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Editors’ Remarks 
  

ТHЕ GOLDEN APPLES OF ТHЕ SUN 
 
‘South’, said the captain. 
‘But’, said his crew, ‘there simply aren’t any directions out 
here in space.’ 
‘When you travel on down toward the sun,’ replied the captain, 
‘and everything gets yellow and warm and lazy, then you're 
going in one direction only.’ He shut his eyes and thought 
about the smoldering, warm, faraway land, his breath 
moving gently in his mouth. ‘South.’ He nodded slowly 
to himself. ‘South.’ 
Their rocket was the Сорa de Оrо, also named the 
Prometheus and the Icarus, and their destination in all 
reality was the blazing noonday sun. In high good spirits 
they had packed along two thousand sour lemonade: and 
a thousand white-capped beers for this journey to the wide 
Sahara. And now as the sun boiled up at them they 
remembered a score of verses and quotations: 
‘The golden apples of the sun?’ 
‘Yeats’. 
‘Tear no more the heat of the sun?’ 
‘Shakespeare, of course’ 
‘Cop of Gold’? Steinbeck, ‘The Crock of Gold?’ Stephens. 
And what about the pot of gold at die rain-bow's end? 
There’s a name for our trajectory, by God. ‘Rainbow!’ 
‘Temperature?’ 
‘One thousand degrees Fahrenheit!’ 
 

 Ray Bradbury, 
‘The Golden Apples of the Sun’ 

from ‘The Golden Apples of the Sun’ 
 
This 13th volume No.1 is devoted to various questions of solid state physics and 

applied statistics. In particular, we present actual papers from Israel, Ukraine, Byelorussia, 
Lithuania and Latvia.  

Our journal policy is directed on the fundamental and applied sciences researches, 
which are the basement of a full-scale modelling in practice.      

This edition is the continuation of our publishing activities. We hope our journal will be 
interesting for research community, and we are open for collaboration both in research and 
publishing. This number opens the current 2009 year of our publishing work. We hope that 
journal’s contributors will consider the collaboration with the Editorial Board as useful and 
constructive.   
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ELECTRONIC  STRUCTURE  AND  CHEMICAL  BONDING  
IN  LAVES  PHASES  Al2Ca,  Be2Ag  AND  Be2Ti 

 
D. Shapiro, D. Fuks, A. Kiv 

 
Department of Materials Engineering 
Ben-Gurion University of the Negev 

POB 653, Beer-Sheva, Israel 
 

The results of ab-initio calculations of electronic structure of Laves-phase compounds Al2Ca, Be2Ag and Be2Ti are presented. 
Calculations were carried out in the framework of Density Functional Theory (DFT) and the Full Potential Linearized Augmented 
Plane Waves + local orbital formalism (FP APW+lo). Total, local and partial densities of electronic states (DOS) were obtained and 
analysed. These data together with differential electronic density (DED) distribution allow understanding the links of chemical 
bonding with structural stability of studied compounds. 

 
Keywords: Laves-phases, ab initio calculations, chemical bonding 

 
1. Introduction 
 

Laves phases, with a composition AB2, are intermetallic compounds generally crystallized  
into three close-packed structures: cubic (C15-MgCu2), hexagonal (C14-MgZn2) and di-hexagonal  
(C36-MgNi2) [1, 2].  

Last time Laves-phase compounds have been widely investigated due to new perspectives of their 
applications. For example, CeRu2 and (Hf, Zr)V2 compounds are known as super conducting materials 
[3, 4]. (Tb, Dy)Fe2 compound reveals a giant magneto-striction [5]. (Ho, Mm)Co2 compound can be used 
as hydrogen storage reservoir [6]. Compounds NbCr2 and HfV2 attract an interest due to their hardness  
to high temperatures [7, 8].  

Laves-phase crystals are typical size factor compounds with an atomic size ratio RA/RB around 
1.225 (where RA and RB are diameters of A and B atoms, respectively [9]). Their stability depends 
strongly on electronic structure of constituent atoms. Detailed information regarding the nature of chemical 
bonds allows understanding physical and chemical properties of Laves phases. In [10] calculations of 
densities of states and charge density distribution in TiCr2 were reported. A large covalent component  
in bonding of small atoms (Cr) was found. In [11] an electronic structure of paramagnetic Laves phases 
HfV2 and HfFe2 was calculated using FP APW + lo formalism. A significant overlap of wave functions 
for the neighbouring V-V and Fe-Fe atoms shows their mainly covalent bonding. Ab initio calculations of 
electronic structure of Al2Ca, Al4Ca and Mg2Ca phases [12] showed that among these compounds Al2Ca 
phase has the strongest alloying ability and the highest structural stability.  

We report results of ab initio calculations of electronic structure of three Laves-phase compounds: 
Al2Ca, Be2Ag and Be2Ti. Unlike Al2Ca, in Be2Ag and Be2Ti compounds the constituent atoms (Ag and Ti) 
contain d-electrons that participate in formation of chemical bonds. It is shown that a structural stability 
of studied compounds depends on participation of electrons of different symmetry in chemical bonding. 

 
2. Methodology of Calculations 
 

The calculations are carried out in the framework of DFT [13, 14] and FP LAPW + lo formalism 
[15, 16]. Within this method, the unit cell is divided into two regions in a manner reminiscent of a muffin 
tin (mt) spheres. The first region consists of non-overlapping spheres (with radii Rmt) around each atomic 
centre. In this region, the Kohn-Sham wave functions are taken as atomic-like functions (Eq. 1), which 
are solutions for a spherical potential. The second region is the remaining space outside the mt spheres,  
so called the interstitial region (IR). In IR electrons are described by plane waves (Eq. 2). 
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Here Alm are coefficients, k  is the wave vector inside the first Brillouin zone, nk = nKk +  where nK  is  
a reciprocal lattice vector, ω is a normalizing volume per atom. ),( ll Eru is a regular solution of the radial 
part of Schrödinger equation for energy El. Ylm are spherical harmonic functions, l and m are angular 
momentum quantum numbers. φlo is the wave function of a local orbital. The solution of the Kohn-Sham 
equations is expended in this combined basis set of functions according to the linear variation method, 

)()( rcr
nk

n
nk Φ=Ψ ∑  where coefficients cn are determined by the Rayleigh-Ritz variation principle.  

In this work the WIEN2K package [17] was used. The core states are treated in fully relativistic 
approximation [18] while the valence states are treated in a scalar relativistic approximation [19].  
The exchange-correlation potential within the Perdew-Burke-Ernzerhof (PBE) generalized gradient 
approximation (GGA) [20] was used. The calculations are performed within the spin-polarization 
approximation.  

To find the equilibrium lattice parameters of studied phases the total energy was optimised  
by variation of the volume per atom. The accuracy of the total energy self-consistent calculations is ~10–4 Ry. 
In the framework of FP LAPW + lo method the mt spheres should not overlap. On one hand,  
the increasing Rmt significantly decreases the computation time. On the other hand, too large Rmt can lead 
to the overlapping of mt spheres when the lattice parameter becomes small in the optimisation procedure. 
To satisfy these conditions we have chosen Rmt = 2 a.u. for all atoms in all calculations. To achieve  
the required accuracy in the total energy calculations two additional input parameters in the program 
should be determined. One of them is the number of k-points in the first Brillouin zone. It provides  
the accuracy of the summation over k in the first Brillouin zone. Another one is the number of plane 
waves in the expansion of the wave functions in the interstitial region, which is determined by Kmax.  
It was found that for the phase Al2Ca a k-mesh of about 1000 points in the first Brillouin zone makes  
the total energy independent on the number of k-points with the required accuracy, while for Be2Ag and 
Be2Ti a k-mesh of 1500 points satisfies this condition (see example on Fig. 1.). The magnitude of RmtKmax 
that gives an accuracy of the total energy calculations ~10–4 Ry was equal to 8.5 for Al2Ca and 9  
for Be2Ag and Be2Ti, as justified by results of calculations displayed on Figure 2, where the results  
for Be2Ag are shown as the example.  
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Figure 1. Total energy as a function of number of k-points  

for Be2Ag 
Figure 2. Dependence of the total energy on the plane-wave 

cut-off parameter for Be2Ag 

The energy cut-off, separating core and valence states was equal to – 6.0 Ry. This condition 
allowed minimizing a leak of the electron core states into interstitial region. Additional details concerning 
the calculation method can be found in [21]. 

 
3. Results and Discussion 
 

The equilibrium lattice parameters for studied Laves phases are in good agreement with 
experimental data published in [22] (Table 1). The calculated band structures for these compounds show 
that all three phases are conductive materials.  

Table 1. Calculated and experimental lattice constants for considered phases (in Å) 

Experiment [17] Calculated Phase 
8.02 8.02 Al2Ca 
6.43 6.44 Be2Ag 
6.407 6.29 Be2Ti 
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To obtain the information about the influence of electronic properties of constitutional atoms  
on their chemical bonding we calculated total and partial Densities of States (DOS) for all studied phases. 
We proceed from the fact that electrons with energies in the region of Fermi energy, EF  play the main role 
in formation of chemical bonds. Comparing the total DOS for Al2Ca (Fig. 3a) and local DOS for Al 
(Fig. 3b) and Ca (Fig. 3c) we conclude that electrons of Al give the main contribution to conductivity  
of Al2Ca compound and accordingly cause a metallic bonding. 

 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 

(c) 

 
 Figure 3. The total and local DOS (in states/ eV) for Al2Ca: (a) total DOS; (b) DOS for Al atoms; 

(c) DOS for Ca atoms. 
The zero on the x axis here and in the following Figs. corresponds to Fermi energy, EF 
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(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 

(c) 

 
 Figure 4. The partial DOS (in states/ eV) for Al2Ca: (a) s-states of Al atoms; (b) p- states of Al atoms; 

(c) promoted d- states for electrons of Al atoms 
 

Partial DOS for Al and Ca displayed on Figure 4 show that s- and p-electrons of Al dominate  
in the energy range E ≤ EF. These results indicate that s- and p-electrons of Al determine the bonding  
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in Al2Ca. From Figure 4c one can see that promoted d-electrons of Al also participate in chemical 
bonding. A hybridisation of s- p- and promoted d-electrons of Al should lead to covalent bonding  
in Al2Ca but the covalent component is relatively small. 

On Figures 5, 6 the results of calculations of DOS for Be2Ag phase are presented. Comparing  
the total DOS for Be2Ag (Fig. 5a) with local DOS for constitutional atoms Be (Fig. 5b) and Ag (Fig. 5c)  
in the energy range E ≤ EF it may be seen that Be atoms give a larger contribution to total DOS  
in comparison with Ag atoms. 

 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 

(c) 

 
 Figure 5. The total and local DOS (spin- up states) (in states/ eV) for Be2Ag: (a) total DOS;  

(b) DOS for Be atoms; (c) DOS for Ag atoms 
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(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 

(c) 

 
 Figure 6. The partial DOS (spin-up states) (in states/ eV) for Be2Ag: (a) s-states of Be atoms;  

(b) promoted p- states of Be atoms; (c) d- states of Ag atoms 
 

Partial DOS show the formation of the promoted p-states for electrons of Be atoms (Fig. 6b). 
Hybridization is expected in the range 2–8 eV below EF between p-states and s-states of Be (Fig. 6a  
and 6b) and d-states of Ag (Fig. 6c). A covalent component should give a visible contribution to chemical 
bonding. It is larger than in the case of Al2Ca compound. A small value of total DOS at the Fermi level 
(Fig. 5a) shows a relatively weak metallic component in chemical bonding in the Be2Ag phase as compared 
with Al2Ca.  
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Analysis of DOS for Be2Ti compound (Figs. 7 and 8) shows an overlapping of d-states of Ti 
(Figs. 8b and 8c) with promoted p-states of Be electrons (Fig. 8a) in the range from EF to ~ 3eV below 
Fermi energy.  

 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 

(c) 

 
 Figure 7. The total and local DOS (spin-up states) (in states/ eV) for Be2Ti: (a) total DOS;  

(b) DOS for Be atoms; (c) DOS for Ti atoms 
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(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 

(c) 

 
 Figure 8. The partial DOS (spin-up states) (in states/ eV) for Be2Ti: (a) promoted p-states of Be atoms;  

(b) d- states of Ti atoms; (c) d- states with t2g-symmetry of Ti atoms 
 

Conductivity in Be2Ti phase should be higher than in Be2Ag due to larger number of states at 
Fermi level (Figs. 5a and 7a). This is caused by significant contribution of d-electrons of Ti. The splitting 
of bonding and anti-bonding d-states of Ti located in the energy region between – 5eV and + 5ev  
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is clearly seen. At the same time, in Be2Ag d-states of Ag are mainly located below EF. As well as  
in Be2Ag, in Be2Ti the promoted p-electrons of Be form hybrid covalent bonds with d-electrons of Ti.  

On Figure 9 the calculated Differential Electron Density (DED) in the plane (110) for studied 
Laves phases is presented.  

 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 

 
(b) 

 
 
 
 
 
 
 
 
 
 

(c) 

 
 Figure 9. Mapping of spatial distributions of DED ( in e/Å3) in the plane (110) for Al2Ca (a),  

Be2Ag (b), and Be2Ti (c) 
 
DED shows the difference between the self-consistently calculated electron density in the phases 

and the sum of the atomic electron densities. Peculiarities of spatial DED distribution can be understood 
on the basis of described DOS analysis. The regions of the relative lack of DED and of the extra electron 
charge are seen. For example, let us consider the peculiarities of DED behaviour for Al2Ca. In region 1 
(Fig. 9.a) we obtained the value of DED equal to + 0.1998 e/Å3. The values of DED in this region are 
mainly caused by the redistribution of the electrons that belong to Al atoms that are placed above and beneath 
the plane (110). In region 2 the value of DED (+ 0.0944 e/Å3) is mostly caused by atoms surrounding Ca. 
It is lower in comparison with the value of DED in region 1 that is explained by the degree of overlapping 
of electronic orbits of constitutional atoms discussed above. 

For the phase Be2Ag in the plane (110) one can see both the regions of extra DED and the regions 
with the lack of DED (Fig. 9.b). In region 1 the relative lack in DED (– 0.01 e/Å3) is observed. It is caused 
by relatively large distances between Be atoms and between Ag and Be atoms in the considered point  
of this plane. Region 2 in this Figure corresponds to extra DED (+ 0.07 e/Å3). It is apparently caused by 
interaction of Be atom located above this region with surrounding Be atoms in the plane (110).  

In the plane (110) of Be2Ti phase in the region 1 DED is equal to – 0.005 e/Å3. The lack of DED 
in this region is caused by the redistribution of the electrons that belong to Be atoms above and beneath 
this plane. The extra DED, which observed in region 2, is equal to + 0.05 e/Å3. The redistribution of  
the electrons that belong to Ti atoms surrounding this region (Fig. 9.c) mainly causes this value of DED.  
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Conclusions 
 

Analysis of total and partial DOS for all studied Laves phases allowed getting information about 
the nature of chemical bonding in these compounds. Total DOS showed that Al2Ca is characterized by 
larger component of metallic bond in comparison with two other compounds. Promoted d-electrons of Al 
participate in covalent bonding which is determined by a superposition of s-, p- and promoted d-states of 
Al electrons. Promoted d-electrons of Al play partly a role of conductive electrons and consequently 
participate in metallic bonding. Electro-negativities of Al and Ca atoms differ significantly (1.5 and 1.0 
accordingly). Thus the ionic component in the bonding is significant. As a result this Laves phase 
compound is characterized by relatively high structural stability [12]. 

Considering Be2Ag, it is possible to conclude that this compound is characterized by smallest 
component of metallic bonding in comparison with two other compounds. The covalent component of chemical 
bonding in this phase is somewhat larger. Electro-negativities of Be and Ag atoms are close and therefore 
the ionic component of chemical bonds in Be2Ag compound is absent. On the phase diagram it exists in  
a narrow temperature interval and decomposes to other phases outside this interval.  

In Be2Ti phase we found a degree of metallic bonding that is significantly larger than in Be2Ag 
and close to metallic bonding in Al2Ca. The covalent component in the bonding in Be2Ti is determined by 
superposition of p-states of Be and d-states of Ti. Its value is significantly larger than for Al2Ca and 
somewhat less than for Be2Ag. Electro-negativities of Be and Ti atoms are close, and in this case the ionic 
component in bonding is negligible. We can expect that structural stability of Be2Ti is somewhat less  
in comparison with Al2Ca. 
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Problem “cluster in the field of the rest of system” is treated in the frameworks of one-electron approximation with  

non-orthogonal wave functions. Consideration is general for every task of this type (cluster and the rest of crystal, fragment of  
a molecule and the remaining part of it, valence and core electrons, etc.). Two alternative approaches are compared: 

(A) direct variational approach, when total energy of the whole system (cluster + the rest of system) is expressed in terms  
of non-orthogonal one-electron wave functions and equations for the cluster wave functions are obtained directly from variation  
of the total energy expression;  

(B) approach of the theory of pseudopotentials, when total energy of the system is expressed in terms of mutually orthogonal 
wave functions, equations for the cluster wave functions are obtained under orthogonality constraints and then these equations are 
transformed to obtain non-orthogonal solutions. 

For the both (A) and (B) cases homogeneous equations resulting directly from variational procedure are obtained first. Then 
these equations are transformed to eigenvalue problem equations. Special case of eigenvalue equations for mutually orthogonal 
wave functions of the cluster staying to be not orthogonal to the remaining system wave functions is studied. Well-known in  
the theory of pseudopotentials generalised Phillips–Kleinman (GPK) equations are shown to be particular case of approach (B) 
eigenvalue equations. Mutually orthogonal wave functions of the cluster are established to be solutions of the equations in the both 
(A) and (B) cases if additional restrictions on the wave functions are imposed. Unlike theory of pseudopotentials (B), in the case of direct 
variational approach (A) wave functions of the rest of system are found not to be solutions of the equations for the cluster. It seems 
to be significant advantage of direct variational approach. 

 
Keywords: quantum-chemical simulation, embedded molecular cluster (EMC) model, non-orthogonal one-electron wave 

functions, localised molecular orbitals (LMO), theory of pseudopotentials, generalised Phillips–Kleinman (GPK) equations 
 
1. Introduction 
 

When we treat infinite or very large electron systems we have to develop approaches giving us 
opportunity to transform our task to that for small finite part of the whole electron system. Consider main 
problems we have to deal with when our system has no translation symmetry, so we cannot use it to 
simplify the task.  

Point defect in a crystal is an example of such system. Description of a crystal with a point defect 
is based on an intuitive assumption that presence of the defect in the crystal alters significantly a finite 
region of the crystal, including the defect and several spheres of its nearest surrounding. The whole 
system, i. e. the electrons and nuclei of the crystal with a point defect, may be split on two subsystems: 
the electrons and nuclei of the defect and its vicinity, and the electrons and nuclei of the remaining 
crystal. The first subsystem is finite and may be considered as a cluster in the field of the remaining 
crystal. The second subsystem (remaining crystal) is infinite. Its description is impossible without further 
approximations and assumptions. While electronic and spatial structures of the cluster are calculated  
by quantum-chemical methods as precisely as it is possible.  

Biological molecule (like DNA or protein) is another example of such system. To solve task for 
the whole system, we also have to split the system in two parts: small fragment of the molecule and the remaining 
part of it. To treat large remaining part of the molecule, we have to make further approximations. 
While small fragment of the molecule may be considered as a cluster in the field of the rest of system.  

Trying to obtain equations for the cluster one-electron wave functions, we face with general 
problem of description of “subsystem in the field of the remaining part of the whole electron system”. 
Task for the cluster and the remaining part of crystal is a particular case of problem of this kind. Other 
possible cases may be, for example, fragment of a polymer and the remaining part of it, valence and core 
electrons, etc. All these systems have similar features and may be treated in the frameworks of embedded 
molecular cluster (EMC) model [1]. Cluster, fragment of a polymer, valence electrons may be treated  
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as entire quantum-chemical system (cluster). The remaining part (the rest of crystal, the remaining part  
of polymer, core electrons) of a whole system may be considered to be built of structural elements (SE): 
SE of perfect crystal, building blocks (fragments) of polymer, and cores of separate atoms. The whole 
quantum system may be described as a cluster embedded into the rest of the whole system.  

At present, several approaches employing strong orthogonality constraints have been developed 
[1–7] to obtain cluster embedding equations. However, non-orthogonal wave functions of SE may turn 
out to be more localised than orthogonal ones. (See, for example, work of Anderson [8].) It is significant 
for practical applications, because expansion of a more localised wave function requires smaller basis set.  

The case of non-orthogonal one-electron wave functions with arbitrary degree of localisation has been 
investigated by Adams and Gilbert [9–13]. Adams and Gilbert have treated self-consistent solutions for 
the whole system and then searched for a particular form of general equations leading to the separation of 
the whole system on SE. We have chosen different approach to this problem. Unlike Adams–Gilbert theory, 
we do not imply that wave functions of the rest of system are self-consistent solutions of the equations for 
the whole system (cluster + the rest of system). Self-consistent solutions present a particular case for our 
approach, while equations for the cluster remain mathematically correct if we do not suppose that we 
know exact self-consistent solutions for the rest of system. It is significant for practical applications 
because we are pressed to make approximations when we describe the rest of system.  

Our task (subsystem in the field of frozen remaining part of the whole system) is classical task  
of the theory of pseudopotentials. This theory [14–17] is well-developed for molecules for the case of valence 
electrons in the field of core electrons. In this case the only thing is really significant – valence pseudo 
wave functions are not orthogonal to the core wave functions. Pseudo wave functions of the valence 
electrons are not localised wave functions. They are spread over the whole molecule and therefore are 
considered to be close to delocalised canonical Hartree–Fock molecular orbitals. In our case, in contrast, 
wave functions of the cluster should be localised in the cluster region. Therefore, they can not be treated 
like slightly changed canonical Hartree–Fock orbitals, because the latter are delocalised over the whole 
system (in the case of perfect crystals canonical Hartree–Fock orbitals are Bloch functions). We need 
adequate equations for the case of localised pseudo wave functions.  

In the theory of pseudopotentials approximation of mutually orthogonal frozen cores is used. For core 
electrons in molecules it is valid quite well and only minor corrections sometimes required. For our case, 
after dividing the system on SE, the wave functions of SE for the frozen subsystem (the rest of a whole 
system) overlap with each other in the same way like wave functions of the cluster overlap with those  
of the rest of system. Indeed, when cluster does not contain defects it is a piece of perfect crystal. In this 
case the cluster and the rest of crystal are composed of the same SE and therefore all their wave functions 
overlap in the same manner. Therefore, non-orthogonality of the frozen subsystem SE is significant and 
should be substantial part of the theory.  

In addition, theory of pseudopotentials is well-developed for the case when one-electron states  
of the varied and the frozen subsystems belong to different parts of energetic spectra with well-defined 
gap between them. It is true when we treat valence and core electrons, but it is completely wrong in  
the case of cluster and the rest of crystal, because the cluster and the remaining crystal electron states 
have the same energy. Situation is the same, too, when we consider fragment of a molecule and  
the remaining part of it. Therefore, for our case, we should revise theory of pseudopotentials.  

To obtain embedding equations for the small part (cluster) of a large system, we should start from 
the very beginning and derive the most general equations resulting from variational procedure. There are 
two alternative approaches for the problem “cluster in the field of the rest of system”: 

 

(A) direct variational approach, when total energy of the whole system (cluster + the rest of 
system) is expressed in terms of non-orthogonal one-electron wave functions and equations for the cluster 
wave functions are obtained directly from variation of the total energy expression;  

(B) approach of the theory of pseudopotentials, when total energy of the system is expressed in 
terms of mutually orthogonal wave functions, equations for the cluster wave functions are obtained under 
orthogonality constraints and then these equations are transformed to obtain non-orthogonal solutions. 

 

Case (A) is already thoroughly studied in our earlier works [18–20]. In the present work we study 
case (B) and compare two alternative approaches (A) and (B). 

 
2. Cluster Embedding Equations 
 

Start with the review of the most significant results of our earlier works [18, 19] completing our 
study with new recent results. 
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2.1. Direct Variation 

General scheme of direct variational approach is the following. Total energy of the whole electron 
system (cluster + the rest of system) is expressed in terms of non-orthogonal one-electron wave functions. 
Wave functions of the rest of system are considered to be known. Equations for the cluster wave 
functions are obtained directly from variation of the total energy expression subject to the conditions that 
wave functions of the rest of system are fixed during variation. Mutual orthogonality restrictions are not 
imposed during variation. Equations for non-orthogonal cluster wave functions are variational equations. 

Considering system of N electrons within one-electron approximation, we may assume that many-
electron wave function of the system is represented by a single Slater determinant (it corresponds to 
calculation of an open shell system by unrestricted Hartree–Fock method). A one-determinant wave 
function is known to be invariant with respect to arbitrary non-singular linear transformation of the one-
electron wave functions (spin-orbitals) included in the determinant [21, 22]. Existence of such 
transformation allows us to use for description of many-electron system localised one-electron wave 
functions instead of delocalised ones and to keep many-electron wave function unchanged. Non-singular 
transformation of one-electron wave functions keeps one-electron density unchanged [21, 22], too.  
If nature of chemical bonding really permits us to transform delocalised one-electron wave functions  
to localised ones, we may use ideas of EMC model [1] and divide our N electron system on two 
subsystems: cluster of finite size and the rest of the system. Then spin-orbitals of the whole electron 
system iΨ ,  i∈c + r, may be split on two groups: iψ ,  i∈c: localised in the cluster region, and iϕ ,  i∈r : 
localised in the region of the remaining part of system. Total energy of many-electron system described 
by non-orthogonal one-electron wave functions may be expressed in the following way:  

21)]12()21()22()11()[2,1(1)21()1( 2
1

12
ddgdhE ∫∫ −+=

=
ρρρρρ , (1) 

where ( )∑
+∈

− ΨΨ=
rcji

jiji S
,

*1 )2()1()21(ρ  is one-electron density;  

)1()1()1( VTh +=  includes electron kinetic energy operator )1(T  and operator )1(V  , which describes 
interaction of the electrons and nuclei;  

1
21)2,1(
−

−= rrg  is operator for interaction between electrons;  

and ∫ ΨΨ=ΨΨ= 1)1()1(* dS jijiij  are one-electron wave functions overlap matrix elements. Electron 

coordinates includes both spatial and spin variables, the integration is carried out over both of them. 
Requiring that the total energy variation Eδ  is zero for arbitrary variations of the cluster wave 

functions lδψ  and *
kδψ  and transforming variational equations to get in the left side operator acting on 

the cluster wave functions, we come to the following system of equations [18, 19]:  

( )∑ ∑
∈ +∈

− =Ψ−
ck rcl

iklkl SF 0)1( 1 ψψρ , i∈c, (2) 

where ρ  is one-electron density operator, 

( )∑
+∈

− ΨΨ=
rcji

jiji S
,

1ρ  (3) 

F  is Fock’s operator, 

2)2()2,1()21(2)1()2,1()22()1()1()1( dgdghF ψρψρψψ ∫∫ −+= . 

Defining the following operators: 

( )∑ ∑
∈ +∈

− Ψ=
ci rcj

jijic SP 1ψ , (4) 

( )∑ ∑
∈ +∈

− Ψ=
ri rcj

jijir SP 1ϕ , (5) 
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we may be write our system of equations in the following way [18, 19]:  

0)1( =− +
icFP ψρ ,  i∈c, (6) 

or, taking into account that ++ +==+ rcrc PPPP ρ  it may be rewritten in hermitean form for occupied 
states:  

[ ] [ ]( ) 011 =−−− ++
iccrr FPPPFP ψ ,  i∈c. (7) 

It is easy to see that every linear combination of the solutions of Eqs. (6) is also solution of these 
equations. To get linearly independent solutions, in our earlier works [18, 19] we followed ideas of 
Adams and Gilbert [9–13] and transformed our equations to eigenvalue and eigenvector problem equations:  

[ ]( ) iiic AFP ψλψρ =+− +1 ,  i∈c. (8) 

In contrast to Adams and Gilbert we have no demanded for operator A  to be hermitean.  
To get Eqs. (6) as the consequence of Eqs. (8), the following restriction must be imposed on A  [18, 19]:  

ii AA ψψρ = ,  i∈c. (9) 

Under this restriction Eqs. (8) lead to Eqs. (6) and additional condition [18, 19]: 

iiiA ψλψ = , i∈c. (10) 

If operator A  is properly chosen spectral problem (8) has non-degenerate linearly independent solutions.  
For practical applications it is important to consider the case when cluster one-electron wave 

functions are mutually orthogonal but stay to be not orthogonal to the remaining system one-electron 
wave functions. To get mutually orthogonal solutions, we must obtain eigenvalue and eigenvector 
problem for hermitean operator with non-degenerate spectrum. In our earlier works [18, 19] we proposed 
the following equations: 

[ ] [ ]( ) iiiccrr EGPPPFP ψψ =+−− ++11 ,  i∈c,      (11) 

where G  is hermitean operator.  
If operator G  is properly chosen spectral task (11) has non-degenerate mutually orthogonal 

solutions. If we choose 0=G  we get the following equations: 

( ) ( ) iiirr EPFP ψψ =−− +11 ,  i∈c. (12) 

Equations (12) coincide with those obtained by H. Stoll with co-workers [23, 24]. They present not 
general, but very important case of equations for mutually orthogonal cluster wave functions. Using 
cluster embedding equations (12) we have developed modified cluster embedding scheme and have 
demonstrated that consistent implementation of this scheme may radically reduce boundary effects in 
EMC model [19, 25]. 

 
2.2. Properties of “Pseudoprojectors” 
 

In our earlier works [18, 19] we have shown that operators cP  and rP   
a) are idempotent 

( ) cc PP =2 ,  ( ) rr PP =2 ; 

b) are invariant with respect to linear transformation of the cluster states;  
c) are invariant with respect to linear transformation of the remaining system states, too; 
d) may be decomposed on projectors and rotation operators. 

Consider the latter property with more details. Because the cluster and the remaining system wave 
functions are linearly independent, without loss of generality wave functions of the cluster may be 
expressed as follows:  

ji
rj

jii a∑
∈

+= ϕφψ ,  i∈c, (13) 
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where  

jϕ ,  j∈r, are wave functions of the rest of system, they are not mutually orthogonal, ( )ijrji S=ϕϕ ;  

iφ ,  i∈c, are orthogonal to the rest of system components of the cluster wave functions, 0=ji ϕφ , 

they are linearly independent but in general case are not mutually orthogonal, ijji B=φφ ;  

coefficients jia  describe overlaps between the cluster and the rest of system wave functions.  

Substituting expansion (13) in the definitions of operators cP  and rP  (see formulas (4) and (5)  
and use final results of Appendix) we get [18, 19]: 

ccc RWP += , (14) 

crr RP −Ω= . (15) 

First terms in the expressions (14) and (15) are projection operators. Projector cW  is defined  
as follows:  

( ) jij
cji

ic BW φφ 1

,

−

∈
∑= ; (16) 

projector rΩ  is projector on the remaining system wave functions space:  

( )∑
∈

−=Ω
rji

jijrir S
,

1 ϕϕ , (17) 

where rS  is matrix of overlaps between the wave functions of the remaining system. 
Rotation operator cR  is defined as follows:  

( ) jijc
ri cj

ic BAR φϕ 1−

∈ ∈
∑∑= , (18) 

where matrix cA  is matrix of coefficients jia  in expansion (13) for the cluster wave functions.  

Taking into account that ρ=+ cr PP  and substituting (14) and (15) it is easy to see that sum of 
projectors cW  and rΩ gives one-electron density operator (3) for the whole system: ρ=+Ω cr W .  
 
2.3. Theory of Pseudopotentials  
 

In this section we obtain embedding equations for the cluster wave functions using ideas of  
the theory of pseudopotentials (case B). Usual suppositions accepted in the theory of pseudopotentials are 
the following (see, for example, the monograph of Szasz [14]). Wave function of a many-electron system 
is taken in a form of a Slater determinant constructed from mutually orthogonal one-electron wave 
functions. Then the electron system is divided on two subsystems. Wave functions of the first subsystem, 

iϕ ,  i∈r, are assumed to be known and fixed. Equations for the wave functions of the second subsystem, 

iφ ,  i∈c, are obtained from the requirement of a minimum of the total energy of the whole electron 
system under the orthogonality constraints on the one-electron wave functions. Total energy of the system 
is varied subject to the condition that wave functions of the first subsystem are frozen and are not varied. 
For our case the second subsystem (varied subsystem) is cluster and the first subsystem (frozen 
subsystem) is the rest of the whole system. Variation procedure leads to non-canonical Hartree–Fock 
equations for the cluster wave functions:  

∑ ∑
∈ ∈

+=
cj rj

jijjiji EEF ϕφφ  , i∈c. (19) 

It is usually considered that off-diagonal Lagrange multipliers intermixing the varied subsystem (cluster) 
wave functions with each other are equal to zero: 

∑
∈

+=
rj

jijiii EEF ϕφφ ,  i∈c. (20) 
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In this way, substituting expression for Lagrange multipliers ijji FE φϕ= , Eqs. (20) are rewritten 
using projection operators:  

∑
∈

+=
rj

ijjiii FEF φϕϕφφ ,  i∈c. (21) 

Then wave functions of varied subsystem (cluster) iφ ,  i∈c, are replaced by iψ ,  i∈c, called pseudo 

functions. “True” wave functions iφ  are orthogonal to the wave functions of the frozen subsystem  

(the rest of the whole system) iϕ ,  i∈r, while pseudo functions iψ  already are not orthogonal to the wave 
functions of the frozen subsystem. Pseudo functions are supposed to be connected with “true” wave 
functions in the following way:  
 

∑
∈

+=
rj

jijii aϕφψ  (expansion of form (13)), 

( ) iri ψφ Ω−= 1 , (22) 

where ∑
∈

=Ω
rj

jjr ϕϕ  is the projector on the frozen subsystem (the rest of the whole system) wave 

function space.  
Substituting (22) in (21) we obtain generalised Phillips–Kleinman (GPK) equations [14–17]:  

( ) ( ) ( ) iriirr EF ψψ Ω−=Ω−Ω− 111 ,  i∈c. (23) 

Transforming in the same manner equations (19) resulting from variational procedure in general 
case, we finally get [18]:  

( ) ( ) 011 =Ω−− irF ψρ ,  i∈c. (24) 

Deriving Eqs. (24) we have taken into account that relationships (22) are a particular case of linear 
transformation of the wave functions and, therefore, one-electron density operator ρ  may be written  
in the following way:  

( )∑ ∑∑
∈ +∈

−

∈

ΨΨ=+=
cj rcji

jiji
rj

jjjj S
,
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 , jiijS ΨΨ= . 

Therefore, the most general equations of the theory of pseudopotentials are our equations (24), 
while GPK equations (23) present a particular case. 

Note that every linear combination of the solutions of Eqs. (24) is also solution of these equations, 
analogously to Eqs. (6) obtained in the frameworks of direct variational approach. Using arguments 
similar to those listed in Sect. 2.1, we may propose the following eigenvalue and eigenvector 
equations [18]:  

[ ] [ ]( ) iiir AF ψλψρ =+Ω−− 11 ,  i∈c. (25) 

Analogously to direct variational approach, if we want solutions of Eqs. (25) to be solutions of 
Eqs. (24), restriction (9) must be imposed on operator A , and under this restriction Eqs. (25) lead not 
only to Eqs. (24) but also to additional condition (10). Analogously to Eqs. (8) solutions of Eqs. (25) 
should be interpreted as those of Eqs. (24) under additional condition (10). Eqs. (25) may be considered 
as the most general eigenvalue and eigenvector equations of pseudopotential theory. Condition (9) 
restricts freedom of choice of the pseudopotential.  

Establish now for what operator A  Eqs. (25) convert to GPK equations (23). For this purpose it is 
necessary to get rid of an explicit energetic dependence of operators in Eqs. (23) expressing iE  and 
substituting this expression into the equations. In this way, using previously defined operator rP  (5) and 
formulas of Appendix we obtain equations without explicit energetic dependence of operators [18]: 

( ) ( ) iiirr EFP ψψ =Ω−− 11 ,  i∈c. (26) 
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Eqs. (26) are special case of eigenvalue and eigenvector equations (25) with ( )rcFPA Ω−= 1 . It is easy 
to see that for this A  restriction (9) is valid. 

We should note that the wave functions of the frozen subsystem iϕ ,  i∈r, are solutions of the both 
Eqs. (23) and (26), but for Eqs. (26) the energy iE  is equal to zero while in original GPK equations (23) 
the energy iE  is arbitrary. This arbitrariness of the energy is the reason of arbitrary admixture of the wave 
functions of the frozen subsystem in the solutions of GPK equations for the cluster. Investigate whether 
Eqs. (26) keep this feature for both occupied and vacant states or not. Transformation procedure we have 
used to get Eqs. (26) is valid for occupied states only. Therefore, vacant states require special 
consideration.  
 
3. Vacant States 
 

Further applications of EMC model require us to go beyond one-electron approximation and to use 
one of existing methods including many-electron correlation effects into consideration (to calculate 
optical transition energies or magnetic resonance effects, for example). To apply any of these methods, 
we need initial eigenvalue equations giving the same structure and the same degree of localisation for the both 
vacant and occupied cluster states. Equations for the cluster wave functions may give solutions of 
different structure for occupied states and for vacant ones. In this section we study this problem with 
more details.  

We may define vacant solutions as extra solutions staying linearly independent with the cluster 
and the rest of the system occupied states. According to this definition ii ψψρ ≠ ,  i∈v, but not 
necessarily 0=iψρ . It means that like occupied cluster states vacant states without loss of generality 
may be described by formula (13).  
 
3.1. GPK Equations 

 

Start with Eqs. (26) and establish structure of their solutions for the both occupied and vacant 
states. To get these equations, we transformed GPK equations. Ascertain that original GPK equations (23) 
are consequence of our equations (26).  

Taking into account that rrr PP =Ω  (see definition (5) of rP ) we see that  

( ) ( ) rrr P Ω−=−Ω− 111 .  

Therefore, acting on the left and the right sides of Eqs. (26) by ( )rΩ−1  we have: 

( ) ( ) ( ) ( ) iirirrr EFP ψψ Ω−=Ω−−Ω− 1111 , 

( ) ( ) ( ) iriirr EF ψψ Ω−=Ω−Ω− 111 . 

We see that GPK equations (23) really are consequence of our equations (26). Establish now have 
solutions of Eqs. (26) arbitrary admixture of frozen subsystem wave functions or not. Using expression (15) 
for rP  we may rewrite Eqs. (26) in the following way: 

( )[ ] ( ) iiircr EFR ψψ =Ω−+Ω− 11 .  

Acting on the both left and right sides of these equations by rΩ  and taking into account that 

ccr RR =Ω  (see definition (18) of cR ) we get: 

( ) iriirc EFR ψψ Ω=Ω−1 . (27) 

Rearranging terms in GPK equations we have:  

( ) ( ) ( ) irririir FEF ψψψ Ω−Ω+Ω−=Ω− 111 . (28) 

Taking into account that GPK equations are consequence of our equations (26) and substituting 
expression (28) in the left part of (27) we get: 

( ) ( ) iriirrciric EFRER ψψψ Ω=Ω−Ω+Ω− 11 . 
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Substituting expansion (13) for iψ  and taking into account that 0=ΩrcR  (see definition (18) 
of cR ) we come to: 

∑
∈

=
rj

jijiici aERE ϕφ . (29) 

So, on one hand, if solutions of Eqs. (26) are expressed by expansion (13), expansion coefficients 
and wave functions satisfy Eqs. (29). On the other hand, if we substitute expansion (13) for iψ  in GPK 
equations (23) (we have shown that GPK equations are consequence of our equations), we get Huzinaga 
equations [2, 3] for iφ :  

( ) iiir EF φφ =Ω−1 , (30) 

what means that wave functions iφ in expansion (13) are mutually orthogonal for all (occupied and 
vacant) cluster states.  

Solutions of Eqs. (26) will contain arbitrary admixture of frozen subsystem wave functions if 
equations (29) reduce to an identity. According to definition of cR   

( )∑∑
∈ ∈

−=
rj ck

ikjkcjic BAR φφϕφ 1 ,  i∈c + v. 

Therefore, for occupied cluster states  

( )∑∑ ∑
∈ ∈ ∈

− ==
rj ck rj

jijkijkcjic aBBAR ϕϕφ 1 ,  i∈c, 

and (29) really converts to identity. But for vacant ones due to mutual orthogonality of iφ ,  i∈c + v, 

0=ik φφ  when  k∈c  and  i∈v.  It means that for vacant states 0=icR φ  and we have zero in the left 
side of formula (29). Therefore, the right side should be zero, too. Formula (29) is valid for the both 
occupied and vacant cluster states. Therefore, all 0=jia  for vacant solutions of Eqs. (26). It means that 
vacant states are orthogonal to the both varied (cluster) and frozen (the rest of the whole system) 
subsystems occupied states: 

( ) ii ψψρ =−1 ,  i∈v. (31) 

Taking it into account and acting on the both left and right parts of Eqs. (26) by ( )ρ−1  we get  
the following equations for vacant states: 

( ) iii EF ψψρ =−1 ,  i∈v. (32) 

It means that vacant solutions of Eqs. (26) are canonical Hartree–Fock orbitals. They are 
orthogonal to the occupied states both of the cluster and of the rest of system. Operator ( )ρ−1  in the left 
side ensures this orthogonality.  

Summing up, we conclude that solutions of Eqs. (26) have arbitrary admixture of frozen 
subsystem wave functions for occupied states only. Therefore, Eqs. (26) are not equivalent to GPK 
equations for vacant states of varied subsystem (cluster). To reach complete equivalence, we should 
modify our equations.  

By analogy with rotation operator cR  for occupied cluster states define rotation operator vR  
for vacant states:  

( )∑∑
∈ ∈

−=
rj vk

kjkvjv DAR φϕ 1 , (33) 

where jϕ ,  j∈r, kφ ,  k∈v, are wave functions and vA  is matrix of coefficients jia  in expansion of 

form (13) for vacant states; kφ , k∈v, belong to orthogonal to the both cluster and the rest of system 

occupied wave functions space, 0=ki φφ , 0=kj φϕ ,  i∈c,  j∈r,  k∈v; jiijD φφ=  ,  i,  j∈v. 
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It is easy to see that operators cR  and vR  have the following properties:  

0=icR ϕ , i∈r,  0=icR φ , i∈v,  ∑
∈

=
rj

jijic aR ϕφ , i∈c;  

0=ivR ϕ , i∈r,  0=ivR φ , i∈c,  ∑
∈

=
rj

jijiv aR ϕφ , i∈v;  

while ( ) ∑
∈

=+
rj

jijivc aRR ϕφ ,  i∈c + v. (34) 

Therefore, if we want to get the same structure (arbitrary coefficients jia ) for the both occupied and 

vacant states, instead of operator cR  we need sum of operators cR  and vR . Modify Eqs. (26) replacing 
operator ( ) ( ) crr RP +Ω−=− 11  by operator ( ) vcr RR ++Ω−1 : 

( )[ ] ( ) iiirvcr EFRR ψψ =Ω−++Ω− 11 . (35) 

After this modification we also obtain original GPK equations (23) as a consequence our 
equations (35). It is easy to see it acting on the both the left and the right sides of Eqs. (35) by ( )rΩ−1  
and taking into account that vvr RR =Ω  (similarly to ccr RR =Ω ). 

Presence of rotation operators cR  and vR  in Eqs. (35) causes explicit dependence of the both occupied 
and vacant states on coefficients jia  in expansion (13). These coefficients describe admixture of frozen 

subsystem wave functions in the wave functions of varied subsystem. Like in original GPK equations this 
admixture is arbitrary, but due to explicit dependence we have possibility to set admixture coefficients 
and to fix them. 

We may conclude that modified equations (35) are equivalent to GPK equations for the both 
vacant and occupied states of the varied subsystem (cluster). Our initial equations (26) are equivalent  
to GPK equations for occupied states only. Vacant solutions of Eqs. (26) satisfy Eqs. (32). Therefore, 
transformed form of GPK equations is Eqs. (35).  

For the frozen subsystem (the rest of the whole system) equivalence of the equations is not 
complete. Wave functions of the frozen subsystem are solutions of the transformed and original GPK 
equations, but with zero energy for Eqs. (35) and arbitrary energy for GPK equations (23).  

Eqs. (35) are particular case of eigenvalue and eigenvector equations (25) with 
( ) ( )rvc FRPA Ω−+= 1 . It is easy to see that for this A  restriction (9) is valid. So, GPK equations have 

transformed form (35) and may be considered as special case of eigenvalue and eigenvector equations (25) 
with particular choice of operator A . 
 
3.2. Direct Variational Equations 

 

In our earlier work [20] we have studied vacant solutions of eigenvalue equations (12) obtained  
in the frameworks of direct variational approach. We have established that situation is the same as in  
the case of GPK equations. Vacant solutions of Eqs. (12) satisfy Eqs. (32) and therefore are canonical 
Hartree–Fock orbitals. To get vacant and occupied states of the same structure, we have to modify our 
initial equations (12) replacing operator ( ) ( ) crr RP +Ω−=− 11  by operator ( ) vcr RR ++Ω−1 : 

[ ]( ) [ ]( ) iiivcrvcr ERRFRR ψψ =++Ω−++Ω− ++11 ,  i∈c + v. (36) 

To keep occupied states the same for the both original and modified equations, we have to impose 
orthogonality restrictions between non-orthogonal to the frozen subsystem components of the occupied 
cluster states and those of vacant ones [20]:  
 

0=+
crv ASA   or its hermitean conjugate  0=+

vrc ASA .   (37) 

Under these restrictions initial equations (12) and modified equations (36) give the same wave 
functions for occupied cluster states.  
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4. Comparison of the Approaches 
 
4.1. Varied Subsystem (Cluster) 
 

Study now what kind of solutions pseudopotential theory equations and direct variational 
equations give for varied subsystem (cluster). Compare solutions of the Eqs. (35) and Eqs. (36) and 
establish may they be common or not.  

If we consider that cluster wave functions iψ , i∈c + v, are described by expansion (13), then, 
taking into account (37), we get:  

( ) iir φψ =Ω−1 ,  i∈c+v, 

( )
( )
( )⎪

⎩

⎪
⎨

⎧

∈

∈
=+
∑

∑

∈

+−
∈

+−

++

v,

c,

1

1

jASAD

iASAB
RR

vj
jivrvj

cj
jicrcj

ivc φ

φ
ψ  . (38) 

It means that operator ( ) ++ ++Ω− ccr RR1  does not mix occupied and vacant states with each other.  
Substituting expansion (13) for the cluster wave functions iψ  on the left side of Eqs. (35) and 

Eqs. (36), we see that Eqs. (35) give  

[ ]( ) iiivcr EFRR ψφ =++Ω−1 , i∈c + v, (39) 

while, taking into account formula (38), for Eqs. (36) we have  

[ ]( ) iiji
vcj

jvcr EUFRR ψφ =++Ω− ∑
+∈

1 , i∈c + v, (40) 

where matrix U  is expressed as follows 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

=
+−

+−

vrvv

crcc

ASADI
ASABI

U 1

1

0
0

, (41) 

cI  and vI  are unit matrices.  
Comparing (39) and (40) we see that Eqs. (35) and Eqs. (36) have the same solutions if matrix U  

is diagonal matrix.  
In our earlier work [18] we have studied solutions of Eqs. (12) and Eqs. (26). We have shown that 

solutions of Eqs. (12) and Eqs. (26) are the same wave functions if we impose additional restrictions 
related to the cluster and the rest of system wave functions overlaps: 

( ) 0=+
ijcrc ASA , i ≠ j. (42) 

Being eigenvectors of hermitean operator, solutions of Eqs. (36) are mutually orthogonal. Taking 
it into account it is possible to show that matrix U  has diagonal form if in addition to conditions (37) we 
impose conditions (42) and the same conditions for vacant states:  

( ) 0=+
ijvrv ASA ,  i ≠ j. (43) 

Under these restrictions off-diagonal elements of matrix U  are equal to zero while diagonal ones have 
the following form:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

i

i
ii m

rU 1 ,  i∈c + v, (44) 

where iiim φφ=  and ( )iiri ASAr += .  
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If matrix U  has diagonal form (44), the same wave functions iψ ,  i∈c + v, are solutions of the both 

equations (35) and (36). While eigenvalues differ. We have iE  for Eqs. (35) and iE~  for Eqs. (36). It is easy 
to see that eigenvalues are related with each other as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

i

i
ii m

rEE 1~ ,  i∈c + v.  

Conditions (37), (42) and (43) impose mutual orthogonality restrictions on non-orthogonal to the rest 
of system components of the cluster wave functions. It is easy to prove that these conditions ensure 
mutual orthogonality of solutions for Eqs. (35). It is additional restriction. In contrast with solutions of 
Eqs. (36), solutions of Eqs. (35) are not mutually orthogonal in general case.  
 
4.2. Frozen Subsystem (the Rest of the Whole System) 
 

Wave functions of the frozen subsystem (the rest of the whole system) are solutions of the equations 
obtained in the framework of the theory of pseudopotentials because ( ) 01 =Ω− ir ϕ , i∈r. In our previous 
work [18] we have shown that wave functions of the frozen subsystem are not solutions of eigenvalue 
equations (12). Investigate, whether it is true or not for modified equations (36).  

By analogy with projector cW  and pseudoprojector cP  for occupied states define projector vW  and 
pseudoprojector vP  for vacant states: 

( ) jij
vji

iv DW φφ 1

,

−

∈
∑= , (45) 

vvv RWP += . (46) 

Then, according to formulas (17), (14), (46), (16) and (45), for the frozen subsystem wave 
functions iϕ , i∈r, we have the following result:  

[ ]( ) ( ) ( ) ivicivvccivcivcr PPWPWPRRRR ϕϕϕϕϕ ++++++++ +=−+−=+=++Ω−1 . (47) 

Therefore, for our purpose it is enough to consider the result of action of pseudoprojectors +
cP  and +

vP  on 
the frozen subsystem wave functions.  

Taking into account cP  definition (4) and expansion (13), it is possible to see that  

( ) ( ) ( ) ( )

( ) ( ) ( ) .111

,

11

,

1

jircc
cj

jcjirccjlkl
rck clj

k

jircljcckl
rck clj

kijkj
rck cj

kic

SASPSASS

SASSSSP

+−

∈

++−−

+∈ ∈

+−−

+∈ ∈

−

+∈ ∈

+

∑∑ ∑

∑ ∑∑ ∑

=Ψ=

=Ψ=Ψ=

ψψψ

ϕψϕ  

So, on one hand, we have just shown that 

( )jircc
cj

jcic SASPP +−

∈

++ ∑= 1ψϕ ,  i∈r, (48) 

and in the similar manner we may show that 

( )jirvv
vj

jviv SASPP +−

∈

++ ∑= 1ψϕ ,  i∈r. (49) 

On the other hand, taking into account formulas (14), (46), (17), (16), (45), expansion (13) and 
condition (37), we get 

[ ]( ) [ ]( )
⎪⎩

⎪
⎨
⎧

∈
∈

=−+−+Ω−=++Ω− +

+
++++

v,
c,

11
iP
iP

WPWPRR
iv

ic
ivvccrivcr ψ

ψ
ψψ . (50) 

Summing up results given by formulas (47)–(50), we see that 
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[ ]( ) [ ]( )

[ ]( ) [ ]( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++Ω−++Ω−=

=++Ω−++Ω−

∑ ∑
∈ ∈

+−+−++

++

cj vj
jirvvjjirccjvcrvcr

ivcrvcr

SASSASRRFRR

RRFRR

1111

11

ψψ

ϕ

. 

Assuming that iψ , i∈c + v, are solutions of the equations (36), we come to  

[ ]( ) [ ]( )
( ) ( )∑ ∑

∈ ∈

+−+−

++

+=

=++Ω−++Ω−

cj vj
jirvvjjjirccjj

ivcrvcr

SASESASE

RRFRR
11

11

ψψ

ϕ
,   i∈r. 

Substituting in the last expression expansion (13) for iψ , i∈c + v, we get  

[ ]( ) [ ]( )
( ) ( )

( ) ( )∑ ∑∑∑

∑ ∑

∈ ∈

+−

∈

+−

∈

∈ ∈

+−+−

++

++

++=

=++Ω−++Ω−

cj vj
jirvvkjk

rk
jjircckjk

rk
j

cj vj
jirvvjjjirccjj

ivcrvcr

SASaESASaE

SASESASE

RRFRR

11

11

11

ϕϕ

φφ

ϕ

,   i∈r. (51) 

From (51) we see, that iϕ , i∈r, may be solutions of Eqs. (36) if 

( ) 01 =∑
∈

+−

cj
jirccjj SASE φ  and ( ) 01 =∑

∈

+−

vj
jirvvjj SASE φ . (52) 

Conditions (52) are necessary conditions for the wave functions of the rest of system (frozen subsystem) 
to be solutions of equations for the cluster (varied subsystem).  

Wave functions jφ , j∈c + v, in the expression (13) are linearly independent. Therefore, to satisfy 
conditions (52), we have to demand that  
a) wave functions of the cluster are orthogonal to those of the rest of system, ( ) 0=jicA  and ( ) 0=jivA ; 

or  

b) all the eigenvalues jE  are zeros, what is rather doubtful.  
We see that wave functions of the rest of system are solutions of the equations for the cluster only 

if additional conditions are imposed. These conditions are demanding for the wave functions of the cluster  
to be orthogonal to those of the rest of system. In general case wave functions of the rest of system are not 
orthogonal to those of the cluster. Non-orthogonality is main assumption of our theory. It means that in 
general case (when we keep non-orthogonality) conditions (52) are never satisfied. Therefore, on contrast 
with the theory of pseudopotentials, in the case of Eqs. (36) wave functions of frozen subsystem (the rest 
of the whole system) are not solutions of the equations for varied subsystem (cluster). It may be significant 
advantage of direct variational approach. 

Summary and Conclusions 
 

We have compared two different approaches to the general problem “cluster in the field of the remaining 
part of system”: 

(A) direct variational approach, when total energy of the whole system (cluster + the rest of 
system) is expressed in terms of non-orthogonal one-electron wave functions and equations for the cluster 
wave functions are obtained directly from variation of the total energy expression;  

(B) approach of the theory of pseudopotentials, when total energy of the system is expressed in 
terms of mutually orthogonal wave functions, equations for the cluster wave functions are obtained under 
orthogonality constraints and then these equations are transformed to obtain non-orthogonal solutions. 

For the both (A) and (B) cases we have obtained general (homogeneous) equations (describing linear 
space of the cluster wave functions) and have transformed them to eigenvalue and eigenvector problem 
equations (selecting a basis for this space).  
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We have shown that well-known in the theory of pseudopotentials generalised Phillips–Kleinman 
(GPK) equations may be transformed to eigenvalue and eigenvector equations. Eigenvalue form of GPK 
equations – Eqs. (35) is special case of approach (B) eigenvalue and eigenvector equations – Eqs. (25).  

We have established that GPK equations and eigenvalue equations of direct variational approach may 
give the same solutions for the varied subsystem (cluster) under additional restrictions on the wave functions. 
The same wave functions are solutions of the both equations if we demand mutual orthogonality of  
the wave functions components describing overlaps of varied wave functions with the frozen ones. 

We have found that in the case of approach (A) wave functions of the frozen subsystem (the rest of 
the whole system) are not solutions of our equations for the varied subsystem (cluster). Pseudopotential 
theory equations have no this feature. Possibility to formulate task in such a way that wave functions  
of the frozen subsystem do not appear when we solve equations for the varied subsystem seems to be 
significant advantage of direct variational approach. 

Applicability of our embedding scheme for treatment of electron excited states has been studied. 
To consider electron transitions, both occupied and vacant states should be localised in the cluster region 
and should overlap with the rest of system in the same manner. We have established that our initial 
embedding equations give different localisation degree for occupied and vacant states. For the both 
approaches (A) and (B) occupied states have localised wave functions while vacant ones are described  
by delocalised canonical orbitals. We have demonstrated that it is possible to overcome this limitation 
modifying our initial equations. Treatment of electron excited states and consideration of electron 
transitions become possible. EMC model with non-orthogonal wave functions becomes applicable for 
theoretical study of various processes. 

Because we have no used specific features of particular systems, our consideration is general  
for every task “subsystem in the field of the frozen remaining part of the whole electron system”. Results 
of our present work may be used for treatment of all possible tasks of this kind: cluster and the rest of crystal, 
fragment of a molecule and the remaining part of it, valence and core electrons, fragment of nanosystem 
and the rest of it, etc. 
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Appendix 
 

When we divide quantum system on two subsystems (cluster and the rest of system in our case) 
matrix of one-electron wave functions overlaps and its inverse may be written in the block form:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

rrc

crc

SS
SS

S  ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==−

rrc

crc

QQ
QQ

QS 1 . 

According to the definition of the inverse matrix, IQS = , where I  is unit matrix. Write this equality 
in the block form:  

crc
cr

c
c ISQSQ =+ ,   (A1)  0=+ r

cr
cr

c SQSQ ,  (A2) 

0=+ rc
r

c
rc SQSQ ,   (A3)  rr

r
cr

rc ISQSQ =+ .  (A4) 

From (A2) and (A3) we obtain  
1−−= rcr

ccr SSQQ ,   (A5)  1−−= crc
rrc SSQQ .   (A6) 

Substituting (A5) in (A1) we get  

crcrcr
c

c
c ISSSQSQ =− −1 . 

Therefore  

( ) 11 −−−= rcrcrc
c SSSSQ .         (A7) 

In the similar way, substituting (A6) in (A4), we come to  

( ) 11 −−−= crcrcr
r SSSSQ .         (A8) 
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On the other hand, according to the definition of the inverse matrix, ISQ = . Write this equality in  
the block form: 

c
rc

cr
c

c IQSQS =+ ,     0=+ r
cr

cr
c QSQS ,   (A9) 

0=+ rc
r

c
rc QSQS ,   (A10)  r

r
r

cr
rc IQSQS =+ .  

From (A9) and (A10) we obtain 
r

crc
cr QSSQ 1−−= ,    (A11)  c

rcr
rc QSSQ 1−−= .   (A12) 

Substituting (A11) in (A1) we have 

crc
r

crcc
c ISQSSSQ =− −1 . 

Therefore 
111 −−− += crc

r
crcc

c SSQSSSQ .         (A13) 

In a similar way, substituting (A12) in (A4) we come to  
111 −−− += rcr

c
rcrr

r SSQSSSQ .         (A14) 

Collecting these results we finally have  

( ) 11111 −−−−− +=−= crc
r

crccrcrcrc
c SSQSSSSSSSQ ; 

r
crcrcr

ccr QSSSSQQ 11 −− −=−= ; 

c
rcrcrc

rrc QSSSSQQ 11 −− −=−= ; 

( ) 11111 −−−−− +=−= rcr
c

rcrrcrcrcr
r SSQSSSSSSSQ . 

Consider wave functions of the cluster, which are linearly independent with those of the frozen 
rest of our system. Without loss of generality they may be expressed as follows:  

ji
rj

jii a∑
∈

+= ϕφψ ,  i∈c,        (A15) 

where  

jϕ , j∈r, are wave functions of the rest of system, they are not mutually orthogonal, ( )ijrji S=ϕϕ ;  

iφ , i∈c, are orthogonal to the rest of system components of the cluster wave functions, 0=ji ϕφ , 

they are linearly independent but in general case are not mutually orthogonal, ijji B=φφ ;  

coefficients jia  describe overlaps between the cluster and the rest of system wave functions.  
Using this expansion, we get the following expressions for the wave functions overlap matrix S  

for our system (cluster + the rest of system): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

++

rr

rr

rrc

crc

SAS
SAASAB

SS
SS

S ,       (A16) 

where A  is matrix of coefficients jia  in the expansion (A15) for the cluster wave functions.  

For the inverse matrix 1−= SQ , substituting (A16) in formulas (A7), (A5), (A12) and (A14), we 
finally get  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

+−−−

+−−
−

AABSAB
ABB

QQ
QQ

QS
r

rrc

crc

111

11
1 .      (A17) 

Received on the 1st of March, 2009 



 
 

Applied Statistics 

 32

Computer Modelling and New Technologies, 2009, Vol.13, No.1, 32–38 
Transport and Telecommunication Institute, Lomonosov 1, LV-1019, Riga, Latvia 

 
CORRECTIVE  MAINTENANCE  AND  RELIABILITY 

ASSOCIATED  COST  ESTIMATION  OF  AGING 
MULTI-STATE  SYSTEMS 

 
I. Frenkel1, A. Lisnianski2, L. Khvatskin1 

 
1Center for Reliability and Risk Management, Industrial Engineering and Management Department  

Sami Shamoon College of Engineering, Beer Sheva, Israel 
E-mail: iliaf@sce.ac.al / khvat@sce.ac.il 

2The Israel Electric Corporation Ltd., Haifa, Israel  
E-mail: anatoly-l@iec.co.il 

 
This paper considers corrective maintenance contracts for aging air conditioning systems, operating under varying weather 

conditions. Aging is treated as an increasing failure rate. The system can fall into unacceptable states for two reasons: through 
performance degradation because of failures or through an increase in demand of cold. Each residence in acceptable state, each 
repair and each entrance to an unacceptable state are associated with a corresponding cost. A procedure for computing this reliability 
associated cost is based on the Markov reward model for a non-homogeneous Poisson process. By using this model an optimal 
maintenance contract that maximizes the total expected cost may be found. A numerical example for a real world air conditioning 
system is presented to illustrate the approach. 

 
Keywords: corrective maintenance, reliability associated cost, aging, multi-state system, Markov reward model 

 
1. Introduction 

 
Many technical systems are subjected to aging and degradation during their lifetime. Most of these 

systems are repairable. Maintenance and repair problems have been widely investigated in the literature. 
Barlow and Proshan [3], Gertsbakh [4], Pham and Wang [16], Wang [19] survey and summarize theoretical 
developments and practical applications of maintenance models.  

Maintenance strategies addressed in most previous research works have been developed for improving 
reliability of aging binary-state systems or products. There is relatively limited number of research works 
focused on the maintenance strategies for aging Multi-state System (MSS). A heuristic approach has been 
proposed by Nourelfath and Ait-Kadi [14] for the optimisation of series–parallel MSSs when  
the maintenance resources are limited. Hsieh and Chiu [6] have proposed an optimal maintenance policy 
for a multi-state deteriorating standby system, by determining the optimal number of standby components 
and the optimal state in which deteriorating components shall be replaced. Nourelfath and Dutuit [15] have 
proposed a combined approach to solve the redundancy optimisation problem for multi-state systems 
under repair policies. The problem of imperfect preventive maintenance optimisation was considered for 
ageing MSS by Levitin and Lisnianski [9]. 

With the increasing complexity of the systems, only specially trained staff with specialized 
equipment can provide system service. In this case, maintenance service is provided by an external agent 
and the owner is considered as a customer of the agent for maintenance service (Pongpech and Murthy [17]). 
The maintenance outsourcing has been discussed by Jaturonnatee et al. [8] and Huang et al. [7]. Murthy 
and Asgharizadeh [13] have proposed a model to determine the optimal pricing strategy, the number of 
customers to service and the number of service channels for a monopolist service agent providing  
the maintenance service. The maintenance contract models have been studied by Bai and Pham [2], which 
discussed discounted warranty cost models for repairable series systems. The maintenance contract 
selection and spares provisioning planning based on the multi-criteria decision models has been discussed 
by Almeida [1]. Tarakci at al. [18] considered a manufacturer who has a process with an increasing 
failure rate over time. In order to improve the process performance, preventive maintenance and 
corrective maintenance are outsourced to an external contractor. Authors recommend to use the incentive 
contracts to induce the contractor to select the maintenance policy that optimises the total profit of  
the manufacturer and contractor.  
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Most of papers, that consider the maintenance contract selection, assume that the manufacturing 
process is binary-state. However the methods for the optimal maintenance contract planning for a multi-
state aging system in a life cycle period till now have not been comprehensively developed.  

This paper presents a case study where an aging air conditioning system with minimal repair  
is considered. Aging is considered a process which results in an age-related increase of the failure rate. 
The Markov reward model is built for computing the reliability associated cost, accumulated during  
the system’s life span. By using the model a corrective maintenance contract with maximum reliability 
associated cost can be defined from the set of different contracts available in the market. The approach is 
based on the Non-Homogeneous Markov Reward Model. The main advantage of the suggested approach 
is that it can be easily implemented in practice by reliability engineers. 

 
2. Problem Formulation and Model Description 
 
2.1. Reliability Associated Cost and Corrective Maintenance Contracts 

 

We will define the Reliability Associated Cost (RAC) as the difference between total income from 
system using and total cost incurred by the user in operations and maintenance of the system during its 
lifetime. Therefore, 

        RAC US OC RC PC= − − − , (1) 

where  
- US is income (reward) from system using.  
- OC is the system operating cost accumulated during the system lifetime;  
- RC is the repair cost incurred by the user in operating and maintaining the system during its lifetime; 
- PC is a penalty cost, accumulated during system life time, which was paid when the system failed.  

Let T be the system lifetime. During this time the system may be in acceptable states (system 
functioning) or in unacceptable ones (system failure). After any failure, a corresponding repair action is 
performed and the system returns to one of the previously acceptable states.  

A Maintenance Contract is an agreement between the repair team and the system's owner.  
The Maintenance Contract defines possible Maintenance Contract level, mean repair time and repair rate. 
Repair cost depends on repair time and, so, it corresponds to a maintenance contract level.  

The problem is to find the expected reliability associated cost corresponding to each maintenance 
contract and choose the contract, maximizing this cost. According to the suggested approach, this cost is 
represented by the total expected reward, calculated via a specially developed Markov reward model.  

 
2.2. Markov Reward Model for Aging System 

 

 Markov reward model was first introduced by Howard [5], and applied to multi-state system (MSS) 
reliability analysis by Lisnianski and Levitin [12].  

We suppose that the Markov model for the system has K states that may be represented by a state 
space diagram as well as transitions between states. Intensities ,  , 1,...,ija i j K=  of transitions from state 
i to state j are defined by corresponding failure and repair rates.  

It is assumed that while the system is in any state i during any time unit, some payment iir will be 
made. It is also assumed that if there is a transition from state i to state j the amount ijr will by paid for 

each transition. The amounts iir and ijr  are called rewards. The objective is to compute the total expected 
reward accumulated from t = 0, when the system begins its evolution in the state space, up to the time 
t = T under specified initial conditions. 

Let ( )jV t  be the total expected reward accumulated up to time t, if the system begins its evolution 
at time t = 0 from state j. According to Howard [5], the following system of differential equations must be 
solved in order to find this reward: 

( ) ( )
1 1

,  1,2,...,
K K

j
jj ij ij ij i

i i
i j

dV t
r a r a V t j K

dt = =
≠

= + + =∑ ∑  (2) 
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The system (2) should be solved under specified initial conditions: (0) 0,  1,2,..., .jV j K= =  

For an aging system, its failure rate ( )tλ  increases with age. In the case of minimal repair, the intensities 
,  , 1,...,ija i j K=  of transitions from state i to state j corresponding to failures are dependent on time. 

The total expected reward can be found from differential equations (2), by substitution of formulae for 
( )tλ  instead of corresponding aij values. 

 
3. Numerical Example 
 
3.1. The System Description 
 

Consider an air conditioning system, used around the clock in varying temperature conditions and 
consists of two air conditioners, main and reserved. The main air conditioner is aging multi-state cold 
generating unit with 4 different levels: the first level of perfect functioning, the second level with reduced 
capacity (partial filter obstruction), the third level with complete failure (full filter obstruction) and the fourth 
level with complete failure (another reasons). The reserved air conditioner may be only in two states: 
perfect functioning or full failure.  

The work schedule of the system is as follows. For regular temperature conditions the main air 
conditioner must be on-line. For peak temperature conditions if the main unit is in the level with reduced 
capacity, in addition to main air conditioner the reserved one must be on-line.  

The state-space diagram for this system is presented on Figure 1. States 1–4 correspond to regular 
conditions and states 5–9 correspond to peak conditions. States 4 and 8 correspond to perfect functioning 
of the main air conditioner. States 3 and 7 corresponds to the reduced capacity level of the main conditioner. 
If the system enters to the state 7 the reserved air conditioner starts immediately his functioning. States 2 
and 6 corresponds to complete failure of the main air conditioner because full filter obstruction and states 
1 and 5 corresponds to complete failure because another reasons. State 9 corresponds to failure of the reserved 
air conditioner. 

As was written above, technical requirements demand that the main on-line air conditioner are 
needed under regular conditions and additional reserved one in peak condition, so that there are four 
acceptable states – states 3–4 and states 7–8, and 5 unacceptable states: states 1–2, states 5–6 and state 9. 

Aging is indicated as increasing failure rate functions: ( ) 1
41 1 0.9  yeart tλ −= + , 

( ) 1
31 1 0.9  yeart tλ −= + , ( ) 1

85 1 0.9  yeart tλ −= +  and ( ) 1
75 1 0.9  yeart tλ −= + . Other failure rates  

are constant: 1
43 32 87 76 4 yearλ λ λ λ −= = = = and 1

79 1 yearλ −= . 

Repair rates are the following: 1
24 68 700 yearμ μ −= = , 1

97 365 yearμ −= . 

14 58 2000 200μ μ= = ÷  year–1 (see Table 1). 
Following Lisnianski [10], the variable demand, representing variable weather conditions, may be 

described as a continuous time Markov chain with 2 levels. The first level represents a regular 
temperature conditions and the second level represents peak temperature conditions. The cycle time is 

24cT =  hours and the mean duration of the peak is 9dt =  hours. The transition intensities of the model 
can be obtained as 

 

1 1 1 11 10.066 584 ,  0.111 972d N
c d d

hours year hours year
T t t

λ λ− − − −= = = = = =
−

. 

We denote: 
 

usC – is the income (reward) from system using.  

opC – is the system operations cost accumulated during the system lifetime.  
m
rC – is the repair cost paid for every order of the external maintenance team; 

rC – is the repair cost incurred by the user maintaining the reserved air  
conditioner;  

pC – is a penalty cost, which is paid when system failed. 
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Service agents can suggest 10 different Corrective Maintenance Contracts, available in the market. 
Each contract m is characterized by repair rate and corresponding repair cost (per repair) m

rC as presented 
in the Table 1.  

 

Figure 1. The state-space diagram for the air-conditioning system with reserve 

 
Table 1. Maintenance Contract Characteristics 

Maintenance 
Contract  1 2 3 4 5 6 7 8 9 10 

Repair rate 
(year–1)  2000 1800 1600 1400 1200 1000 800 600 400 200 

Mean Repair 
Time (days) 0.18 0.21 0.23 0.26 0.30 0.37 0.46 0.61 0.91 1.83 

Repair cost 
($ per repair) 1453 1143 899 708 557 438 344 270 213 167 

The income (reward) from system using m
rC is equal $180000 per year. The repair cost incurred 

by the user rC , is equal to $50 per repair. The operation cost opC , is equal to $7200 per year.  

The penalty cost pC , which is paid when the system fails, is equal to $13140 per failure. 
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3.2. The Markov Reward Model for the System 
 
The transition intensity matrix for the system is as shown in (3). 
 

( )
( )

( )
( )

11 14

22 24

31 32 33

41 43 44

55 58

66 68

75 76 77 79

85 87 88

97 99

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

d

d

d

d

N

N

N

N

N

a
a

t a
t a

a a
a

t a
t a

a

μ λ
μ λ

λ λ λ
λ λ λ
λ μ

λ μ
λ λ λ λ

λ λ λ
λ μ

= , (3) 

where 

( )11 14 da μ λ= − + , ( )( )44 41 43 da tλ λ λ= − + + , ( )( )77 75 76 79 Na tλ λ λ λ= − + + + ,

( )22 24 da μ λ= − + , ( )55 58 Na μ λ= − + , ( )( )88 85 87 Na tλ λ λ= − + + , 

( )( )33 31 32 da tλ λ λ= − + + , ( )66 68 Na μ λ= − + , ( )99 97 Na μ λ= − + . 

 
To calculate the total expected reward, the reward matrix for the system is built in the following 

manner (see Lisnianski and Levitin [12] and Lisnianski et al. [11]).  
If the system is in states 3, 4, 7 and 8, the income (reward) from system using minus  

the operation cost associated with use of air conditioners, should be received during any time unit.  
The transitions 3 1→ , 4 1→ , 7 5→ , 8 5→  and 7 9→ are associated with the entrance to 

unacceptable states and rewards associated with this transitions are the penalty.  
The transitions 1 4→ , 5 8→ , 9 3→  and 9 7→ are associated with the repair of the air 

conditioner, provided by external team, and the reward associated with this transition is the repair cost 
paid for every order of the external maintenance team. The transitions 2 3→ and 6 7→  
are associated with the filter repair, and the reward is the cost of this repair. The reward matrix for  
the system of air conditioners is as shown in (4). 

 
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

m
r

r

p p us op

p us op
m
r

r

us op p

p us op
m m
r r

C
C

C C C C
C C C

C
C

C C C
C C C

C C

r

−
−

− − −
− −

= −
−

− −
− −

− −

 (4) 

 
Taking into consideration the transition intensity matrix (3), the system of differential equations 

that defines the Markov reward model for the air conditioning system for the calculation of the total 
expected reward, may be written as shown in (5).  
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The system is solved under initial conditions: ( )0 0,  1,2,...,9iV i= =  using MATLAB®,  

the language of technical computing. 

( )

( )

( )

1
14 14 1 14 1 5

2
24 24 2 24 4 6

3
31 32 31 1 32 2 31 32 3 7

4
41 41 1 43 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

m
r d d

r d d

us op p d d

us op p

dV t C V t V t V t
dt

dV t C V t V t V t
dt

dV t C C C V t V t V t V t
dt

dV t C C C V t V t
dt

μ μ λ μ λ

μ μ λ μ λ

λ λ λ λ λ λ λ λ

λ λ λ

= − − + + +

= − − + + +

= − − + + + − + + +

= − − + + − ( )

( )

( )

( )

41 43 4 8

5
58 1 58 5 58 8

6
68 2 68 6 68 8

7
79 3 75 5 76 6 75 76 79 7 79 9

8

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

d d

m
r N N

m
r N N

us op p N N

V t V t

dV t C V t V t V t
dt

dV t C V t V t V t
dt

dV t C C C V t V t V t V t V t
dt

dV t C
dt

λ λ λ λ

μ λ μ λ μ

μ λ μ λ μ

λ λ λ λ λ λ λ λ λ

+ + +

= − + − + +

= − + − + +

= − − + + + − + + + +

= ( )

( )

85 4 85 5 87 7 85 87 8

9
97 3 97 7 97 9

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

us op p N N

m
r N N

C C V t V t V t V t

dV t C V t V t V t
dt

λ λ λ λ λ λ λ

μ λ μ μ λ

− − + + + − + +

= − + + − +  

  (5) 

 
4. Calculation Results 

 
By using the suggested method one will find the best maintenance contract level m that provides 

a maximum of Reliability Associated Cost during system lifetime. Figure 2 shows the expected 
Reliability Associated Cost for T = 1 years as a function of the Maintenance Contract Level (m). The eighth 
level (m = 8), which provides the maximum expected reliability associated cost ($140780) for the system, 
corresponds to a mean repair time of 0.61 days. Choosing a more expensive Maintenance Contract 
Level, we pay an additional payment to the repair team. Choosing a less expensive one, we pay more 
for penalties because of transitions to unacceptable states.  
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Figure 2. The expected Reliability Associated Cost vs. Maintenance Contract Level 

 
Conclusions 

 
The case study for the estimation of expected reliability associated cost accumulated during 

system lifetime is considered for an aging system under minimal repair. The approach is based on 
application of a special Markov reward model, well formalized and suitable for practical application in 
reliability engineering. The optimal corrective maintenance contract (m = 8), which provides maximum 
expected reliability associated cost ($140780), was found. 
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PROPERTIES  OF  GUARANTEED  REACHABLE  SETS  FOR 
LINEAR  DYNAMIC  SYSTEMS  UNDER  UNCERTAINTIES  

WITH  INTERMEDIATE  CORRECTION  POINTS 
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Surganova 11, Minsk, 220072, Belarus 

E-mail: kostyukova@im.bas-net.by, kurdina@im.bas-net.by  
 

In the paper we consider the problem of investigation and constructive description of the reachable sets for linear dynamic 
systems under unknown but bounded uncertainties over feasible controls that are allowed to be corrected in a given set of correction 
moments. It is showed that construction of the reachable sets under considered class of feasible uncertainties can be reduced to 
solving a multilevel min-max optimisation problem with respect to finite dimensional decision variables.  

It is proved that adding one new correction moment leads to an extension of the set of system states that can be guaranteed 
reached at a terminal moment from a given initial position over a feasible control strategy. Numerical example illustrates theoretical 
results. Some rules for construction external and internal approximations for the reachable sets are discussed.  

Keywords: reachability set, control system, bounded uncertainties 
 
1. Introduction 

 
One of the central problems in mathematical optimal control theory is the problem of constructive 

description and determination of the reachability set for a given controlled system, i.e. the set of all system 
states that can be reached at a final moment from a given initial state with some feasible control function. 
There exists a wide range of literature devoted to investigation and construction of the reachability sets 
[1–5]. Such investigations are important both form theoretical and practical points of view since they 
allow us to evaluate potentialities of different dynamic system. For systems with uncertainties, the reachability 
sets give an opportunity to evaluate system states spread under these uncertainties.  

The problem of computation of the reachability set can be interpreted as a special problem of theory of 
differential games. In such problem statement, both control and uncertainty are considered as actions of the first 
and the second players respectively but for all that the second player has no certain objects. However, if 
one follows a guaranteed approach then the aim of the second is to do damage to the first player [2, 4]. 

In many practical problems, the exact determination of the reachability set is very difficult task.  
Therefore, in many applications, the exact reachability set is replaced by internal or external 

approximation which has more simple structure, for example by some polyhedron or ellipsoid. At present 
there is a number of methods for constructing approximation of reachable sets of dynamic controlled 
systems. In particular, much attention is paid to ellipsoidal approximations [2–5]. 

In this paper, we investigate properties of the reachable sets for dynamic controlled systems with 
uncertainties. It is supposed that control function can be corrected in some given moments on the base  
of available information about current system state. It is well-known [6–8] that these allowed control 
corrections lead to extended reachable set compared to approaches that do not use control corrections. 
The price that must be paid for this benefit is that the computational demands for solving corresponding 
multilevel min-max optimisation problems may be very high. In the paper we show that arising min-max 
optimisation problem with respect to functional decision variables may be reduce to a multilevel min-max 
with respect to finite dimensional decision variables. This allows us to give constructive description of  
the reachable set and investigate its properties. Theoretical results are illustrated by a numerical example. 
 
2. Problem Statement. Definitions 
 

Consider a dynamic system that behaviour is described by the following system of ordinary 
differential equations  

0( ) ( ) ( ) ( ) [0 ] (0)z t Az t bu t gw t t T t z z∗= + + , ∈ = , , = ,  (1) 

where ( ) nz t R∈  is a system state, ( ) ( ( ) )u u t t T U⋅ = , ∈ ∈ ,  is a scalar control function, 

( ) ( ( ) )w w t t T W⋅ = , ∈ ∈  is unknown disturbance, matrix n nA R ×∈ ,  and vectors  nb g R, ∈ , and moments 
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0t t∗,  are considered to be given. The set of feasible controls U  and the set of feasible disturbances 
W  are defined as follows:  

( )( ) { ( ) ( ) 1 1 ( ) 1 1}s s sU U T u u s N u U s N= = ⋅ = ⋅ , = ,..., + : ⋅ ∈ , = ,..., + ,  

( )( ) { ( ) ( ) 1 1 ( ) 1 1}s s sW W T w w s N u W s N= = ⋅ = ⋅ , = ,..., + : ⋅ ∈ , = ,..., + ,  

2
2{ ( ) ( ( ) ) ( ) ( ) }

s

s s s s s
T

U u u t t T L T u t dt r= ⋅ = , ∈ ∈ : ≤ ,∫  

2
2{ ( ) ( ( ) ) ( ) ( ) }

s

s s s s s
T

W u w t t T L T w t dt v= ⋅ = , ∈ ∈ : ≤ ,∫  

where 1[ ]s s sT t t−= , ,  numbers 0s sr v>, > , 1 1s N= ,..., + ,  are given, st , 0 1s N= ,..., + ,  are given 
instances of time from the control interval T : 

0 1 10 N Nt t t t t+ ∗= < < ... < < = .  (2) 

Denote by ( ( ) ( ))z t x u w tτ τ| , , ⋅ , ⋅ , ≥ , the trajectory of the system  
( ) ( ) ( ) ( ) ( )z t Az t bu t gw t t z xτ τ= + + , ≥ , = ,  

generated by an initial state ( )z xτ = ,  by a control ( )u ⋅  and by a disturbance ( )w ⋅ . 
Pair ( )z τ∗ ∗,  of n -vector z∗  and a moment Tτ∗ ∈ is called a position of system (1). We say that 

system is in a position ( )z τ∗ ∗,  if at the moment τ∗  system state is z∗ . 
Let us consider some subset of time instances from a given set (2) 

0
ii mt i iτ ∗= , = ,..., ,  0 1 2 10 1 .i im m m m N m

∗ ∗ +
= < < < .... < < + =  (3) 

For 0 1,i i∗= , ..., ,  denote 

{ }11 2i i i iI m m m += + , + ,..., ,  

( ) ( )
1( ) ( ( ) [ ]) ( ( ) ) ( )i i

i i s i s s iU u u t t u s I u U s Iτ τ⎧ ⎫
⎨ ⎬+⎩ ⎭

= ⋅ = , ∈ , = ⋅ , ∈ : ⋅ ∈ , ∈ ,  

( ) ( )
1( ) ( ( ) [ ]) ( ( ) ) ( )i i

i i s i s s iW w w t t w s I w W s Iτ τ⎧ ⎫
⎨ ⎬+⎩ ⎭

= ⋅ = , ∈ , = ⋅ , ∈ : ⋅ ∈ , ∈ .  

Given 0 0,T n nQ Q Q Rμ ×
∗ ∗ ∗ ∗> , = > ∈ , denote 2( ) { }.n

QB x Q z R z x
∗

∗ ∗ ∗| , = ∈ : − ≤μ μ   

Definition 1. A system state nx R∈  is said to be ( )Qμ∗ ∗,  – guaranteed reachable (at the terminal 

moment t t∗= ) from a position ( )i iz τ
∗ ∗
, , 0n

i iz R tτ
∗ ∗ ∗∈ , ≤ < ,  if there exists a control ( ) ( )( )i iu U∗ ∗⋅ ∈ ,  

such that ( )( ( )) ( )i
i iZ z u B x Qμ∗

∗ ∗ ∗ ∗, ⋅ ⊂ | , .  

Here and in what follows ( ) ( ) ( ) ( ) ( )
1( ( )) { ( ( ) ( )) ( ) }i i i i i

i i i i iZ z u z z z u w w Wτ τ+, ⋅ = = | , , ⋅ , ⋅ : ⋅ ∈ .  
Definition 2. A system state nx R∈  is said to be ( )Qμ∗ ∗,  – guaranteed reachable (at the terminal 

moment t t∗= ) form a position 1 1 1( ) n
i i iz z Rτ
∗ ∗ ∗− − −, , ∈ ,  10 i iτ τ

∗ ∗−≤ < ,  subject to one correction moment 

iτ ∗
, if there exists a control ( 1) ( 1)( )i iu U∗ ∗− −⋅ ∈ ,  such that the state x is ( )Qμ∗ ∗,  – guaranteed reachable 

from all positions ( )iz τ
∗

, ,  ( 1)
1 1( ( ))i

i iz Z z u ∗

∗ ∗

−
− −∈ , ⋅ .  

Definition 3. For 0 2i i∗≤ < −  , a system state nx R∈ is said to be ( )Qμ∗ ∗,  – guaranteed reachable 

form a position ( )i iz τ, ,  n
iz R∈ ,  0 iτ≤ ,  subject to ( )i i∗ −  correction moments 1 2i i iτ τ τ

∗+ +, ,..., , 

if there exists a control ( ) ( )( )i iu U⋅ ∈ ,  such that the state x is ( )Qμ∗ ∗,  – guaranteed reachable subject to 

( 1)i i∗ − −  correction moments 2i iτ τ
∗+ ,...,  from all positions ( )iz τ, ,  ( )( ( ))i

i iz Z z u∈ , ⋅ .  



 
 

Applied Statistics 

 41

Denote by ( )i iX z τ
∗ ∗∗ |  the set of all system states that are ( )Qμ∗ ∗,  – guaranteed reachable (without 

correction) from position ( )i iz τ
∗ ∗
, . For 1 0i i∗= − ,..., , denote by 1( )i i i iX z τ τ τ

∗∗ +| , ,...,  the set of all 

system states that are ( )Qμ∗ ∗,  – guaranteed reachable from position ( )i iz τ, subject to the intermediate 
correction moments 1i iτ τ

∗+ ,..., .  

It is evident that ( )i i ix X z τ τ
∗∗∈ | ,...,  if and only if there exists a control ( ) ( )( )i iu U⋅ ∈  such that 

1( )i ix X z τ τ
∗∗ +∈ | ,...,  for all  ( )( ( ))i

i iz Z z u∈ , ⋅ ,  i.e. 
( ) ( ) ( )( ) { ( ) such that ( ( ))}.n i i i

i i i i iX z x R u U z Z z uτ τ
∗∗ | , ..., = ∈ : ∃ ⋅ ∈ ∀ ∈ , ⋅  

The aims of the paper are the following  
А. to give constructive description of the set  

0 0( )iX z τ τ
∗∗ | ,..., ,  (4) 

i.e. to describe the set of all system state that are ( )Qμ∗ ∗, − guaranteed reachable at the terminal moment 
*t  from a given initial position 0 0( 0)z τ, =  with intermediate correction moments 1 i∗

,...,τ τ , 
B. to investigate the dependence of the set (4) on a set of correction time instances (3).  
 

3. Different Presentations of the Reachable Set with a Fixed Set of Correction Moments 
 
In this section, we suppose that the set of correction moments (3) is fixed. Let us describe different 

presentations of the reachable sets ( )i i iX z τ τ
∗∗ | ,..., , 0i i∗= ,..., .  

One can easily check that the following proposition holds true.  
Proposition 1. The sets ( )i i iX z τ τ

∗∗ | ,..., , 0i i∗= ,..., , admit the following presentations 

( ) { ( ) }n
i i i iiX z x R x zτ τ μγ

∗∗ ∗| ,..., = ∈ : | ≤ ,  

where functions ( )i ix zγ | 0i i∗= ,..., , are defined by the recursive relations  

( ) ( ) ( ) ( )

( ) ( )
11( ) ( )

( ) min max ( ( ( ) ( ))) 0 1 1,
i i i i

i i
ii i iiu U w W

x z x z u w i iz + ∗+
⋅ ∈ ⋅ ∈

| = | , ⋅ , ⋅ , = , ,..., −γ γ  (5) 

with the initial condition  

( ) ( ) ( ) ( )

2( ) ( )
1

( ) ( )
( ) min max ( ( ) ( )) .

i i i i

i i
i i i i Qu U w W

x z z z u w x∗ ∗

∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗
+

⋅ ∈ ⋅ ∈
| = , ⋅ , ⋅ −γ  (6) 

Here ( ) ( )
1 1 1( ( ) ( )) ( ) ( )( ( ) ( )) 0 1 ,

i s

i i
i i i i i i s s

s I T

z z u w F z F t bu t gw t dt i iτ τ τ+ + + ∗
∈

, ⋅ , ⋅ = , + , + , = , ,...,∑ ∫  ( )F t τ,  

is the fundament solution matrix for the system x Ax= .

 Remark 1. The relations (5), (6) imply that  

( ) ( ) ( 1) ( 1)( ) ( ) ( 1) ( 1)( ) ( )( ) ( )
( ) min max min max

i i i ii i i iii u U u Uw W w W
x zγ

+ + + +⋅ ∈ ⋅ ∈⋅ ∈ ⋅ ∈
| = ...  

( ) ( ) ( ) ( )

1
2

( ) ( ) 1
min max || ( ) ( )( ( ) ( )) ||

i i i i
i s

N

i i s s Q
u U w W s m T

F t z F t t bu t gw t dt xτ
∗∗ ∗ ∗ ∗

+

∗ ∗
⋅ ∈ ⋅ ∈ = +

... , + , + − .∑ ∫  

Note that, in this min-max optimisation problem, decision variables are functions 
( ) ( )( ) ( )s su w s i i∗⋅ , ⋅ , = ,..., .  

Here and in what follows the set of indices 1s q q m= , + ,..., ,  is considered to be empty if m q< .   
Denote  

( )( ) ,( ) ( )
s

T n n
s

T

G dt RF t t b F t t b ×
∗ ∗= ∈, ,∫  ( )( )( ) ( )

s

T n n
s

T

Q dt RF t t g F t t g ×
∗ ∗= ∈ ,, ,∫  

{ }n T
s s sR G rψ ψ ψΨ = ∈ : ≤ ,  { } 1 1n T

s s sR Q v s Nφ φ φΦ = ∈ : ≤ , = ,..., + .  
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Theorem 1. Functions (5), (6) can be presented in the form 

( ) ( ( ) ) 0 1i i i ii x z x F t z i iγ τγ ∗ ∗| = | , = , ,..., ,  (7) 

where functions ( ), 0i x d i iγ ∗| = ,..., , are determined by the following recursive relations  

1( ) min max ( ( )) 0 1 1,
s s i s s i

i

i i s s s ss I s I s I
x d x d G Q i i+ ∗∈Ψ , ∈ ∈Φ , ∈ ∈

| = | + + , = , ,... −∑
ψ φ

γ γ ψ φ  (8) 

with the initial condition 
2( ) min max || ( ) ||

s s i s s i
i

i s s s s Qs I s I s I
x d d G Q x

ψ φ
γ ψ φ

∗ ∗
∗ ∗

∗
∈Ψ , ∈ ∈Φ , ∈ ∈

| = + + − .∑  (9) 

Remark 2. The relations (8), (9) imply that 

( ( ) )i i ix F t zγ τ∗| ,
1 1

1
2

1
min max min max min max || ( ) ( ) ||
s i s i s is i s i s i

i

N

i i s s s s Qs I s I s Is I s I s I s m
F t z G Q x

ψ ψ ψφ φ φ
τ ψ φ

∗
+ + ∗ ∗

+

∗, ∈ , ∈ , ∈, ∈ , ∈ , ∈ = +

= ... , + + −∑  

subject to 1 1T T
s s s s s s s s iG r Q v s m Nψ ψ φ φ≤ , ≤ , = + ,..., + .  

Remark 3. Note that the functions ( ), 0i x d i iγ ∗| = ,..., ,  are simpler than the functions 
( ), 0ii x z i iγ ∗| = ,..., ,  since for construction of the functions ( ),i x dγ |  one needs to solve min-max 

(finite dimensional) optimisation problems with respect to the set of n-vectors s s ks Iψ φ, , ∈ ,  k i i∗= ,..., ,  
while for constructing the functions ( ),ii x zγ |  one has to solve min-max (infinite dimensional) 
optimisation problems with respect to the set of functions ( ) ( )s s ku w s I⋅ , ⋅ , ∈ , .k i i∗= ,...,  

Proof of Theorem 1. For 0 1i i∗= , ,..., , let us consider the sets  

( ) { ( ) ( ) ( ) }
i s

n
s s s i

s I T

Z i z R z F t t gw t dt w W s I∗ ∗
∈

= ∈ : = , , ⋅ ∈ , ∈ ,∑ ∫  (10) 

*( ) { }
i

n T
s s s s s s i

s I
Z i z R z Q Q v s Iφ φ φ

∈

= ∈ : = , ≤ , ∈∑ , (11) 

and show that  

*( ) ( ) 0 1Z i Z i i i∗ ∗= , = , ,..., .  (12) 

It is evident that the sets ( )Z i∗  and *( )Z i  can be written in the equivalent form:  

( ) { }
i

n
s s s i

s I
Z i z R z z z Z s I∗

∈

= ∈ : = Δ , Δ ∈Δ , ∈ ,∑  

* ( ) { }
i

n
s s s i

s I
Z i z R z z Z s Iz

∈

= ∈ : = Δ , Δ ∈Δ , ∈ ,∑  

where { ( ) ( ) ( ) } 1 1
s

n
s s s s

T

Z z R z F t t gw t dt w W s N∗Δ = Δ ∈ :Δ = , , ⋅ ∈ , = ,..., +∫ ,  

{ } 1 1n T
s s s s s s sZ z R z Q Q v s Nφ φ φΔ = Δ ∈ : Δ = , ≤ , = ,..., + .  

It follows from Lemma 1 [9, page 134] that the equalities s sZ ZΔ = Δ , 1 1s N= ,... + , take place. 
Evidently, these equalities imply (12).  

Similarly one can show that the equalities take place  

**( ) ( ) 0 1Z i Z i i i∗∗ ∗= , = , ,..., ,  (13) 

with  

( ) { ( ) ( ) ( ) }
i s

n
s s s i

s I T

Z i z R z F t t bu t dt u U s I∗∗ ∗
∈

= ∈ : = , , ⋅ ∈ , ∈ ,∑ ∫  (14) 
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**( ) { }
i

n T
s s s s s s i

s I
Z i z R z G G r s Iψ ψ ψ

∈

= ∈ : = , ≤ , ∈ .∑  (15) 

Let us prove the equality (7) for i i∗= , i.e. let us show that  

( ) ( ) ( ) ( )

2

( ) ( )
min max || ( ) ( )( ( ) ( )) ||

i i i i
i s

i i s s Q
u U w W s I T

F t z F t t bu t gw t dt xτ
∗ ∗ ∗∗ ∗ ∗ ∗

∗

∗ ∗
⋅ ∈ ⋅ ∈ ∈

, + , + − =∑ ∫  

2min max || ( ) ( ) ||
s s i s s i

i

i i s s s s Qs I s I s I
F t z G Q x

ψ φ
τ ψ φ

∗ ∗ ∗
∗ ∗

∗

∗∈Ψ , ∈ ∈Φ , ∈ ∈

= , + + − .∑  (16) 

It is clear that  

( ) ( ) ( ) ( )

2

( ) ( )
min max || ( ) ( )( ( ) ( )) ||

i i i i
i s

i i s s Q
u U w W s I T

F t z F t t bu t gw t dt xτ
∗∗ ∗ ∗ ∗

∗

∗ ∗
⋅ ∈ ⋅ ∈ ∈

, + , + − =∑ ∫  

2

( ) ( )
min max || ( ) ||i i Qz Z i y Z i

F t z z y xτ
∗ ∗ ∗

∗ ∗ ∗∗ ∗
∗∈ ∈

= , + + − ,  (17) 

2min max || ( ) ( ) ||
s s i s s i

i

i i s s s s Qs I s I s I
F t z G Q x

ψ φ
τ ψ φ

∗ ∗ ∗
∗ ∗

∗

∗∈Ψ , ∈ ∈Φ , ∈ ∈

, + + − =∑  

* **

2

( ) ( )
min max || ( ) || .i i Qz Z i y Z i

F t z z y xτ
∗ ∗ ∗

∗ ∗
∗∈ ∈

= , + + −  (18) 

Then (16) follows from (12), (13), (17), (18). 
Suppose that equalities (7) are proved for 1s i i∗= + ,...,  with 1i i∗≤ − .  Let us prove (7)  

for s i= . On account of (5) and (8), for this purpose, one needs to show that 

( ) ( ) ( ) ( )

( ) ( )
1 1

( ) ( )
min max ( ( ( ) ( )))

i i i i

i i
i i i

u U w W
x z z u wγ + +

⋅ ∈ ⋅ ∈
| , ⋅ , ⋅ =

1min max ( ( ) ( ))
s s i s s i

i

i i i s s s ss I s I s I
x F t z G Q

ψ φ
γ τ ψ φ+ ∗∈Ψ , ∈ ∈Φ , ∈ ∈

= | , + + ,∑  (19) 

with 
( ) ( )

1 1 1( ( ) ( )) ( ) ( )( ( ) ( ))
i s

i i
i i i i i i s s

s I T

z z u w F z F t bu t gw t dtτ τ τ+ + +
∈

, ⋅ , ⋅ = , + , + ,∑ ∫  (20) 

It follows from (10), (14), (20) that  

( ) ( ) ( ) ( )

( ) ( )
1 1

( ) ( )
min max ( ( ( ) ( )))

i i i i

i i
i i i

u U w W
x z z u wγ + +

⋅ ∈ ⋅ ∈
| , ⋅ , ⋅ =

1
1 1 1( ) ( )

min max ( ( ) ( )( ))i i i i iz Z i y Z i
x F z F t z yγ τ τ τ

∗ ∗∗

−
+ + ∗ +∈ ∈

= | , + , + .  

and it follows from (11), (15) that  

1min max ( ( ) ( ))
s s i s s i

i

i i i s s s ss I s I s I
x F t z G Q

ψ φ
γ τ ψ φ+ ∗∈Ψ , ∈ ∈Φ , ∈ ∈

| , + + =∑
* **

1( ) ( )
min max ( ( ) )i i iz Z i y Z i

x F t z z yγ τ+ ∗∈ ∈
| , + + .  

These equalities and equalities (12), (13), and assumption that 1 1 1 11( ) ( ( ) )i i i ii x z x F t zγ τγ + + ∗ + ++ | = | ,    
imply relations (19), and, consequently, relations (7) for s i= . The theorem is proved.  

Corollary 1. The sets ( )i i iX z τ τ
∗∗ | ,..., , 0i i∗= ,..., ,  can be presented in the form  

( ) { ( ( ) ) }n
i i i i i iX z x R x F t zτ τ γ τ μ

∗∗ ∗ ∗| ,..., = ∈ : | , ≤ ,  (21) 

where functions ( ), 0i x d i iγ ∗| = ,..., ,  are defined according to relations (8), (9).  

It follows from presentation (21) that, for given 1i i i iz τ τ τ
∗+, , ,..., , the reachable set 

( )i i iX z τ τ
∗∗ | ,...,  is the level set for the function ( ( ) )i i ix F t zγ τ∗| , , nx R∈ .  
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Theorem 2. For 0i i∗= ,..., , function  ( )i x dγ | , n nx R d R∈ , ∈ , is convex with respect to (w.r.t.) 
the set of variables ( )x d, on X D×   where X D,  are some convex bounded subsets of nR .  

In proving the theorem, we will use the follow propositions. 
Proposition 2. (see page 48 in [10]) Consider the function  

( ) sup ( )
y Y

f x x y x Xφ
∈

= , , ∈ ,  

where  nX R⊂  is a convex set, the function  ( )x yφ , is convex w.r.t. x  on X  for any fixed y Y∈ ,  
the function  ( )f x is finite on X . Then the function ( )f x  is convex w.r.t. to  x  on X . 

Proposition 3. (see Lemma 4.4 in [10]) Consider the function 

( ) inf ( )
y Y

f x x y x Xφ
∈

= , , ∈ ,  

where nX R⊂  and  Y are convex sets, the function ( )x yφ ,  is convex w.r.t. the set of variables ( )x y,  
on X Y× , the function ( )f x  is finite on X . Then ( )f x  is convex w.r.t. x  on X . 

Proposition 4. Let X Y Z D, , ,  be any convex bounded subsets of nR and  

{ }:nD z R z y z d y Y z Z d D= ∈ = + + , ∈ , ∈ , ∈ . 

Suppose that the function ( )f x d| is convex w.r.t the set of variables  ( , )x d  on X D× .  Then 

the function ( ) ( )f x y z d f x y z d| , , = | + +  is convex w.r.t. the set of variables ( )x y z d, , ,  
on X Y Z D× × × .  

Proof of Theorem 2. It follows for the constructions presented above that the functions ( )i x dγ | ,  
0i i∗= ,..., ,  can be written in the form 

* **

* **

2

( ) ( )

1( ) ( )

( ) min max || ||

( ) min max ( ) 1 2 0

i Qz Z i y Z i

i iz Z i y Z i

x d d z y x

x d x d y z i i i

γ

γ γ

∗ ∗
∗ ∗∈ ∈

+ ∗ ∗∈ ∈

| = + + − ,

| = | + + , = − , − ,..., ,
 

where the sets * **( ) ( )Z i Z i, ,  0i i∗= ,..., ,  are defined in (11),(15) and are convex.  

We will prove the theorem on the base of induction approach. 
Owing to Proposition 2, the function 

**

2

( )
( ) max || ||i Qy Z i

f x z d d z y x
∗ ∗

∗∈
, , = + + − is convex w.r.t.  

the set of variables ( )x z d, ,  on X Z D× ×  where X Z D, , are convex subsets of nR . Consequently, in 
view of Proposition 3, the function 

* ( )
( ) min ( )i iz Z i
x d f x z dγ

∗ ∗
∗∈

| = , ,  is convex w.r.t. the set of variables 

( )x d,  on X D× ,  where X D,  are convex subsets of nR . 
Suppose that for some , 0 1i i i∗< ≤ − ,  the function 1( )i x dγ + |  is convex w.r.t. the set of variables 

( )x d,  on X D× , where X D,  are convex subsets of nR . Then according to Proposition 4 function 

1 1( ) ( )i ix y z d x y z dγ γ+ +, , , = | + + is convex w.r.t. the sets of variables ( , )x y z d, ,  on X Y Z D× × ×  

where X Y Z D, , ,  are convex subsets of nR . Hence due to Proposition 2 the function  

**
1( )

( ) max ( )i iy Z i
f x z d x y z dγ +∈

, , = , , ,  

is convex w.r.t. the variables ( )x z d, ,  on X Z D× × . Taking into account this fact and Proposition 3, we 
conclude that the function  

*

( ) min ( )i iz Z
x d f x z dγ

∈
| = , ,  

is convex w.r.t. the set of variables ( )x d,  on X D× . The theorem is proved.  

Corollary 2. For 0i i∗= ,..., ,  the set ( ) n
i i iX z Rτ τ

∗∗ | ,..., ⊂  is convex (or empty).  
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4. Dependence of the Reachability Set on a Set of Correction Moments 
 

Let us consider two sets of correction time instances 

1 2 1k k iτ τ τ τ τ
∗+, ,..., , ,...,  and 1 2 1k k iτ τ τ τ τ τ

∗∗ +, ,..., , , ,..., ,  

where mtτ
∗∗ = ,  1k km m m∗ +< < ,  {0 1 }k N∈ , ,..., .  It follows from Theorem 1 that the sets 

0 0 1( 0 )k k iX z τ τ τ τ
∗∗ +| = ,..., , ,...,  and 0 0 1( 0 )k k iX z τ τ τ τ τ

∗∗ ∗ +| = ,..., , , ,..., can be presented in the forms  

0 1 0 0 1 1( 0 ) { : ( ) }n
i k k iX z x R x zτ τ γ τ τ τ τ τ μ
∗ ∗∗ + ∗| , ,..., = ∈ | , , ,..., , ,..., ≤ ,  

0 1 1 0 0 1 1( 0 ) { ( ) }n
k k i k k iX z x R x zτ τ τ τ τ γ τ τ τ τ τ τ μ

∗ ∗∗ ∗ + ∗ + ∗| , ,..., , , ,..., = ∈ : | , , ,..., , , ,..., ≤ .  

Here  

0 0 1 1( )k k ix zγ τ τ τ τ τ
∗+| , , ,..., , ,..., =  

0 0

1
2

0
1

min max min max min max || ( 0) ( ) ||
s s k s is s k s i

N

s s s s Qs I s I s Is I s I s I s
F t z G Q x

ψ ψ ψφ φ φ
ψ φ

∗
∗ ∗

+

∗, ∈ , ∈ , ∈, ∈ , ∈ , ∈ =

= ... ... , + + −∑  (22) 

subject to 1 1T T
s s s s s s s sG r Q v s Nψ ψ φ φ≤ , ≤ , = ,..., + .  

The function 0 0 1 1( )k k ix zγ τ τ τ τ τ τ
∗∗ +| , , ,..., , , ,...,  is obtained from the function 

0 0 1 1( )k k ix zγ τ τ τ τ τ
∗+| , , ,..., , ,..., , if in (22) operations min max

s k s ks I s Iψ φ, ∈ , ∈
 are replaced by 

1 21 2
min max min max
s k s ks k s ks I s Is I s Iψ ψφ φ, ∈ , ∈, ∈ , ∈

,  with  1 2 1 2
1{ 1 } { 1 }k k k k k k kI m m I m m I I I∗ ∗ += + ,..., , = + ,..., , = ∪ .   

Taking into account the well-known max-min inequality 

min max min max ( ) min min max max ( )
ın

f f
ψ ψφ φψ ψφ φ

ψ ψ φ φ ψ ψ φ φ
∗ ∗ ∗ ∗∗ ∗ ∗ ∗

∗ ∗ ∗ ∗∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗∈Ψ ∈Ψ∈Φ ∈Φ∈Ψ Ψ∈Φ ∈Φ
, , , ≤ , , , ,  (23) 

we conclude that the following inclusion takes place 

0 1 1 0 1 1( 0 ) ( 0 )k k i k k iX z X zτ τ τ τ τ τ τ τ τ
∗ ∗∗ + ∗ ∗ +| , ,..., , ,..., ⊂ | , ,..., , , ,..., .  

Hence we have proved the following theorem that characterizes the dependence of the reachable 
set on a set of correction moments.  

Theorem 3. Addition of a new moment to a set of correction moments leads to the extension of 
the set of system states that are ( )Q∗ ∗,μ  – guaranteed reachable at the terminal moment t t∗=  form  
a fixed initial position 0( 0)z , .   

In the next section we illustrate the theoretical result on a numerical example.  

5. Numerical Experiment  
 

Consider system (1). Suppose that 1N i∗= = and the sets of moments 0 1st s N, = ,..., +  and 
0s s iτ ∗, = ,..., , are the following  

0 1 2 0 0 1 10 1 2t t t t tτ τ= , = , = , = , = .  (24) 

The aim of this example is to show that the reachable set 0 0 1( )X z τ τ∗ | ,  (with one correction 
moment 1τ ) is wider than the reachable set 0 0( )X z τ∗ |  (without correction moments). For the comparison 
of these sets, we construct the corresponding approximations. The 0 0( )X z τ∗ |  is approximated by  

a set * 0 0( )X z |τ  such that * 0 0 0 0( ) ( )X z X zτ τ∗| ⊃ |  and the set 0 0 1( )X z τ τ∗ | ,  is approximated  
by the set * 0 0 1( )X z | ,τ τ  such that * 0 0 1 0 0 1( ) ( )X z X zτ τ τ τ∗| , ⊂ | , . After that we will show that 

* 0 0 1 * 0 0( ) ( )X z X zτ τ τ| , ⊃ |  and consequently  

0 0 1 * 0 0 1 * 0 0 0 0( ) ( ) ( ) ( )X z X z X z X zτ τ τ τ τ τ∗ ∗| , ⊃ | , ⊃ | ⊃ | .  

Rules for construction of the auxiliary sets * 0 0( )X z τ|  and * 0 0 1( )X z τ τ| ,  are presented below.  



 
 

Applied Statistics 

 46

5.1. Construction of the Set * 0 0( )X z τ|  
 

For data (24), the set * 0 0( )X z τ|  can be written in the form  

{
1 2

2
0 0 0 1 1 2 2( ) min min max ( 0)n

QX z x R F t z G G x
ψ ψ φ

τ ψ ψ φ μ
∗

∗
∗ ∗ ∗

∈Φ
| = ∈ : || , + + + − || ≤ ,  

subject to 1 2},T
s s s sG r sψ ψ ≤ , = ,  

where { }1 1 2 2 1 2n T
s s s sy R y Q y Q y y Q y v s∗Φ = ∈ : = + , ≤ , = , . Consider the set  

1 2

2
* 0 0 0 1 1 2 2( ) min min max ( 0)

M

n
Q

y
X z x R F t z G G y x

ψ ψ
τ ψ ψ μ

∗
∗

∗ ∗
∈Φ

⎧| = ∈ : || , + + + − || ≤ ,⎨
⎩

 

subject to 1 2},T
s s s sG r s≤ , = ,ψ ψ  

where M
∗Φ  is a polyhedron which is external approximation for the set *Φ . Since M

∗ ∗Φ ⊂ Φ , we have 

* 0 0 0 0( ) ( )X z X zτ τ∗| ⊃ | .  

To construct the set * 0 0( )X z τ|  one needs to calculate the maximum of convex function over the 

polyhedron M
∗Φ . It is well-known that the maximum is reached at a vertex of the polyhedron M

∗Φ . Let 

jy j J, ∈ , be the vertices of the polyhedron M
∗Φ . Then the set * 0 0( )X z τ|  can be written in the equivalent 

form: * 0 0( ) { ( ) }nX z x R xτ ξ μ∗| = ∈ : ≤  where ( )xξ  is the optimal value of the following problem 

1 2

( ) min ,x
ξ ψ ψ

ξ ξ
, ,

=  

2
0 1 1 2 2|| ( 0) j QF t z G G y x j Jψ ψ ξ

∗∗, + + + − || ≤ , ∈ ,  1 2T
s s s sG r sψ ψ ≤ , = , . (25) 

The problem (25) is a convex programming problem and its solution can be found by standard methods. 
 
5.2. Construction of the Set * 0 0 1( , )X z τ τ|  
 

For data (24), the set * 0 0 1( , )X z τ τ|  can be presented in the form 

1 2
1 21 2

2
0 0 1 0 1 1 2 2 1 2( ) { min max min max ( 0) ,n

QX z x R F t z G G x
ψ ψφ φ

τ τ ψ ψ μφ φ
∗

∗ ∗
∗ ∗ ∗

∈Φ ∈Φ
| , = ∈ : || , + + + + − || ≤  

subject to , 1 2}T
s s s sG r sψ ψ ≤ = , , 

where 1 2s n T
s s s s sR Q Q v sφ φ φ φ φ⎧ ⎫

⎨ ⎬∗ ⎩ ⎭
Φ = ∈ : = , ≤ , = , . Consider the set 

1 2
1 21 2

2
0 0 1 0 1 1 2 2 1 2( ) { min max min max ( 0) ,

M M

n
Q

a a
z x R F t z G G a a xX

ψ ψ
τ τ ψ ψ μ

∗
∗ ∗

∗ ∗ ∗
∈Φ ∈Φ

| , = ∈ : || , + + + + − || ≤  

subject to , 1 2}T
s s s sG r sψ ψ ≤ = , , 

where sM
∗Φ , is a polyhedron that is an external approximation for the set s

∗Φ  , 1 2s = , . Denote by 

1 1
iy i J, ∈ , and 2 2

jy j J, ∈ 2 2
jy j J, ∈ , the vertices of the polyhedrons 1M

∗Φ  and 2M
∗Φ  respectively. 

Since sM s
∗ ∗Φ ⊃ Φ , 1 2s = , ,  then the inclusion * 0 0 1 0 0 1( ) ( )X z X zτ τ τ τ∗| , ⊂ | ,  takes place. 

Reasoning by analogy with subsection 5.1, we get the following presentation of the set 

* 0 0 1( , )X z τ τ| : * 0 0 1( ) { ( ) }nX z x R xτ τ ξ μ∗| , = ∈ : ≤  where ( )xξ  is the optimal value of the problem  

1 2 1

( ) min
j j J

x
ξ ψ ψ

ξ ξ
, , , ∈

=  

2
0 1 1 2 2 1 2 1 2( 0) j i

j QF t z G G y y x j J i Jψ ψ ξ
∗∗|| , + + + + − || ≤ , ∈ , ∈ ,  (26) 

1 1 1 1,TG rψ ψ ≤  2 2 2 2 1
T

j jG r j Jψ ψ ≤ , ∈ .  

The problem (26) is a convex programming problem. Its solution can be found by standard methods.  
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5.3. Example 

Consider system (1) with the following initial data: 
0 1

2,
0 0

n A ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
, [0 1], [1 2 3 10]b g= , = / , / , 

0 1 20, 1 2t t t= = , = , 1 1m = , 1 2r = ,  2 2r = , 1 23 4v v= , = , 0 [1 1]z = − , , 10 025, diag (1,1)Q∗ ∗= . =μ .  

The set *Φ  and its internal approximation M
∗Φ are shown in Figure 1.  

It is easy to check that the boundary ∗∂Φ  of the set ∗Φ  is described as follows  

( )1 1 2 2{ ( ) ( ) ( ) ( ) ( )z t R z t t Q t Q c tα α∗∂Φ = ∈ : = + , ( )( ) [0 2 ]}cos( ) sin( ) Tc t tt t= , ∈ ,, π  

with ( ) / ( ) ( ), 1, 2.T
s s st v c t Q c t sα = =  

Figures 2 and 3 show the sets 1 2,∗ ∗Φ Φ  and their external approximations 1 2,M M
∗ ∗Φ Φ  respectively. 

 

 
Figure 1 

To construct external approximations, polyhedrons 1M
∗Φ  and 2M

∗Φ , we choose some points 

( ), 1,..., ,s
iz t i p=  on the boundaries  

( ){ ( ) ( ) ( ) ( ) ( ) [0 2 ]}, 1 2,cos( ) sin( ) TsM
s sz t R z t t Q c t c t t st tα π∗∂Φ = ∈ : = , = , ∈ , = ,,   

of the sets 1
∗Φ  and 2

∗Φ  respectively. For 1,2s = and 1,...,i p= , at a point ( )s
iz t  we draw the straight 

line that is normal to the corresponding vectors ( ).s
ic t Crossing points of these lines form the vertices of 

the polyhedrons , 1,2.sM s∗Φ =   

  
Figure 2 

 
Figure 3 

 

Figure 4 shows the sets * 0 0( )X z τ|  (more dark colour) and * 0 0 1( , )X z τ τ| .  
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Figure 4 

Since * 0 0 * 0 0 1( ) ( )X z X zτ τ τ| ⊂ | , , then 0 0 0 0 1( ) ( )X z X zτ τ τ∗ ∗| ⊂ | , . 
This example shows that adding one correction moment may lead to a substantial extension of  

the set of ( )Qμ∗ ∗,  – guaranteed reachable states of the system. 
 
Conclusions 

 
In the paper, we give a description of the reachable set for linear controlled system with uncertainties 

under assumption that control function may be corrected in some intermediate time instances. 
To realize this description one needs to solve min-max optimisation problems with respect to a set 

of unknown functions. It is proved that these complicated optimisation problems can be reduced to 
simpler optimisation problems with respect to a set of unknown n-vectors. This allows us to give more 
constructive description of the reachable set. 

It is proved that adding one new correction moment leads to an extension of the set of system 
states that are ( )Qμ∗ ∗,  – guaranteed reachable at the terminal moment *t  from a given initial position 

0( 0)z , . Numerical example shows that this extension may be substantial. Some rules for construction 
external and internal approximations for the reachable sets are discussed. 
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In this paper we developed a new method to establish common weights for measuring the efficiency score of Decision-Making 

Units (DMUs), based on multiple inputs and multiple outputs. In the new method, these common weights are estimated according  
to the difference between a weighted sum of outputs and a weighted sum of inputs of the DMUs. We suggest two approaches  
to rank the DMUs: the first method ranks the DMUs according to the absolute “net profit” (the difference between a weighted sum 
of outputs and a weighted sum of inputs), while the second method ranks the DMUs according to the relative efficiency score of the ratio 
between the a weighted sum of outputs and a weighted sum of inputs. In addition we present a method to fix objective bounds for 
the weights of the variables in the Data Envelopment Analysis (DEA), which is based on the above ranking method. We proved that 
these bounds are feasible solutions for the DEA methodology. The ranking methods are illustrated on a case study of 24 hospitals  
in Israel. 

Keywords: Data Envelopment Analysis (DEA), common weights,  hospitals 
 
1. Introduction  

 
The purpose of the paper is to rank units (as cites, hospitals, schools, banks, etc.) according to 

multiple inputs and multiple outputs in the Data Envelopment Analysis (DEA) context.  
The Data Envelopment Analysis (DEA) was first introduced by Charnes, Cooper and Rhodes 

(CCR) in 1978. The DEA is a non-parametric method to evaluate the relative efficiency of Decision-
Making Units (DMU) based on multiple inputs and multiple outputs. The efficiency score is measured as 
a ratio between a weighted sum of outputs and a weighted sum of inputs, even if the production function 
is unknown. The weights are chosen so as to find the best advantage for each unit to maximize its relative 
efficiency, under the restriction that this score is bound by 100% efficiency. If a unit with its optimal 
weights receives the score efficiency of 100%, it is efficient, and for a score smaller than 100%  
it is inefficient. These optimal weights differ from unit to unit. There are DEA researchers that emphasize 
the difficulty to rank all the units on one scale, claiming that DEA provides only a dichotomy classification 
into two groups: efficient and inefficient. If the number of units is small relative to the number of inputs 
and outputs, most of the units will be efficient. 

Sometimes there is a need to fix common weights to the inputs and outputs for all the units, in 
contrast to the DEA. The idea of Common Set of Weights (CSW) was first published by Cook, Roll and 
Kazakov (1989), and later tested and reformulated by Roll, Cook and Golany (1991). There are several 
aims for the use of these common weights; the first one boils down to the fact that for the normalized 
data, the common weights indicate the importance of each factor (input/output) to determine the efficiency  
of the units. One can utilize these common weights to disregard factors (inputs/outputs) with very small 
importance. The idea of the importance of the factors has been discussed by Sengupta (1990), Arnold  
et al. (1996). Especially in the cases when weights are negative, one can examine if this factor was chosen 
in the right set, namely if it is output (input) instead of input (output). The second aim of common weights  
is to help us to define the bounds for the weights of inputs/outputs for the DEA method. The common 
weights may be the mid point of the range of the bounds of each weight. The third aim is to rank all  
the units with the common weights on one scale and not as in DEA where weights vary from unit to unit. 
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There are several methods in the literature for establishing the common weights while each 
method implements another objective function for this purpose. We shell present a few methods: 

1) The Canonical Correlation Analysis (CCA) method, {Friedman and Sinuany-Stern (1997)}.  
In this method, the objective function for finding the common weights for the inputs and outputs is to 
maximize the correlation between a weighted sum of outputs and a weighted sum of inputs. 

2) The Discriminant Analysis of Ratio (DR/DEA) method, {Sinuany-Stern and Friedman (1998)}. 
In this method, the discrimination into two groups: efficient and inefficient sets from the DEA, is first 
carried out. The objective function in this method is to maximize the discrimination between the means  
of these two groups. 

3) The Global Efficiency (GE) method, {Ganley and Cubbin (1992)}; this method focuses on  
the measurement of aggregate technical efficiency by using common weights for all units. The objective 
function is to maximize the sum of the efficiency scores of all the units, where each efficiency score is  
the ratio between a weighted sum of outputs and a weighted sum of inputs. This is done by obtaining  
the optimal solution by one programming. It can be well-recognized that the latter comes in contrast 
to the DEA which advocates the solution of the linear programming n times, generating a separate set of 
optimal weight for each unit. The disadvantage of the GE method boils down to the fact that its objective 
function is nonlinear; therefore the solution is not obviously optimal. Some more methods for determining 
common weights are given in the literature review of Adler et al. (2002). 

The purpose of our paper is to develop a new ranking method designated as SDEA that is based  
on multiple inputs and multiple outputs, with common weights for all units. Our method focuses on  
the difference between a weighted sum of outputs and a weighted sum of inputs, namely the “net profit”. 
The objective function of this method is to maximize the sum of the “net profits” of all the units. The idea 
of maximizing the difference between the weighted outputs to the weighted inputs, for each unit, with weights 
that vary from unit to unit has been suggested in the past as the Additive model {see Charnes et al. 
(1985)}, and some of its ideas were further developed by Ali and Lerme (1997). 

In addition we present a method to fix objective bounds for the weights of the variables in the DEA, 
which is based on the above ranking method. We proved that these bounds are feasible solutions for  
the DEA methodology. The ranking methods are illustrated on a case study of 24 hospitals in Israel, in order 
to single out the most efficient one. We choose 2 inputs: the number of standardized beds in the end of 2003, 
the number of standardized beds in day care (ambulatory), as well as 3 outputs: the number of total discharges 
in 2003, the number of hospitalisation days during 2003  and the same in ambulatory care. 

Our paper is presented as follows: Section 2 introduces the SDEA method; a numerical example is 
outlined in Section 3. Section 4 contains the summary and conclusions. 

 
2. Essentials of SDEA 
 

Our new ranking method finds the common set of weights of the inputs/outputs where the objective 
function is to maximize the sum of all the “net profits” of the DMUs under two types of constraints.  
The first one is that for each DMU, its net profit can’t be positive as the DEA methodology and  
the Global Efficiency (GE) method (see Appendix). The second one is that the common weights are bonded 
from below by some value ε  suggested by Sueyoshi (1999). 

Consider n Decision-Making Units (DMUs), when each DMU ( )j j=1,...,n  utilizes m inputs 

( )X X ,X ,..........,X 0
T

j 1j 2j mj= >  for producing s outputs ( )Y Y ,Y ,..........,Y 0
T

j 1j 2j js= > . In this case, 

U Y
s

r rj
r 1
∑
=

 represents the weighted sum of outputs of DMU j,  V X
m

i ij
i 1
∑
=

stands for the weighted sum of 

inputs of DMUj. The net profit of  DMUj may be therefore calculated as  S U Y V X
s m

j r rj i ij
r 1 i 1

= −∑ ∑
= =

. 

The objective function is: Z max U Y V X max S
n s m n

r rj i ij j
j 1 r 1 i 1 j 1

⎛ ⎞
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑
= = = =

. The constraints 

are: the net profit is less or equal to zero, namely S U Y V X 0
s m

j r rj i ij
r 1 i 1

= − ≤∑ ∑
= =

. 
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We obtain thus the linear problem  

Z max U Y V X max S

s.t.

S U Y V X 0   j=1,2,..,n                 (1)

U >0    r=1,2,..,s

V >0     i=1,2,..,m 

n s m n
r rj i ij j

j 1 r 1 i 1 j 1

s m
j r rj i ij

r 1 i 1

r r

i i

⎛ ⎞
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

= − ≤

≥ ε

≥ ε

∑ ∑ ∑ ∑
= = = =

∑ ∑
= =
+

−

 

 
Our method differs from GE in two characteristics: first, our method can be solved by means  

of linear programming so that the optimal solution may be obtained, and second, our method bases on  
the difference between the weighted sum of outputs and weighted sum of inputs and not on the ratio 
between the weighted sum of outputs and the weighted sum of inputs. 
 
The Dual Problem  
 

Let us define a dual variable jλ that is fitted to the constraint of each unit j and the dual variables 

L  and  L-r i
+ that are fitted to the constraints of each output/input, respectively. The dual problem will be 

defined as follows: 

V min L L

s.t.

Y L Y      r=1,2,..,s           (2)

X L X      i=1,2,..,m

0       j=1,2,..,n

L 0       r=1,2,..,s

L 0       i=1,2,..,m

s m
r r i i

r 1 i 1

n n
j rj r rj

j 1 j 1
n n

j ij i ij
j 1 j 1
j

r

i

⎧ ⎫⎪ ⎪= ε + ε⎨ ⎬
⎪ ⎪⎩ ⎭

λ + ≥

− λ + ≥ −

λ ≥

≤

≤

+ + − −∑ ∑
= =

+∑ ∑
= =

−∑ ∑
= =

+

−

 

 
Lemma 1 

If   S U Y V X 0  j=1,2,..,n
s m* * *j r rj i ij

r 1 i 1
= − = ∀∑ ∑
= =

  then   1 1
n

n *j
j 1

λ =∑
=

. 

Proof:  If  S U Y V X 0  j=1,2,..,n
s m* * *j r rj i ij

r 1 i 1
= − = ∀∑ ∑
= =

  then  Z 0* = . 

According to the strong duality property [23] there exist Z V 0* *= =  therefore 

Min L L 0
s m

r r i i
r 1 i 1

⎧ ⎫⎪ ⎪ε + ε =⎨ ⎬
⎪ ⎪⎩ ⎭

+ + − −∑ ∑
= =

 and because >0    r=1,2,..,s   >0     i=1,2,..,m r iε ε+ −  and  

(1) 

(2) 
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L 0       r=1,2,..,s  L 0       i=1,2,..,mr i≤ ≤+ −  then L 0 r=1,2,..,s  L 0 i=1,2,..,mr i= ∀ = ∀+ − . In addition  
all the variables of the primal problem exist in the basis, therefore according to  

the complementary slackness theory Y Y      r=1,2,..,s
n n*j rj rj

j 1 j 1
λ =∑ ∑

= =
. This constraint can be written as: 

( 1)Y 0    r=1,2,..,s
n *j rj

j 1
λ − =∑

=
 the same for the constraints on the inputs. The solution of these 

constraints gives the following solution 1  j 1, 2,.., n*jλ = ∀ = , therefore  1 1
n

n *j
j 1

λ =∑
=

. 

Ranking according to SDEA 
 

We suggest two methods to rank the DMUs, the first method ranking the DMUs according to the absolute 
“net profit” (the difference between a weighted sum of outputs and a weighted sum of inputs), and  
the second method ranking the DMUs according to the relative efficiency score of the ratio between  
the weighted sum of outputs and the weighted sum of inputs. 

Let us define the “net profit”  *
jS  of  DMU j  as:  S U Y V X

s m* * *j r r i ij j
r 1 i 1

= −∑ ∑
= =

, 

where: 

U  and V* *r i  are the optimal common weights from the SDEA method, and they are the same for the two 
ranking approaches;  
if  Sj=0  the DMU j  is efficient; 
if  Sj<0  the DMU j  is inefficient. 
 
The first method to rank the DMUs 

 
The ranking is based on the “net profit” of each unit. The score is determined as  

S U Y V X
s m* * *j r r i ij j

r 1 i 1
= −∑ ∑
= =

. The DMU that received the highest S*j  is ranked in the first place. 

In this method the ranking is dependent on the size of the DMU's. 
 
The second method to rank the DMUs 

 
In this case, the DMUs are ranked according to the relative efficiency score of the ratio between 

the weighted sum of outputs and a weighted sum of inputs. The ranking score is determined by: 

V X U Y V X U Y
S

T 1

V X V X V X

m m m m* * * *i ik r rk i ik r rk*k i 1 i 1 i 1 i 1k m m m* * *i ik i ik i ik
i 1 i 1 i 1

+ −

= + = =

∑ ∑ ∑ ∑
= = = =

∑ ∑ ∑
= = =

 . 

Bounded weights in SDEA 
 
In order to prevent the trivial solution where all weights are zero in the SDEA method 

U 0 r=1,2,..,S  and V 0 i=1, 2,..,mr i= ∀ = ∀  and therefore S 0  j=1,2,..,nj = ∀ , it is necessary to set  

a lower bound to the weights. 
This issue has been extensively dealt with in scientific literature. 
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The first research on bounds on the weights by a “Non Archimedean Quantity” (NAQ) was carried out 
by Charnes et al. (1979, 1984). Thompson et al. (1990) established the so-called assurance region (AR)  
in order to outline a region for the possible values of the weights. The information on the assurance region 
originates from experts' opinions, common sense, or previous experience.   

Sueyoshi (1999) suggested restricting the weights only by a lower bound which will be a function 
of the number of inputs and outputs. In the literature there are many papers on methods for determining 
the bounds on the weights: Cooper et al. (1999), Thompson et al. (1995), Roll et al. (1991), Dyson et al. 
(1988). The main purpose of the constraints on the weights is to reduce the number of efficient units and 
also to avoid the problems of extreme values of the weights.  

In our research, we adopt the Sueyoshi approach. It can be well-recognized that the primary and 
dual problems in the SDEA method will appear therefore as: 

 
Primary problem Dual problem 

{ }

{ }

Z max U Y V X max S

s.t.

S U Y V X 0   j=1,2,..,n                 (3)

1U    r=1,2,..,s
(m S)max Y

1V      i=1,2,..,m 
(m S)max X

n s m n
r rj i ij j

j 1 r 1 i 1 j 1

s m
j r rj i ij

r 1 i 1

r
rj

j

i
ij

j

⎛ ⎞
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

= − ≤

≥
+

≥
+

∑ ∑ ∑ ∑
= = = =

∑ ∑
= =

 

{ } { }
1 1V min L L

(m S)max Y (m S)max X

s.t.

Y L Y      r=1,2,..,s           (4)

X L X      i=1,2,..,m

0       j=1,2,..,n

L 0       r=1,2,..,

s m
r i

rj ijr 1 i 1
j j

n n
j rj r rj

j 1 j 1
n n

j ij i ij
j 1 j 1
j

r

⎧ ⎫
⎪ ⎪
⎪ ⎪= +⎨ ⎬

+ +⎪ ⎪
⎪ ⎪⎩ ⎭

λ + ≥

− λ + ≥−

λ ≥

≤

+ −∑ ∑
= =

+∑ ∑
= =

−∑ ∑
= =

+ s

L 0       i=1,2,..,mi ≤−

 

 
 
Lower bound on weights in SDEA 

The constraint that normalizes the weighted sum of inputs V X 1
m k iki
i 1

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠
∑
=

 in the classical DEA 

approach may result in difficulties to attain a feasible solution, or, in certain cases, in creating non-realistic 
solutions. We suggest a new method for implementing bounds on the weights in the DEA. 

The procedure that is capable of preventing the above mentioned difficulties may be presented in 
the following steps: 

Step 1. Solve the optimization problem of SDEA of Eq. (1) and find out from it the common 
weights of all the inputs and outputs, .,..,2,1r     Um1,2,..,i siV ==   

Step 2. Calculate the maximal value over all the n units, of the weighted inputs from the SDEA 

model in Step 1, namely .
1

max
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
∑
=

= ijX
m

i
iV

j
UL  

Step 3. Calculate the ratio of the common weights r  Uand  iV to the maximal value UL calculated 

in Step 2, that is s1,2,..,r  
UL

rU
 and  m1,2,..,i   ==

UL
iV

. These are the fitted bounds for the weights that 

will solve all the problems and will give a suitable solution. 
 

Lemma 2 
 

The efficiency score based on common weights (SDEA method) is always less than the efficiency 
score in the DEA. 

(4) 
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Proof: The DEA score is the maximal score that a unit can receive. If we restrict the problem to find only 
common weights, these weights produce a score smaller than the one with the varying weights, as defined 
in DEA methodology. 

Lemma 3 

Let us denote ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

=
m

i
ijXCWiV

j
UL

1
)(max   then  m1,2,..,i   

)(
)( ==−≥ UL

V
V

CWi
iDEAi ε   and 

s1,2,..,r  
)(

)( ==≥ +
UL

U
U

CWr
rDEAr ε ,  are a feasible solution for unit  j  by the DEA model. 

Proof:  

n1,2,..,j    1
m

1i
)(

s

1r
)(

n1,2,..,j   0
m

1i
)(

s

1r
)(  )1( =∀≤

∑
=

∑
==⇒=∀≤∑

=
−∑

=
=

ijXCWiV

rjYCWrU

jEijXCWiVrjYCWrUjS

  1    (6)

   1    (5)

1   1
UL

 )4(: (3) and (1) 

n1,2,..,j     1 
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 max  UL(2)

1
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1i
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1i
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⎪
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∑
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∑
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∑
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Therefore the solutions that were defined by the above bounds 

s1,2,..,r     
)(

)( =≥
UL

U
U

CWr
DEAr ,  represent a feasible solution for the DEA model.   

3. The Case Study on Israeli Hospitals  
 

Hospitals account for about 40% of Israel’s national health expenditure in 2003. This is the largest 
category of spending on health; community clinics, including those providing preventive medicine, 
account for about 38% of this expenditure [Central Bureau of Statistics (CBS) 2003]. 
 
3.1. Output and Input Measures  
 

The main problem that appears in hospitals research concerning the DEA is that there are many 
types of inputs and outputs. The choice of the inputs/outputs influences the results of the efficiency of  
the hospitals. Therefore a literature review on DEA efficiency of hospitals was done in our research.  
A total of 42 publications on the regarded issue was studied, out of which we shall outline the most important 
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and relevant to the discussed subject: O'Neill (1988), reported on the efficiency of 27 hospitals in USA. 
Al-Shammari (1999) reported on the efficiency of 15 government hospitals in Jordan. Hofmarcher  
et al. (2002) reported on the efficiency of 15 hospitals in Austria. Kirigia et al. (2002) reported on the 
efficiency of 54 government hospitals in Kenya, Gruca and Nath (2000) reported on the efficiency of  
168 hospitals in Canada. Grosskof et al. (2001) reported on the efficiency of 236 teaching hospitals and  
556 non-teaching hospitals. Hao and Pegels (1994) reported on the efficiency of 93 medical centres.  

The data reported in the references summarize the main inputs and outputs measures used in 
different DEA hospital studies. Evidently the most used input is no. of beds (52% of studies). Cost is used 
in 48% of the studies, supplies in 44% and employees in 41% of the studies. 

Due to the lack of data on these additional inputs we did not include them in our study. However 
they all are reported in the literature as related to the number of beds, since the budget is largely derived 
by number of beds. 

From the database available to us from the Health Ministry we used 2 inputs and 3 outputs. The inputs 
are: the number of standardized beds in the end of 2003 ( )1X , the number of standard beds in day care 
(ambulatory) ( )2X . The outputs are: the number of total discharges in 2003 ( )1Y , the number of hospitalisation 
days during 2003 ( )2Y and the same in ambulatory care ( )3Y . 

Day care (ambulatory) has been a venue for increasing the efficiency of hospitals in Israel. Thus, 
we included it in our input and output variables. Overall the input/output variables we have used are those 
common in the literature.  

The list of hospitals in Israel includes 45 hospitals. We deleted hospitals that did not have internal 
care and outpatient clinics (day care) units. Consequently, 24 hospitals were left for our study. The data is 
presented in Table 1, which includes information on the 24   hospitals with 3 outputs and 2 inputs. 

 
Table 1. The numerical data  
 

INPUT OUTPUT 
No. DMU 

X1 X2 Y1 Y2 Y3 

1 Asaf Harofe – Zrifin 675 72 53,017 220,017 16,535 
2 Asuta – Tel Aviv 148 12 24,127 35,748 905 
3 Bikur Holim – Jerusalem 193 8 16,116 62,865 465 

4 Bney Zion – Haifa 366 16 32,411 124,478 1,483 

5 Barzilai – Ashkelon 448 40 33,577 145,554 9,433 

6 E.M.M.S – Nazaret 108 4 11,056 37,252 1,398 

7 Emek – Afula 415 38 33,492 131,009 5,753 

8 Hadassa (Ein Karem) – Jerusalem 618 70 49,631 226,015 23,849 

9 Hadassa (Har Hatzofim) – Jerusalem 215 23 24,239 85,459 7,265 

10 Hagalil Hamaaravi – Naharia 499 17 54,379 225,010 2,765 

11 Hilel Yafe – Hadera 394 14 32,234 129,435 1,393 

12 Kaplan – Rehovot 535 75 51,688 189,197 9,403 

13 Lady  Davis – Haifa 403 23 32,030 153,140 6,435 

14 Laniado – Natania 207 32 24,631 96,605 5,069 

15 Meir – Kfar Saba 639 55 56,016 213,304 7,416 

16 Rabin (Belinson) – Petah Tikva 949 71 71,766 304,311 28,735 
17 Rabin (Golda) – Petah Tikva 321 15 32,358 110,128 1,193 
18 Rambam – Haifa 858 40 68,113 287,528 48,391 
19 Rivka Ziv – Tzfat 315 10 22,136 91,151 3,763 
20 Shearay Tsedek  – Jerusalem 378 26 31,661 155,705 2,726 
21 Shiba – Tel Hashomer, Ramat Gan 984 100 72,187 323,055 18,932 
22 Soraski – Tel Aviv, Jaffa 984 76 82,527 354,925 21,532 
23 Soroka – Beer Sheva 911 46 75,698 306,468 24,056 
24 Wollfson – Holon 618 30 58,338 230,186 9,647 
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Table 2. The scores and the ranking of the DMUs  
 

METHOD  1 METHOD  2 
DMU 

SCORE RANK SCORE RANK 

Asaf Harofe – Zrifin -0.1759   22 0.6983   20 
Asuta – Tel Aviv 0.0000   2 1.0000   2 

Bikur Holim – Jerusalem -0.0390   7 0.7247   17 

Bney Zion – Haifa -0.0627   10 0.7680   13 

Barzilai – Ashkelon -0.1142   17 0.6925   22 

E.M.M.S – Nazaret -0.0069   4 0.9123   5 

Emek – Afula -0.1128   16 0.6740   23 

Hadassa (Ein Karem) – Jerusalem -0.1145   18 0.7887   11 

Hadassa (Har Hatzofim) – Jerusalem -0.0098   5 0.9475   4 

Hagalil Hamaaravi – Naharia 0.0000   2 1.0000   2 

Hilel Yafe – Hadera -0.0751   14 0.7360   16 

Kaplan – Rehovot -0.1436   19 0.7117   19 

Lady  Davis – Haifa -0.0650   11 0.7890   10 

Laniado – Natania -0.0236   6 0.8814   6 

Meir – Kfar Saba -0.1482   20 0.7181   18 

Rabin (Belinson) – Petah Tikva -0.1781   23 0.7655   14 

Rabin (Golda) – Petah Tikva -0.0412   8 0.8275   9 

Rambam – Haifa 0.0000   2 1.0000   2 

Rivka Ziv – Tzfat -0.0683   12 0.6963   21 

Shearay Tsedek – Jerusalem -0.0701   13 0.7649   15 

Shiba – Tel Hashomer, Ramat Gan -0.2868   24 0.6587   24 

Soraski – Tel Aviv, Jaffa -0.1684   21 0.7875   12 

Soroka – Beer Sheva -0.1059   15 0.8453   8 

Wollfson – Holon -0.0563   9 0.8782   7 

 
Table 3.  Common weights values 
 

 FOR  NORMAL  VALUES FOR  REGULAR  VALUES 

U1 0.327141 0.00065074 

U2 0.207787 0.002 

U3 0.2 3.964E-06 

V1 0.640326 5.8544E-07 

V2 0.2 4.133E-06 
 

It turns out that { }max V X 0.8403i ij
j

=  and the bounds in the DEA method may be estimated therefore 

as listed in Table 4: 

Table 4. Bounds in the DEA method  
 

 FOR NORMAL VALUES FOR REGULAR VALUES 

U1 0.00065074 0.000774387 

U2 0.002 0.002380028 

U3 3.964E-06 4.71727E-06 

V1 5.8544E-07 6.9668E-07 

V2 4.133E-06 4.91833E-06 
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Summary and Conclusions 
 
The following main conclusions can be drawn from the study: 
In this paper we developed a new method to establish common weights for measuring the efficiency 

score of DMUs, based on multiple inputs and multiple outputs. In the new method, these common weights 
are estimated according to the difference between a weighted sum of outputs and a weighted sum of inputs 
of the DMUs. We suggest two approaches to rank the DMUs: the first method ranks the DMUs according 
to the absolute “net profit” (the difference between a weighted sum of outputs and a weighted sum of inputs), 
while the second method ranks the DMUs according to the relative efficiency score of the ratio between 
the a weighted sum of outputs and a weighted sum of inputs. If the DMUs have similar size of inputs and 
outputs, the ranking is similar. If not, the ranking is different. Which method is better? There is no ultimate 
answer, it depends on the context. 

We have proved that weights obtained by the suggested procedure when divided by the weighted 
sum of inputs, can effectively serve as a lower bound for the DEA method. We have implemented this 
procedure for quality ranking of 24 hospitals in Israel. It appears that 3 hospitals (Asuta – Tel Aviv, Hagalil 
Hamaaravi – Naharia and Rambam – Haifa) out of the total amount proved to be efficient (their score was 
equal to 1), while the rest occupied positions 4–24. The ranking of the efficient hospitals proves to be  
the same for both suggested DEA approaches, while the inefficient ones tended to display significant 
differences for both types of ranking. One may appreciate the importance of the weights for normalized 
values of the scores as well. 

Should we sub-divide the total amount of hospitals into 3 groups according to their accommodating 
capacity (small ones – up to 420 beds, intermediate – from 420 to 700 beds, and the big ones – more than 
700 beds), it can be well-recognized that small hospitals mostly tend to obtain higher scores by the first 
type of ranking, while the big ones, on the contrary, are ranked higher by the second DEA approach  
(e.g., the Bikur Holim – Jerusalem hospital, which is a small one, was ranked the 7th by the first procedure 
and the17th by the second one, while the Rabin-Petach Tikva hospital, which is a big one – the 23rd and 
the14th, respectively, and the same for Soraski – Tel-Aviv hospital – the 21st and the 12th).  
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Appendix 
 
The Global Efficiency Method (GE) 
 

The global efficiency (GE) focuses on the measurement of aggregate technical efficiency by using 
the same set of weights (common weights) for the efficiency score for all the units. This is in contrast to 
the DEA efficiency score, which advocates the solution of the linear programming n times, generating  
a separate set of optimal weight for each unit. The GE involves an optimal solution by one programming 
for the common set of weights, which maximizes the sum of efficiency scores of all the units. Each efficiency 
score of the GE with the common weights has the same structure as the DEA efficiency score with  
the weights that vary from unit to unit; i.e. it is the ratio of total weighted output to total weighted input, 
bounded by 1. The formulation of the GE is as follows: 

s1,2,...,r  m1,2,..,i    0,iV

            n         1,2,..,j    1

1

1*

                                            ..    

n

1j
*
jE max

==≥

=≤

∑
=

∑
==

∑
=

=

rU

m

i
ijXiV

s

r
rjYrU

jE

ts

Z

 

The objective function helps the efficiency score with the common weights to reach the DEA scores kE  
globally, because by the definition of the DEA, the sum of the DEA scores is the maximum value that any 
score can reach. The advantage of the GE is its simplicity, the ease with which the average manager may 
interpret results, and its ranking capabilities according to the common weights that are in the DEA 
context. 
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Several simultaneously realized activity-on-arc network projects of PERT type with random activity durations are considered. 
The accomplishment of each project's activity is measured in percentage of the whole project. Any activity entering a project has to be 
operated by one of the identical comprehensive resource units (CRU) which may use several possible speeds subject to random disturbances.  
The speeds depend only on the intensity of the project's realization. They are indexed and the number of speeds is common to all CRU.  

It is assumed that the progress of any project can be evaluated only via periodical inspections at control points. At any moment 
0t >  activities that are operated at that moment and which enter one and the same project, have to use speeds with similar indices 

(ordinal numbers), speeds can be changed only at a control point. Within the projects' realization a CRU can be transferred from one 
project to another only at the so-called emergency moments common to all projects. The projects' due dates and their chance 
constraints, i.e., their minimal permissible probabilities of accomplishing the project at its due date, are pregiven. All CRU have to 
be delivered to the company store when the projects start to be realized, and are released at the moment when the last project is 
accomplished. The cost of hiring and maintaining a CRU per time unit, together with the average processing costs per time unit for 
each activity entering each project to be operated under each speed, the average cost of performing a single inspection at the routine 
control point (common to all projects) and the average cost of reallocating CRU among non-finished projects at each emergency 
moment, are pregiven.  

The newly developed cost-optimisation model is as follows: determine the optimal number of CRU to minimize the total value 
of all projects’ expenses subject to their chance constraints. 

 Two-level problem’s solution is suggested: 
• at the company level a combination of a search procedure to determine the number of CPU together with a resource 

reallocation model among the projects is considered, 
• at the project level a cost-optimisation on-line control model is applied for each project independently. This problem has 

recently been solved in our previous publications. 

Keywords: On-line cost-optimisation problem, Resource reallocation, Project’s activity with variable speeds, Non-consumable 
comprehensive resources 
 
1. Introduction 
 

Activity-on-arc network projects of PERT type with random activity durations are considered.  
The progress of each project cannot be inspected and measured continuously, but only at preset inspection 
points. An on-line control model has to determine both inspection points and control actions to be introduced 
at those points to alter the progress of the project in the desired direction. Those on-line control models 
are playing an increasing role in project management. Two different cases may be examined: 
A. The network model comprises activities, each of which, being supplied with resources of pregiven 

capacities, can be operated at one speed only (e.g. PERT-COST projects with budget 
resources). 

B. Each activity can be operated at several possible speeds that are subject to random disturbances and 
correspond to one and the same resource capacity. That is, these speeds depend only on the degree 
of intensity of the project's realization (e.g. construction projects where different speeds may 
correspond to different hours a day per worker). The number of possible speeds is common to all 
activities. All project activities, being realized between two adjacent control points, have to be 
operated with speeds of one and the same index. 
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In both cases cost-optimisation problems can be formulated with different objectives and 
restrictions. We will consider the second case, where projects under random disturbances with different 
possible speeds have to be controlled. However, the number of publications on developing on-line 
control models for stochastic network projects remains very scanty (see, e.g. [1–3]). 

The system under consideration comprises several simultaneously realized activity-on-arc network 
projects of PERT type with random activity durations. The accomplishment of each project's activity is 
measured in percentage of the whole project. All the activities are to be operated by one of the identical 
comprehensive resource units (CRU) which may use several possible speeds subject to random 
disturbances. The speeds depend only on the intensity of the project's realization. They are indexed and 
the number of speeds is common to all CRU. 

It is assumed that the progress of any project can be evaluated only via periodical inspection in 
control points. At any moment 0t >  activities that start to operate at that moment for one and the same 
project, have to use speeds with similar indices (ordinal numbers). Speeds can be changed only at a control 
point. Within the projects' realization a CRU can be transferred from one project to another only at a so-called 
emergency moment common to all projects. 

The projects' due dates and their chance constraints, i.e., their minimal permissible probabilities  
of accomplishing the project on time, are pregiven. All CRU have to be delivered to the company store  
at the projects starting time and are released when the last project is accomplished. The cost of hiring and 
maintaining a CRU, together with the average processing costs per time unit for operating each activity 
under each speed, the average cost of performing a single inspection at a control point (common to all 
projects) and the average cost of reallocating CRU among non-finished projects at each emergency 
moment, are pregiven. 

We have recently formulated and solved a cost-simulation problem for a single project as follows: 
given the fixed number of CRU, at each routine control point it  determine the next control point 1it +  and 
the new index of the speeds for all the activities to be operated at that point. The objective is to minimize 
the project's total expenses. This basic problem (we will henceforth call it Problem A1 [4]) will be used in order  
to develop a much more complicated realistic cost-optimisation model as follows: determine the optimal 
number of CRU to minimize the total value of all projects' expenses subject to their chance constraints. 

The problem's solution is as follows:  
• at the company level a combination of a search procedure to determine the number of CRU 

together with a resource reallocation model among the projects is considered, 
• at the project level a basic cost-optimisation on-line control Model A1 is applied for each 

project independently. 
Both resource reallocation model and Model A1 are implemented into a simulation model in order 

to obtain representative statistics to check the fitness of the problem’s solution. It is assumed that all non-
accomplished projects have to be realized at any moment 0t >  with a speed exceeding zero. Thus, at 
least one CRU unit has to be assigned to each project. At any moment each CRU can operate only one 
activity. 
 
2. Notation 
 

Let us introduce the following terms: 
 

( )A,NGe  - the e -th network project of PERT type, fe1 ≤≤ ; 

f  - number of network projects with variable speeds; 

tf  - number of network projects which at moment t  are not completed, 0t ≥ ; 

( ) ( )AN,Gji, ee ⊂  - activity ( )j,i  entering the e -th project; 

etG  - project ( )A,NGe  observed at moment 0t ≥ ; ( )AN,GG ee0 = ; 
( )k
ijev  - the k -th speed of activity ( )eji, , fe1 ≤≤ , mk1 ≤≤ ; 

m  - number of possible speeds common to all projects and all activities (pregiven); 

etn  - number of identical generalized resource units CRU assigned to project 
( )A,NGe  at emergency moment 0t ≥ ; e0e nn = ; 
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n  - total number of CRU to be hired and maintained throughout the planning 
horizon by the company (optimized variable, to be determined beforehand); 

ijeρ  - percentage of activity ( )eji,  in project ( )A,NGe  (pregiven), fe1 ≤≤ ; 

eD  - due date of project ( )A,NGe  (pregiven); 

ep  - chance constraint to meet the deadline eD  on time (pregiven); 

( )tV f
e  - actual project’s etG  output in percentages of the total project (observed at 

moment t , 0t ≥ ); 
( )tC f

e  - the actual accumulated processing and control costs of project etG   

calculated at moment t , 0t ≥ ; 
( )[ ]tVk,t,W f

ep  - the p -quantile of the moment project ( )A,NGe  will be accomplished on 

condition that the k -th speed for all activities will be introduced at control 
point t  and will be used throughout, and the actual observed output at that 
moment is ( )tV f

e ; 

get  - the g -th control point of the e -th project, eN,...,1,0g = , 0t0e = , 

eeN Dt
e
= ; 

∗
rt  - the system’s emergency moment, 0t0 =∗ , ∗= N,...,1,0r ; 

eN  - number of control points of the e -th project (a random value); 
∗N  - number of emergency moments (a random value); 

e1Δ  - the minimal value of the closeness of the inspection moment to the due date 

eD  (pregiven); 

e2Δ  - the minimal time span between two adjacent control points of the e -th 
project (pregiven); 

( )k
ijet  - random duration of activity ( )eji,  using speed ( )k

ijev  throughout; 
( )k
ijec  - the average processing cost per time unit for activity ( )eji,  to be operated 

with speed ( )k
ijev  (pregiven); 

insc  - the average cost of undertaking a routine project’s inspection (common to all 
projects, pregiven); 

∗c  - the average cost of the CRU reallocation among the projects at a routine 
moment ∗

rt ; 

eV  - the planned volume of project ( )A,NGe  (pregiven); 

etV  - the actual non-accomplished volume of project ( )A,NGe  at moment t  
(a random value); 

ijeS  - the actual moment activity ( )eji,  starts (a random value); 

ijeF  - the actual moment activity ( )eji,  is completed (a random value); 
( )k
ijeijeije tSF += ; 

cruc  - the average cost of hiring and maintaining a CRU unit per time unit (pregiven); 

eF  - the actual moment project ( )A,NGe  is completed (a random value); 

{ } ijeG)j,i(e FMaxF
ete∈

= ; 

ges  - the index of the speed to be introduced for all activities ( )eji,  starting in 

the interval ]t,t[ e1,gge + , ms1 ge ≤≤ . 
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It can be well-recognized that two kinds of control points are imbedded in the model: 

1. Regular control (inspection) points get  to introduce proper speeds in order to alter the project’s speed 

in the desired direction. 
2. Emergency control points ∗

rt  to reallocate all CRU at the company level among the non- accomplished 

network projects, beginning from 0t = .  Emergency moments ∗
rt  are as follows: 

0t = ; 
t  is the moment of one of the project’s completion; 
t  is the control moment for one of the projects when it is anticipated that with the previously 
assigned for that project CRU units the project cannot meet its deadline on time. 
 

3. The Problem’s Formulation 
 

The cost-optimisation on-line control problem for several stochastic network projects is as follows: 
determine the optimal value )opt(n  of CRU units (a deterministic value to be determined beforehand, i.e., 
before the projects start to be realized) together with values etn  assigned to all projects, all control points 

get , the speeds to be introduced at that points for all projects’ activities ( )ek
ijev , gee sk = , and the actual 

moments ijeS  activities ( )eji,  start (random values conditioned on decision-making of the control 

model), in order to minimize all operational, control, resource reallocation, hiring and maintenance 
expenses subject to the projects’ chance constraints 

( ){ }
( ) ( )( ) ( )

( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅+⋅⋅+⋅+⋅= ∗∗

= ∈ =
∑ ∑ ∑ cNFMaxcncNtcEMinJ eecru

f

1e Gji,

f

1e
inse

k
ije

k
ije

v,s,S,t,n,n
ete

ee

k
ijegeijegeet

 (1) 

subject to 

( ) fe1 N,g0,tS:ji,sk egijeegee ≤≤<≤=∀= , (2) 

{ } fe1,pDFPr eee ≤≤≥≤ , (3) 

0t0e = , fe1 ≤≤ , (4) 

eN Dt
e
= , fe1 ≤≤ , (5) 

1egee ΔtD ≥− ,  eNg0 ≤≤ , fe1 ≤≤ , (6) 

2egee 1,g Δtt ≥−+ ,  eNg0 ≤≤ , fe1 ≤≤ , (7) 

( )[ ]{ }ge
f

egepmq1gege tVq,,tW:qMinss
≤≤

∗ =≤ , (8) 

∑
=

=
tf

1e
et nn  for any emergency moment 0t ≥ , 1net ≥ . (9) 

Note that the on-line control model undertakes decision-making either at regular routine control 
point get  (determining ijeS , ( )k

ijev , gesk = ), or at emergency points ∗
rt   (determining etn , ∗= rtt ), on 

the basis of future expenses only, i.e., during the remaining time gee tD −  (for a single project),  
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or by taking into account values eD  and ep , fe1 ≤≤ . Past expenses and past decision-makings are 
not relevant for the on-line control model. Relation (3) honours the chance constraints. As to relation (8), 
it refers to the on-line cost-optimisation algorithm for a single project (see [4–5]). Eq. (8) means that  
the speed to be chosen at any routine control point get  must not exceed the minimal speed ∗

ges  that enables 

meeting deadline eD  on time, subject to be chance constraint ep . It can be well- recognized that operating 
an activity at a higher speed always results in higher costs to accomplish the activity than by using  
a lower speed. Thus, (8) prohibits using unnecessary high speeds. Relation (9) ensures reallocation of n  
CRU units at the company’s disposal among the non-accomplished projects at any emergency moment 

0t ≥ . Relations (4–7) are obvious while (2) ensures assignment of one and the same speed index ek  to 

all activities which start processing at a routine control point get . Note that an activity cannot start at  

the moment between two adjacent control points get  and e1,gt + . 

 
4. Subsidiary Models 
 

Consider several important subsidiary models which will be used henceforth. 
 
4.1. Subsidiary Model A1 
 

As outlined above, the basic subsidiary model A1 centres on controlling a single project, without 
taking into account any resource hiring and maintaining costs. The number of CRU is taken as a fixed 
and pregiven value. Model A1 is an on-line cost-optimisation model and is based on the so-called chance 
constraint principle [3]. 

The Given average processing costs per time unit for each activity to be operated under each 
speed, together with the average cost of performing a single inspection at the control point, the problem 
at a routine control point gt  is to introduce the proper speed )k(v  and the next control point 1gt + , in order to 

minimize the total processing costs within the planning horizon, subject to a chance constraint. At each 
control point, decision-making centers around the assumption that there is no more than one additional 
control point before the due date. Following that assumption, two speeds )k( 1v  and ( )2kv  have to be chosen at 
a routine control point gt : 

1. Speed ( )1kv  which has to be actually introduced at point gt  up to the control point 1gt + ; 

2. Speed ( )2kv  which is forecast to be introduced at control point 1gt +  up to the due date. 

Couple ( ( )1kv , ( )2kv ), which provides the minimal cost expenses, has to be accepted. 
The model is mostly effective when each activity can be measured as a partial accomplishment of 

the whole planned program. The problem is to determine both control points { }gt  and activity speeds 

{ })k(
ijv  to minimize the average project’s expenses 

( ){ }
( ) ( )( )

( ) ⎭
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subject to 
 

( ) Ng0,St:ji,sk ijgg <≤=∀= , (11) 
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0t0 = , (13) 

DtN = , (14) 

1g ΔtD ≥− ,  Ng0 <≤ , (15) 

2g1g Δtt ≥−+ ,  Ng0 <≤ , (16) 

( )[ ]{ }DtVq,,tW:qMinss g
f

gpmq1gg ≤=≤
≤≤

∗ . (17) 

 
4.2. Subsidiary Model A2 
 

The model differs from Model A1 by implementing the cost of hiring and maintaining CRU 
resources within the planning horizon. Thus, objective (10) is substituted by 
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 (18) 

 

s.t. (11–17), 
 

while the on-line heuristic algorithm remains unchanged. 
 
4.3. Subsidiary Model A3 
 

Determine the minimal number of CRU )opt(n  for a single project in order to meet the given 
chance constraint, i.e., 

nMin  (19) 

s.t. (11–17). 
 
The Solution 
 

Start ascending value n , beginning from 1. For each n  olve Problem A1 taking into account for 
each activity ( )j,i  its highest speed )m(

ijv , i.e., ijt  refers to one speed only. Value n , for which relation 

( )
pDFMaxPr ijj,i

<
⎭
⎬
⎫

⎩
⎨
⎧

≤ , (20) 

ceases to hold, is taken as the solution. Cost parameters are, thus, not taken into account. Denote the 
optimal number )opt(n  by ( )3An . 
 
4.4. Subsidiary Model A4 
 

Determine the minimal number of CRU units in order to minimize the objective (18) for the Model 
A2 subject to the chance constraint. Thus, two objectives are imbedded in the model 

nMin , (21) 
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s.t. (11–17). 
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The Solution 
 

Solve Problem A3 in order to determine value ( )3An . Afterwards proceed ascending value n , 

beginning from ( )3An , and for each value ( )3Ann ≥  solve Problem A2. Value ( )4An , which 
delivers the minimum to (22) is taken as the solution of Problem A4. 
 
5. The General Idea of the Problem’s Solution 
 

The problem (1–9) to be considered (see Sections 2 and 3) is a very complicated problem and 
allows only a heuristic solution. Denote the optimal solution of problem (1–9) by ( )An . A basic 
assertion can be formulated as follows: 

Assertion. Let ( )4Ane  be the solution of problem A4 for each project ( )A,NGe , fe1 ≤≤ , 
independently. Relation 

( ) ( ) max

f

1e
e n4AnAn =≤ ∑

=

 (23) 

holds. 

Proof. Any additional CRU unit which results in exceeding value ( )∑
=

f

1e
e 4An , has to be assigned to one 

of the projects ( )A,NGe . For that project, as it turns from Model A4, the unit becomes redundant. ■ 
 

Thus, the general idea of determining ( )An  is based on the following concepts: 
 

Concept 1 
 

At the company level the search for an optimal solution is based on examining all feasible 
solutions { }n , by decreasing n  by one, at each search step, beginning from maxn . 
 
Concept 2 
 

Examining a feasible solution centres on simulating the system. Multiple simulation runs have to 
be undertaken in order to obtain a representative statistics to check the fitness of the model. 
 
Concept 3 
 

A simulation model comprises two-levels. At the higher level – the company level – Sub-algorithm I 
reallocates n  CRU units among tf  non-completed projects at all emergency moments t , beginning 
from 0t = . At the lower level (the project level) Sub-algorithm II undertakes on-line control for each 
project independently between two adjacent emergency points ∗

rt  and ∗
+1rt , by the use of a single-project 

algorithm of problem A2. 
 
Concept 4 
 

Each value n  is examined via M  simulation runs to provide a representative statistics to 
calculate values { }ee DFPr ≤ , fe1 ≤≤ , and objective (22). 
 
Concept 5 
 

The search process proceeds by decreasing n  by one, i.e., substituting n  by 1n − , if 

all relations { } eee pDFPr ≥≤ , fe1 ≤≤ , hold; 

value (22) decreases monotonously. 
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Concept 6 
 

If even for one project ( )A,NGe  relation { } eee pDFPr ≥≤  ceases to hold, or value (22) 

ceases to decrease, the last successful feasible solution n  has to be taken as an optimal solution ( )An . 
 
6. The Enlarged Procedure of Resource Reallocation (Sub-Algorithm i) 
 

At each emergency point 0t ≥  (each emergency point is a control point for all projects as well) 
reassign n  CRU unit among tf  non-accomplished projects as follows: 
 
Step 1. At moment t  inspect values etV , fe1 ≤≤ . Note that for already accomplished projects 

their corresponding values 0Vet = . 
  

Step 2. By any means reassign n  CRU units among tf  projects subject to: 
  

  nn
e

et =∑  ; 

  
etn  must be whole numbers; 

  
etn  must be not less than 1; 

 

 relations  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅≥
∑

e
et

et
et V

V
nn ,  0Vet > ,  fe1 ≤≤ ,  hold,  where  [ ]x   

  denotes the maximum whole number being less than x . Thus, Step 2 obtains a non-
optimal, feasible solution. 

  
Step 3. Take value 1710Z = , i.e., an extremely large positive value. 
  
Step 4. For all non-accomplished projects etG  solve Problem A2, independently for each project, 

with due dates tDe − , chance constraints ep , resource units en  and non-accomplished 

volumes etV . Denote the actual probability of meeting the due date on time by ep . 

Values ep , fe1 ≤≤ ,  are obtained via  M  simulation runs. 
  
Step 5. Calculate values 

 

e

ee
e p

pp −
=γ  ,   fe1 ≤≤ . 

Calculate values 
 

ee
Max

1
γγ ξ = , 

Step 6. 

ee
Min

2
γγ ξ = . 

Step 7. Calculate  
21 ξξ γγΔ −= . 

 
Step 8. If  Z<Δ ,  go to the next step. 

Otherwise apply  Step 12. 
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Step 9. Set  Δ=Z . 
 

Step 10. Transfer one CRU unit from project t1
Gξ  to t2

Gξ , i.e., t1
nξ  is diminished by one, and t2

nξ  

is increased by one. 

Step 11 is similar to  Step 4, with the exception of solving  Problem A2  for projects t1
Gξ  and 

t2
Gξ  only.  Go to Step 5. 

Step 12. Values etn , fe1 ≤≤ , which refer to the last successful iteration, are taken as the optimal 
solution of  Sub-algorithm I. 

 
7. The Enlarged Two-Level  Heuristic Algorithm of  Simulating the System 
 

The enlarged step-by-step procedure of the problem’s algorithm is based on simulating the system. 
The input of the simulation model is as follows: 
 
value fn ≥  of CRU units (to be examined by simulation); 

pregiven values eD , ep , fe1 ≤≤ ; 

speeds' parameters  )k(
ijev , ( ) ( )A,NGj,i ee ⊂ , mk1 ≤≤ ; 

cost parameters )k(
ijec , insc , cruc , ∗c ; 

target parameters eV , fe1 ≤≤ . 

 
A simulation run comprises the following steps: 

 
Step 1. Set  1r = ,  0tr =

∗ . 
 

Step 2. Reallocate at  ∗= rtt   n  CRU units among projects  ( )A,NGe , fe1 ≤≤ ,  according 
to Sub-algorithm I. 
 

Step 3. Reassign values etn  obtained at Step 2, to projects ( )A,NGe . 
 
Each project ( )A,NGe  is realized independently according to the Problem A2 

(see Section 4). In the course of realizing each project any routine control point get  

is examined as follows: 

 is moment get  the moment project ( )A,NGe  is completed? If yes, go to Step 9. 

Otherwise proceed examining inspection point get . 

Step 4. 

 is moment get  the moment when it is anticipated that project ( )A,NGe  cannot meet 

its deadline on time even by introducing the highest speed with index m ?  If yes, go 
to the next step. Otherwise proceed realizing the project until the next routine control 
point 1e,gt + . 

 
Step 5. Counter  r1r ⇒+   works. 
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Step 6. Set ger tt =∗ . 

 
Step 7. Inspect all non-finished projects ( )A,NGe  at the routine emergency point ∗

rt . Calculate 

values ( )tV f
e , fe1 ≤≤ , ∗= rtt . 

Step 8. Update all remaining targets ( ) e
f

ee VtVV ⇒− , fe1 ≤≤ . 
Go to  Step 2  to undertake resource reallocation among non-accomplished projects. 
 

Step 9. Are there at moment gett =  other, non-accomplished projects?  If yes, go to Step 5. 

Otherwise apply the next step. 
 

Step 10. The simulation run terminates. 
 

In the course of carrying out Steps 2 and 4 the cost-accumulated value J  of objective (1) has to 
be calculated. 

The problem’s solution is, thus, based on realizing procedures described in Sections 5–7. 

Conclusions 
 

The following conclusions can be drawn from the study: 

1. The developed cost-optimisation simulation algorithm for solving problem (1–9) can be applied to  
a wide range of project management systems. The outlined model (1–9) enables managing complicated 
building and construction systems, various R&D systems with different speeds and inspection points, etc. 

2. The newly developed on-line control model is a generalized model: it satisfies a variety of chance constraints 
and develops cost-minimization for a broad spectrum of expenses in the course of the system’s 
functioning. 

3. The structure of the algorithm is as follows: at the system’s level (the higher level) a search of the optimal 
number of CRU units is undertaken. At the project’s level a basic cost-optimization model for a single 
project is implemented in the simulation model. 

4. The main connection between those two levels is carried out via a newly developed resource 
reallocation sub-algorithm. The latter is carried out by undertaking probability control to be as close 
as possible to the projects’ chance constraints. 
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Investment Committee of Pension fund of agriculture in Israel, as a financial analyst 
for institutional investors in Israel, as chairman of Gahelet, a municipal firm which 
deals with savings for high education, and as a member of the board of directors of 
PEKAN, one of the top Israeli managing firm of mutual funds. Dr. Greenberg devotes 
major part of his time and energy to the community. As such he established with 
other the Israeli chapter of the Transparency International organization (TI), and serves as 
the CFO of the organization. He also serves as a director in several municipal firms, 
including: the economic firm of Ariel and the water & sewage firm of Ariel. 

• Publications: Dr. Doron Greenberg published more than a dozen articles in various 
scientific branches, including: the Journal of Real Estate Finance and Economics, 
Communications in Dependability and Quality Management, Technological and Economic 
Development of Economy, Risk Management, Computer Modelling and New Technologies. 
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(Abstracts) 

 
D. Shapiro, D. Fuks, A. Kiv. Electronic Structure and Chemical Bonding in Laves Phases Al2Ca, 
Be2Ag and Be2Ti, Computer Modelling and New Technologies, vol. 13, No 1, 2009, pp. 7–16. 

The results of ab-initio calculations of electronic structure of Laves-phase compounds Al2Ca, 
Be2Ag and Be2Ti are presented. Calculations were carried out in the framework of Density Functional 
Theory (DFT) and the Full Potential Linearized Augmented Plane Waves + local orbital formalism 
(FP APW+lo). Total, local and partial densities of electronic states (DOS) were obtained and analysed. 
These data together with differential electronic density (DED) distribution allow understanding  
the links of chemical bonding with structural stability of studied compounds. 

Keywords: Laves-phases, ab initio calculations, chemical bonding 
 
E. K. Shidlovskaya. Cluster Embedding Method for Large Electron Systems: Direct Variational 
Approach Versus Theory of Pseudopotentials, Computer Modelling and New Technologies, 
vol. 13, No 1, 2009, pp. 17–31. 

Problem “cluster in the field of the rest of system” is treated in the frameworks of one-electron 
approximation with non-orthogonal wave functions. Consideration is general for every task of this 
type (cluster and the rest of crystal, fragment of a molecule and the remaining part of it, valence and 
core electrons, etc.). Two alternative approaches are compared: 

(A) direct variational approach, when total energy of the whole system (cluster + the rest  
of system) is expressed in terms of non-orthogonal one-electron wave functions and equations for  
the cluster wave functions are obtained directly from variation of the total energy expression;  

(B) approach of the theory of pseudopotentials, when total energy of the system is expressed  
in terms of mutually orthogonal wave functions, equations for the cluster wave functions are obtained 
under orthogonality constraints and then these equations are transformed to obtain non-orthogonal solutions. 

For the both (A) and (B) cases homogeneous equations resulting directly from variational 
procedure are obtained first. Then these equations are transformed to eigenvalue problem equations. 
Special case of eigenvalue equations for mutually orthogonal wave functions of the cluster staying  
to be not orthogonal to the remaining system wave functions is studied. Well-known in the theory  
of pseudopotentials generalised Phillips-Kleinman (GPK) equations are shown to be particular case  
of approach (B) eigenvalue equations. Mutually orthogonal wave functions of the cluster are established 
to be solutions of the equations in the both (A) and (B) cases if additional restrictions on the wave 
functions are imposed. Unlike theory of pseudopotentials (B), in the case of direct variational 
approach (A) wave functions of the rest of system are found not to be solutions of the equations  
for the cluster. It seems to be significant advantage of direct variational approach. 

Keywords: quantum-chemical simulation, embedded molecular cluster (EMC) model,  
non-orthogonal one-electron wave functions, localised molecular orbitals (LMO), theory of 
pseudopotentials, generalised Phillips-Kleinman (GPK) equations 

 
I. Frenkel, A. Lisnianski, L. Khvatskin. Corrective Maintenance and Reliability Associated Cost 
Estimation of Aging Multi-State Systems, Computer Modelling and New Technologies, vol. 13, 
No 1, 2009, pp. 32–38. 

This paper considers corrective maintenance contracts for aging air conditioning systems, 
operating under varying weather conditions. Aging is treated as an increasing failure rate. The system 
can fall into unacceptable states for two reasons: through performance degradation because of failures 
or through an increase in demand of cold. Each residence in acceptable state, each repair and each 
entrance to an unacceptable state are associated with a corresponding cost. A procedure for computing 
this reliability associated cost is based on the Markov reward model for a non-homogeneous Poisson 
process. By using this model an optimal maintenance contract that maximizes the total expected cost may 
be found. A numerical example for a real world air conditioning system is presented to illustrate the approach. 

Keywords: corrective maintenance, reliability associated cost, aging, multi-state system, 
Markov reward model 
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O. I. Kostyukova, М. А. Kurdina. Properties of Guaranteed Reachable Sets for Linear Dynamic 
Systems Under Uncertainties with Intermediate Correction Points, Computer Modelling and New 
Technologies, vol. 13, No 1, 2009, pp. 39–48. 

In the paper we consider the problem of investigation and constructive description of the reachable 
sets for linear dynamic systems under unknown but bounded uncertainties over feasible controls that 
are allowed to be corrected in a given set of correction moments. It is showed that construction of  
the reachable sets under considered class of feasible uncertainties can be reduced to solving a multilevel 
min-max optimisation problem with respect to finite dimensional decision variables.  

It is proved that adding one new correction moment leads to an extension of the set of system 
states that can be guaranteed reached at a terminal moment from a given initial position over a feasible 
control strategy. Numerical example illustrates theoretical results. Some rules for construction external 
and internal approximations for the reachable sets are discussed.  

Keywords: reachability set, control system, bounded uncertainties 
 
Y. Hadad, L. Friedman, Z. Sinuany-Stern, A. Ben-Yair. Ranking Method Based on the Difference 
between Weighted Output and Input, Computer Modelling and New Technologies, vol. 13, No 1, 
2009, pp. 49–59. 

In this paper we developed a new method to establish common weights for measuring the efficiency 
score of Decision-Making Units (DMUs), based on multiple inputs and multiple outputs. In the new 
method, these common weights are estimated according to the difference between a weighted sum  
of outputs and a weighted sum of inputs of the DMUs. We suggest two approaches to rank the DMUs: 
the first method ranks the DMUs according to the absolute “net profit” (the difference between a weighted 
sum of outputs and a weighted sum of inputs), while the second method ranks the DMUs according  
to the relative efficiency score of the ratio between the a weighted sum of outputs and a weighted sum 
of inputs. In addition we present a method to fix objective bounds for the weights of the variables in 
the Data Envelopment Analysis (DEA), which is based on the above ranking method. We proved that 
these bounds are feasible solutions for the DEA methodology. The ranking methods are illustrated on 
a case study of 24 hospitals in Israel. 

Keywords: Data Envelopment Analysis (DEA), common weights, hospitals 
 
A. Ben-Yair, D. Golenko-Ginzburg, D. Greenberg. On-Line Cost-Optimisation Model 
in Stochastic Project Management, Computer Modelling and New Technologies, vol. 13, No 1, 
2009, pp. 60–69. 

Several simultaneously realized activity-on-arc network projects of PERT type with random activity 
durations are considered. The accomplishment of each project's activity is measured in percentage  
of the whole project. Any activity entering a project has to be operated by one of the identical comprehensive 
resource units (CRU) which may use several possible speeds subject to random disturbances. The speeds 
depend only on the intensity of the project's realization. They are indexed and the number of speeds  
is common to all CRU.  

It is assumed that the progress of any project can be evaluated only via periodical inspections 
at control points. At any moment 0t >  activities that are operated at that moment and which enter 
one and the same project, have to use speeds with similar indices (ordinal numbers), speeds can be 
changed only at a control point. Within the projects' realization a CRU can be transferred from one 
project to another only at the so-called emergency moments common to all projects. The projects' due 
dates and their chance constraints, i.e., their minimal permissible probabilities of accomplishing  
the project at its due date, are pregiven. All CRU have to be delivered to the company store when  
the projects start to be realized, and are released at the moment when the last project is accomplished.  
The cost of hiring and maintaining a CRU per time unit, together with the average processing costs 
per time unit for each activity entering each project to be operated under each speed, the average cost 
of performing a single inspection at the routine control point (common to all projects) and the average 
cost of reallocating CRU among non-finished projects at each emergency moment, are pregiven.  

The newly developed cost-optimisation model is as follows: determine the optimal number of CRU 
to minimize the total value of all projects’ expenses subject to their chance constraints. 

A two-level problem’s solution is suggested: 
• at the company level a combination of a search procedure to determine the number of CPU 

together with a resource reallocation model among the projects is considered, 
• at the project level a cost-optimisation on-line control model is applied for each project 

independently. This problem has recently been solved in our previous publications. 
Keywords: On-line cost-optimisation problem, Resource reallocation, Project’s activity with 

variable speeds, Non- consumable comprehensive resources. 
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(Anotācijas) 

 
D. Šapiro, D. Fuks, A. Kivs. Elektroniskās struktūras un ķīmiskās saiknes laves-fāzēs Al2Ca, 
Be2Ag un Be2Ti, Computer Modelling and New Technologies, 13.sēj., Nr.1, 2009, 7.–16. lpp. 

Rakstā tiek piedāvāti Laves-fāzes savienojumu Al2Ca, Be2Ag un Be2Ti elektronisko struktūru 
ab-initio aprēķinu rezultāti. Aprēķini tika veikti Density Functional Theory (DFT) un Full Potential 
Linearized Augmented Plane Waves + lokālo orbitālu formālisms (FP APW+lo) ietvaros. Vispārējie, 
vietējie un daļējie elektronisko stāvokļu blīvumi ir iegūti un analizēti. Šie dati kopā ar atšķirīgo 
elektronisko blīvuma sadalījumu ļauj izprast ķīmisko savienojumu saites ar izskatīto savienojumu 
strukturālo stabilitāti. 

Atslēgvārdi: Laves-fāzes, ab-initio aprēķini, ķīmiskie savienojumi  
 
E. K. Shidlovskaya. Klasteru iestiprināšanas metode lielajām elektroniskajām sistēmām: 
tieša variācijas pieeja pret pseidopotenciāļu teoriju, Computer Modelling and New Technologies, 
13.sēj., Nr.1, 2009, 17.–31. lpp. 

Problēma „klasteris atlikušās sistēmas jomā” tiek diskutēta viena-elektrona aproksimācijas  
ar ne-ortogonāla viļņa funkcijām ietvaros. Apsvērums ir vispārējs ikvienam šī tipa uzdevumam 
(klasteris un kristāla atlikums, molekulas fragments un tā atlikusī daļa, etc.). Divas alternatīvas pieejas 
tiek salīdzinātas. 

(A) tiešā variāciju pieeja, kur kopējā visas sistēmas enerģija (klasteris + sistēmas atlikums) 
tiek izteikta ar ne-ortogonāla viena elektrona viļņa funkcijām, un klasteru viļņa funkciju vienādojumi 
tiek iegūti tieši no kopējās enerģijas izpausmes variācijas; 

(B) pseido-potenciāļu teorijas pieeja, kad sistēmas kopējā enerģija tiek izteikta ar savstarpējās 
ortogonalitātes viļņa funkcijām, un klasteru viļņa funkciju vienādojumi tiek iegūti ortogonalitātes spaidu 
kārtā un tad šie vienādojumi tiek pārveidoti, lai iegūtu ne-ortogonālos risinājumus. 

Pirmām kārtām abos gadījumos kā (A), tā arī (B) gadījumā tiek iegūti viendabīgi vienādojumi, 
kas izriet tieši no variāciju procedūras. Pēc tam šie vienādojumi tiek pārveidoti pašvērtību problēmu 
vienādojumos. 

Pētījumā tiek parādīta tiešās variāciju pieejas priekšrocības. 
Atslēgvārdi: quantum-ķīmiska simulācija, iestiprinās molekulārs klastera modelis, ne-ortogonāla 

viena elektrona viļņa funkcijas, vispārināti Phillips-Kleinman vienādojumi  
 
I. Frenkels, A. Lisnjanski, L. Hvatkins. Korektīva apgādība un uzticamība saistītais izmaksu 
vērtējums multi-stāvokļu sistēmu nolietojamībai, Computer Modelling and New Technologies, 
13.sēj., Nr.1, 2009, 32.–38. lpp. 

Šajā rakstā tiek izskatīti korektīvie apgādības līgumi gaisa kondicionēšanas sistēmu, kuras darbojas 
dažādos laika apstākļos, nolietojamības gadījumiem. Sistēmai var iestāties nepieņemami stāvokļi 
divos gadījumos: darbības degradācijas bojājumu dēļ, vai arī aukstuma palielināšanās dēļ. Jebkurš 
gadījums prasa zināmas izmaksas. Ar uzturēšanu saistītā aprēķinu procedūra ir pamatota uz Markova 
atlīdzības modeli nehomogēnam Puasona procesam. Lietojot šo modeli, optimāls uzturēšanas līgums, 
kurš palielina kopējās paredzamās izmaksas, var tikt rasts. Rakstā tiek parādīti arī skaitliski piemēri. 

Atslēgvārdi: korektīvā uzturēšana, nolietojamība, ar uzticamību saistītās izmaksas, multi-stāvokļu 
sistēma, Markova atlīdzības modelis 

 
O. Kostjukova, M. Kurdina. Garantēto sasniedzamo rindu īpašības lineārām dinamiskām sistēmām 
pie nejaušībām ar korekciju starppunktiem, Computer Modelling and New Technologies, 
13.sēj., Nr.1, 2009, 39.–48. lpp.  

Rakstā autori izskata izpētes problēmu un dod konstruktīvu aprakstu par sasniedzamām rindām 
lineārām dinamiskām sistēmām pie nezināmām, bet saistītām nejaušībām pār iespējamo kontroli, kas 
tiek atļautas būt labotas dotajā korekciju momentu rindā. Tiek parādīts, ka sasniedzamo rindu 
veidošana pie izskatītās iespējamo nejaušību klases var būt reducēta uz daudzlīmeņu min-max 
optimizācijas problēmu sakarā ar ierobežotiem dimensionāliem lēmumu mainīgajiem risinājumu.  
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Tiek pierādīts, ka viena jauna korekcijas momenta pievienošana ved pie sistēmas stāvokļu 
rindas paplašinājuma, kas var būt garantēti sasniegts terminētā momentā no dotās sākuma pozīcijas 
pār iespējamo kontroles stratēģiju. Skaitliskie piemēri ilustrē teorētiskos rezultātus. Dotajā rakstā tiek 
diskutēti daži likumi sasniedzamo rindu ārējo un iekšējo aproksimāciju veidošanai. 

Atslēgvārdi: sasniedzamības rinda, kontroles sistēma, saistītās nejaušības 
 

J. Hadads, L. Fridmans, Z. Sinuani-Sterns, A. Ben-Jears. Rindu metode, pamatota uz atšķirību 
starp svērto izlaidi un ieguldījumu, Computer Modelling and New Technologies, 13.sēj., Nr.1, 
2009, 49.–59. lpp.  

Šajā rakstā autori izstrādā jaunu metodi, lai ieviestu kopēju vērtēšanu Lēmumu Pieņemšanas 
Vienību (Decision-Making Units (DMUs)) efektivitātes punktu noteikšanai, kas pamatojas uz daudz-
kārtīgiem ieguldījumiem un daudzkārtīgu izlaidi. Jaunajā metodē šī kopējā svēršana tiek noteikta 
saskaņā ar atšķirībām starp DMUs izlaides svērto summu un ieguldījumu svērto summu. Autori piedāvā 
divas pieejas DMUs sarindošanai: pirmā metode sarindo DMUs saskaņā ar absolūto „tīro peļņu”, bet 
otrā metode sarindo DMUs saskaņā ar relatīvās efektivitātes punktu proporciju starp izlaides svērto 
summu un ieguldījumu svērto summu. Pielikumā autori dod metodi, lai fiksētu objektīvos ierobežojumus 
mainīgo lielumu svēršanai Datu Apiešanas Analīzē (Data Envelopment Analysis (DEA)), kas pamatojas 
uz iepriekšējo rindas metodi. Autori pierāda, ka šie ierobežojumi ir iespējami risinājumi DEA 
metodoloģijai. Rindu metodes tiek ilustrētas pēc 24 Izraēlas slimnīcu stāvokļu izpētes. 

Atslēgvārdi: Datu Apiešanas Analīze (DEA), kopējā svēršana, slimnīcas 
 
A. Ben-Jears, D. Golenko-Ginzburgs, D. Grīnbergs. Izmaksu optimizācijas modelis tiešsaistē 
stohastiskajā projektu vadīšanā, Computer Modelling and New Technologies, 13.sēj., Nr.1, 
2009, 60.–69. lpp. 

Daži vienlaikus realizētie darbība-on-arc PERT tipa tīkla projekti ar nejaušiem aktivitāšu 
ilgumiem tiek izskatīti dotajā rakstā. Katra projekta darbības pabeigšana tiek vērtēta visa projekta 
procentuālajā izteiksmē. Ikvienai darbībai, kas iekļautas projektā, ir jābūt darbinātai ar vienu no 
identiskajām vispusīgajām resursu vienībām (comprehensive resource units (CRU)), kas var lietot dažus 
iespējamos ātrumus, pakļautus nejaušiem nemieriem. Ātrumi ir atkarīgi tikai no projekta realizācijas 
intensitātes. Tie tiek indeksēti un ātruma skaitlis ir kopējs visām CRU. 

Tiek pieņemts, ka ikviena projekta progress tiek vērtēts tikai caur periodiskām apskatēm 
kontroles punktos. Ikvienā momentā 0t >  darbības, kas notiek šajā momentā un kuras iekļaujas vienā 
un tajā pašā projektā, tām ir jālieto ātrumi ar līdzīgiem rādītājiem (kārtas skaitlis) un ātrumi var būt 
mainīti tikai kontroles punktos. Projekta realizēšanas laikā CRU var tikt pārvietotas no viena projekta 
otrā tikai tā saucamajos neparedzētajos gadījumos, kas ir kopēji visiem projektiem. 

Jaunatklātais izmaksu optimizācijas modelis ir šāds: nosaka optimālo CRU skaitli, lai 
samazinātu visu projektu izmaksu kopējo vērtību, kas pakļauta to iespējamajiem ierobežojumiem. 

Divlīmeņu problēmas risinājumam tiek piedāvāts: 
• ir izskatīta uzņēmuma līmenī pētīšanas procedūras kombinācija, lai noteiktu CRU skaitli kopā  

ar resursu asignējumu modeli starp projektiem; 
• projektu līmenī izmaksu optimizācijas kontroles modelis tiešsaistē tiek pielietots katram projektam 

atsevišķi. Šī problēma pavisam nesen tika atrisināta dotā raksta autoru publikācijās. 
Atslēgvārdi: optimizācijas kontroles modelis tiešsaistē, resursu asignējums, projektu darbība 

ar mainīgiem ātrumiem, nepielietojamie vispusīgie resursi 
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