaﬂnﬂ
TMopsitok N 5 7 9 11 13 15 17
3atyxamme B mostoce| o g 8 20 35 55 70 85 105
3aep:KUBaAHUA
Peanu3zanuu:
TMpsivas Wi 2,10E-03 | 9,00E-03 | 2,20E-02 | 5,20E-02 | 8,50E-02
Buksagnas Wi 6,00E-08 | 1,00E-07 | 1,20E-07 | 3,00E-07 | 2,00E-06 | 1,00E-06 | 2,00E-06
Bunaiinosas Wie 2,00E-14 | 1,00E-12 | 4,00E-12 | 1,00E-12 | 8,00E-14 | 1,00E-13 | 2,00E-13
3atyxamme B nozoce| g 0,1 0,1 0,1 0,1 0,1 0,1 0,1
NPONYCKAHUS
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Topsinox N 5 7 9 11 13 15 17
3aryxamme B mosoce| o g 15 30 45 65 80 95 115
3aep:KUBaHUA
Peanmn3zanum:
Mpsmas Wie 1,50E-03 | 9,00E-03 | 2,80E-02 | 5,50E-02 | 9,00E-02
Buksaanas Wi 1,00E-07 | 2,00E-07 | 1,00E-07 | 3,00E-07 | 3,00E-07 | 2,00E-07 | 2,00E-07
Buuiaiinosas Wie 1,00E-14 | 7,00E-14 | 1,00E-13 | 1,00E-13 | 3,00E-13 | 8,00E-14 | 1,00E-13
3aryxamme B nozoce| g 0,5 0,5 0,5 0,5 0,5 0,5 0,5
ﬂpOHchaHl/lﬂ
TMopsinox N 5 7 9 11 13 15 17
3aryxamme B mostoce| o g 20 40 55 70 90 105 120
3a)lep)l(l/[BaHl/lﬂ
Peanm3zanuu:
Mpsamas Wie 1,50E-03 | 1,20E-02 | 3,50E-02 | 5,80E-02 | 9,00E-02
Buksagnas Wie 9,00E-08 | 2,00E-07 | 1,00E-07 | 2,00E-07 | 1,00E-07 | 4,00E-07 | 5,00E-07
Buiaiinosas Wie 8,00E-15 | 3,00E-14 | 2,00E-13 | 8,00E-14 | 8,00E-14 | 4,00E-13 | 5,00E-13

TABJIULIA 2. KputHdeckue HOI0CH IPOITYyCKAaHUS IS IPSIMOH, OMKBaJHOU U OMIaliH — peanu3anuil GpuibTpa
Yeobpiiesa I1-ro pona

3aryxaHue B nmoJjoce amax, 16 0,01 0,01 0,01 0,01 0,01 0,01 0,01
NPONYCKAHMS
IMopsnox N 5 7 9 11 13 15 17
3aTyxanue B noJioce amin, nB I 20 35 55 70 90 105
3ajep:KUBAHHSA
Peannzanun:
Hpsmas Wi 6,00E-04 | 5,00E-03 | 1,60E-02 | 3,50E-02 | 5,80E-02 | 8,70E-02 | 1,10E-01
BukBajgnas Wi 8,00E-08 | 8,00E-08 | 1,00E-07 | 2,00E-07 | 1,00E-07 | 3,00E-07 | 2,00E-07
BunaiinoBast Wi 9,00E-15 | 9,00E-15 | 1,00E-14 | 8,00E-15 | 3,00E-14 | 6,00E-14 | 4,00E-14
3aTyxaHHe B oJioce amax, 1B 0,1 0,1 0,1 0,1 0,1 0,1 0,1
NPONYCKAHUS
IMopsnox N 5 7 9 11 13 15 17
3aTyxanue B noJioce amin, nB 15 30 45 65 80 95 115
3ajep:KUBaAHHSA
Peannzanumn:
Hpsmas Wi 8,50E-04 | 6,50E-03 | 1,90E-02 | 3,90E-02 | 6,60E-02 | 9,50E-02 | 1,20E-01
BukBajgnas Wi 1,00E-07 | 1,00E-07 | 2,00E-07 | 1,00E-07 | 2,00E-07 | 2,00E-07 | 3,00E-07
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Buiaiinobas Wi |5,00E-15 | 8,00E-15 | 4,00E-14 | 7,00E-14 | 3,00E-14 | 3,00E-14 | 9,00E-15
3aryxanme s nonocel L. g | g5 0,5 0,5 0,5 0,5 0,5 0,5
NPONYCKAHUSA
Topsizok N 5 7 9 11 13 15 17
3aryxanme B noxoce) o g 20 40 55 70 90 110 125
3aep:KUBaHUA
Peanm3zanum:
Tpsivas Wi |9,00E-04 | 8,00E-03 | 2,20E-02 | 4,20E-02 | 6,70E-02 | 9,90E-02 | 1,25E-01
BukBagHas Wi | 1,00E-07 | 1,00E-07 | 2,00E-07 | 1,00E-07 | 2,00E-07 | 2,00E-07 | 3,00E-07
Bunaiinosas Wi | 7.00B-15 | 1,00E-14 | 3,00E-14 | 3,00E-14 | 2,00E-14 | 3,00E-14 | 3,00E-14

TABJIULIA 3. KputHaeckue 0JI0CH IPOITYyCKAaHUs IS IPIMOH, ONKBaIHOM 1 OMIIaliH — pealii3alii JUTHITHIECKAX

(buIETPOB
3aryxaHue B noJoce amax, 15 0,01 0,01 0,01 0,01 0,01 0,01 0,01
NPONYCKAHMS
Hopsinok N 5 7 9 11 13 15 17
3aryxanue B mostoce | L g 20 50 80 110 140 170 200
3a/ep:KUBaAHUS
Peanu3zanuu:
Mpsimast Wi 1,50E-03 | 9,50E-02 | 2,50E-02 | 5,20E-02
Bukeaanas Wi 8,00E-08 | 8,00E-08 | 1,50E-07 | 2,40E-07 | 4,20E-07 | 4,20E-07 | 4,20E-07
Buaiinosas Wi  |2,80E-16|2,80E-15 | 5,10E-14 | 7,00E-14 | 7,00E-14 | 8,00E-14 | 8,90E-14
3atyxamme B nozoce | 0,1 0,1 0,1 0,1 0,1 0,1 0,1
NpPONyCKaHUs
Mopsinok N 5 7 9 11 13 15 17
3aryxanue B mosoce | L g 30 60 90 120 150 180 210
3az|ep>lmnamm
Peanu3zanuu:
Tpsmas Wi 1,40E-03 | 9,50E-03 | 2,80E-02 | 5,50E-02
Buksaanas Wi 1,50E-07 | 1,50E-07 | 3,00E-07 | 2,60E-07 | 4,00E-07 | 4,00E-07 | 1,00E-06
Buaaiinosas Wi  |5,80E-15|2,50E-14 | 7,20E-14 | 3,90E-14 | 4,00E-13 | 2,50E-13 | 3,50E-13
3aryxanue s mosoce | . g 0,5 0,5 0,5 0,5 0,5 0,5 0,5
NponycKaHus
Topsiiok N 5 7 9 11 13 15 17
3atyxamme B nozoce | g 40 70 100 130 160 190 220
3aiep:KUBaHUA
Peanu3zanum:
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Hpsimas Wi, 1,50E-03 | 1,00E-02 | 3,20E-02 | 6,00E-02
BuxBagnas Wi, 1,00E-07 | 1,50E-07 | 1,80E-07 | 2,50E-07 | 2,50E-07 | 3,20E-07 | 3,80E-06
Bunaiinopas Wi 1,90E-14 | 4,70E-14 | 1,50E-13 | 1,50E-13 | 3,00E-13 | 4,50E-13 | 9,00E-13

B 3akimouenne OTMETHUM, YTO JISI HOBBIX CTPYKTYP HPU MMPOIPAMMHBIX BBIYUCICHUAX MTPUXOAUTCA
MEPEMHOKATL KOMIUICKCHBIC YHCJIA. OOBIYHO 3Ta ornepanusda MpUBOAUT K HYCTBIPEM BCIICCTBECHHLIM
YMHOXKEHUAM

(a+jb)(c+ jd)=ac—bd+j(bc+ad)
BMmecTo 3TOro Jtydiiie HCIOIb30BaTh CIEIYIONINIA arOPUTM:

(a+jb)(c+jd)=ac—bd+j(bc+ad)=a(c+d)—d(a+b)+ja(c+d)+jc(b—a)=A;- A, +j (AT Aj),
rie Aj=a(c+d), A,=d(a+b), As;=c(b-a).

31ech MBI [0JIy4aeM 3 YMHOXKEHHUS] BMECTO 4-X IpH OO0JIbILIEM YHCIIe CyMMHUPOBaHUii (5 BMecTo 2).

bonee Toro, ecnu HEOOXOAMMO BBIIOJNHATh YMHOKEHHE Ha KOMIUIEKCHYIO KOHCTAaHTY, TO YHCIIO
CJIOKEHUI MOYKHO COKpPATHTh JI0 TpeX. B IenoM mpeyraraemplii criocob JIydllle TPUBHAIBHOTO, TaK Kak
MOBBIIIAETCS. TOUHOCTh BBIYMCIEHUI M YMEHBIIAIOTCS IIIyMbl YMHOXEHU.
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The Camera-Ready Copies

PREPARATION OF CAMERA-READY TYPESCRIPT:
COMPUTER MODELLING AND NEW TECHNOLOGIES

A Guide for Authors

A.N. AUTHOR
Affiliation
Institute address

Abstract reviews the main results and peculiarities of a contribution. Abstract is presented always in English or in
English and the second (presentation) language both.

1. Introduction

These instructions are intended to provide guidance to authors when preparing camera-ready
submissions to a volume in the CM&NT. Please read these general instructions carefully before
beginning the final preparation of your camera-ready typescript.

Two ways of preparing camera-ready copy are possible:
(a) preparation on a computer using a word processing package;
(b) printed copy fitted for scanning.

2. Printer Quality, Typing Area and Fonts

IMPORTANT:

If you produce your camera-ready copy using a laser printer, use a 15 x 23 cm typing area (in A4 format:
37 mm - left, 30 mm- right , 30 mm- top, 30 - bottom, line spacing - single ), as in these instructions, in
combination with the 10 points Times font. The pages will then be reproduced one to one in printing.
Fonts

The names and sizes of fonts are often not the same on every computer system. In these instructions the
Times font in the sizes 10 points for the text and 8 points for tables and figure legends are used. The
references section should be in the 10 points font.

3. Format and Style
The text should be in clear, concise English (or other declared language). Please be consistent in
punctuation, abbreviations, spelling (British English), headings and the style of referencing.

Camera-ready copy will be printed exactly as it has been submitted, so please make sure that the
text is proofread with care.
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In general, if you prepare your typescript on a computer using a word processing package, use
styles for the font(s), margin settings, headings, etc., rather than inserting these layout codes every time
they are needed. This way, you will obtain maximum consistency in layout. Changes in the layout can be
made by changing relevant style(s).

4. Layout of the Opening Page

A sample for the opening page of a contribution is shown in Figure I on page 3.
Requirements for the opening page of a contribution are (see also Figure 1) : the titles should always be
a centered page and should consist of: the title in capital letters, bold font, flush center, on the fourth text
line; followed by the subtitle (if present) in italics, flush center, with one line of white above. The
author's name(s) in capitals and the affiliation in italics, should be centered and should have two lines of
white space above and three below, followed by the opening text, the first heading or the abstract.

5. Headings
Please distinguish the following four levels of headings:

1. First-order Heading

This heading is in bold, upper and lowercase letters, numbered in arabic figures, and
has two lines of space above and one line below. The text begins full out at the left margin.
1.1. SECOND-ORDER HEADING IN CAPITALS
This heading is in roman capitals, numbered in arabic figures and has one line of space above
and below. The text begins full out at the left margin.
1.1.1. Third-order Heading in Italics
This heading is in italics, upper and lower case letters, numbered in arabic figures and has one
line of space above and no space below. The text begins full out at the left margin.
Fourth-order Heading in Italics. This heading is in italics, upper and lowercase letters, with
one line of space above the heading. The heading has a full stop at the end and the text runs on
the same line.

[ 3 lines of white

TITLE OF CONTRIBUTION
Subtitle of Contribution

[ 2 lines of white

A.N. AUTHOR
Affiliation
Institute address
B 3 lines of white
Abstract
[ 2 lines of white
First textline

Figure . Example of an opening part of contribution to a Volume of RAU Scientific Reports.
6. Figures and Photographs

- Line drawings must be submitted in original form, on good quality tracing paper, or as a glossy
photographic print.

- Halftone photographs must be supplied as glossy prints.

- Colour illustrations. Colour illustrations are more expensive and the author is expected to cover the
extra costs . Please consult with Editors about this.

Mount all illustrations directly into the text at the appropriate places. Alternatively, it is acceptable to
leave the appropriate space blank in the text, and submit the illustrations separately. In this case You

145



COMPUTER MODELLING & NEW TECHNOLOGIES *PRERARATION OF PUBLICATIONS

must put the figure numbers in pencil in the open spaces in the text and on the back of the figures. Also
indicate the top of the illustration.

For computer plotting the ORIGIN Software is preferable.
- Legends for figures/illustrations should not be incorporated in the figure itself and they should be listed
in numerical order (headed as "Figurel.", "Figure 2.", etc.). The legends should be set centered, below
the figure.

7. Displayed Equations

Displayed equations should be in the left side of the page, with the equation number
in parentheses, flush right.

E,, :jj v (X )w(x)K(x—x')(-divP(x'))d>xd’>x" | )
K(x—x'):Co%d;'_x'p. 2)

Font sizes for equations are: 12pt -full, 7pt - subscripts/superscripts, Spt - sub- subscripts/superscripts,
18pt - symbols, 12pt - subsymbols .

8. Tables

Please center tables on the page, unless it is necessary to use the full page width. Exceptionally large
tables may be placed landscape (90° rotated) on the page, with the top of the table at the left-hand
margin. An example of a table is given below:

TABLE 1. National programs of fusion research [1]

Experiment Type Laboratory Task Begin of operation
JET tokamak Joint European Torus, Plasma physics studies 1983
Culham, UK in the region close to
ignition
TEXTOR tokamak FA, Jillich. Germany Studies of plasma-wall 1982
interaction
TORE SUPRA tokamak CEA, Cadarache, Testing of super- 1988
France conducting coils,
stationary operation
ASDEX Upgrade tokamak IPP, Garching, Plasma boundary 1990
Germany studies in divertor
plasmas
WENDELSTEIN stellarator IPP, Garching, Testing the principles 1988
7-AS Germany of ”advanced
stellarator”
WENDELSTEIN stellarator IPP, Greifswald, Testing feasibility of 2004
7-X Germany ”advanced stellarator”
for power station

9. References

The References should be typeset in a separate section as a numbered list at the end of your contribution
in the following style:

Journal articles should consist of: author's name, initials, year, title of article,
journal title, volume number, inclusive page numbers, e.g.:

[1] Dumbrajs O. (1998) Nuclear Fusion. RAU Scientific Reports &Computer Modeling & New
Technologies 2, aa-zz

[2] Kiv A.E. , Polozovskaya I.A., Tavalika L.D. and Holmes S. (1998) Some problems of operator-
machine interaction.. RAU Scientific Reports &Computer Modelling & New Technologies 2, aa-zz

[3] Shunin Yu.N. (1996) Elementary excitations and radiation defects in solids induced by swift heavy
ions. RAU Scientific Reports & Solid State Electronics & Technologies 1, 15-35

[4] Schwartz K. (1996) Excitons and radiation damage in alkali halides. RAU Scientific Reports &
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Solid State & Electronics & Technologies 1, 3-14

Book references should consist of: author's name, initials, year, title of book, publisher, place of
publication, e.g.:

[5] Schwartz K. (1993) The Physics of Optical Recording. Springer-Verlag, Berlin Heidelberg New
York

[6] Shunin Yu.N. and Schwartz K.K. (1997) Correlation between electronic structure and atomic

configurations in disordered solids. In R.C. Tennyson and
A.E. Kiv (eds.). Computer Modelling of Electronic and Atomic Processes in Solids. Kluwer
Academic Publishers, Dordrecht, pp. 241-257 .

Unpublished papers should consist of: author's name, initials, year (or: in press),

title of paper, report, thesis, etc., other relevant details, e.g.:

[7] Shunin Yu.N. (1995) Elementary Excitations in amorphous solids accompanying the swift heavy
ions passages. Private communication. GSI Seminar. Darmstadt

The references above should be cross-referenced by numbers within square brackets:

...ascited in [1], or Kiv et al. [2]... The use of author initials for cross-references is not encouraged.

10. Authors Index

Editors form the author’s index of a whole Volume . Thus , all contributors are expected to
present personal colour photos with the short information on the education , scientific titles and
activities.

11. Submission

Check your typescript very carefully before it is submitted. Submit two copies of the typescript
to the Editors of the Volume. Always retain a copy of all material submitted as backup.

11.1. DISK FORMATS AND WORD PROCESSING PACKAGES
If you want to present contributions electronically please before submitting accord with the

Editors the details on your computer system, your word processing package and version (MS Word 6
and above versions are preferable) and the way of transfer on the information (disk or Internet).
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