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Editors’ Remarks 

 

From the Poem 

THE BALLAD OF EAST AND WEST  

************************************************************** 
Oh, East is East, and West is West, and never the twain shall meet,  

Till Earth and Sky stand presently at God's great Judgment Seat;  

But there is neither East nor West, Border, nor Breed, nor Birth,  

When two strong men stand face to face,  

tho' they come from the ends of the earth! 
 
************************************************************** 

Rudyard Kipling♣, 1889 

 
 
The 15th volume No.2 presents the papers on the actual topics such as Applied 

Statistics and Operations Research, Mathematical Methods, Information Processing 
and Mathematical Modelling.  

Our journal policy is directed on the fundamental and applied sciences researches, 
which are the basement of a full-scale modelling in practice.      

This edition is the continuation of our publishing activities. We expect our journal will 
be interesting for research community, and we are open for collaboration both in research and 
publishing. This number continues the current 2011 year of our publishing work. We hope that 
journal’s contributors will consider the collaboration with the Editorial Board as useful and 
constructive.    

 
EDITORS       

 

 
Yu.N. Shunin 

 

 
I.V. Kabashkin 

 
 
                                                           
♣ Joseph Rudyard Kipling (30 December 1865 – 18 January 1936) - an English poet, short-story writer, and novelist chiefly 
remembered for his celebration of British imperialism, tales and poems of British soldiers in India, and his tales for children. 
Kipling received the 1907 Nobel Prize for Literature. He was born in Bombay, in the Bombay Presidency of British India. Kipling is 
best known for his works of fiction, including The Jungle Book (a collection of stories which includes "Rikki-Tikki-Tavi"), Just So 
Stories (1902) (1894), Kim (1901) (a tale of adventure), many short stories, including "The Man Who Would Be King" (1888); and 
his poems, including Mandalay (1890), Gunga Din (1890), The White Man's Burden (1899). 
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ADJUSTING MARKOV MODELS TO CHANGES  

IN MAINTENANCE POLICY FOR RELIABILITY ANALYSIS 
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Equipment deterioration can be analysed with discrete state-transition models which are used as a foundation for numerical 

evaluation of various reliability and operational parameters. In this paper we discuss an approach in which a system with scheduled 
inspections and possible repair activities is described by the discrete state-transition deterioration model. The model can be 
translated into a semi-Markov process which, after solving, yields numerous reliability characteristics including average equipment 
life, its deterioration rate represented by so called life curve, probability of failure within given time horizon, etc. The analysis is 
performed for particular maintenance policy which has been integrated in the model and by adjusting the model to specific changes 
in this policy (e.g., modifications of repair frequencies) their consequences for system reliability can be evaluated. In the text we 
present briefly the methodology behind model creation and concentrate on its one specific aspect: automatic adaptation of the model 
to the adjusted maintenance policy with modified frequencies of repairs. In particular, it is shown that such adaptation can be 
reduced to the adjustment of transition probabilities that are found in the model, and such adjustment can be numerically 
implemented with one of the standard root-finding algorithms. Upon presentation of the adjustment method, its use is illustrated by 
a description of the computer tool which helps in evaluating reliability and financial effects of changes in maintenance policy of an 
ageing equipment. 

 
Keywords: state-transition deterioration model, semi-Markov process, reliability analysis, root-finding algorithm, maintenance 

analysis 

 
1. Introduction 
 

Efficient and, at the same time, cost-effective maintenance is an important element of reliable 
operation in contemporary complex technical systems. Selecting the optimal maintenance strategy must 
take numerous issues into account and among them reliability and economic factors are often of equal 
importance. On one side, it is obvious that for successful system operation failures must be avoided and 
this opts for extensive and frequent maintenance activities. On the other, superfluous maintenance may 
result in very large and unnecessary cost. Finding a reasonable balance between these two is a key point 
in reliable system operation. 

In order to be able to plan such maintenance appropriate models are necessary that would represent 
equipment deterioration process and, at the same time, would take into account various maintenance 
operations. In this paper we present a methodology that assists a person who decides about maintenance 
activities by evaluating risks and costs associated with choosing different maintenance strategies. Instead 
of searching for a globally optimal solution to a problem: “what maintenance strategy would lead to  
the best reliability and dependability parameters of system operation”, in this approach different 
maintenance scenarios can be examined in “what-if” studies and their reliability and economic effects can 
be compared so that a person managing the maintenance is assisted in making informed decisions ([1–3]). 

The method has been presented initially in [1] and its specific extensions were further described in 
[4–8]. In this work, we summarize the current state of development and concentrate on one important 
aspect of the methodology: fully automatic adjustment of the model to possible modifications of the maintenance 
policy which are often required for studies requested by the user. Also we will provide an illustration of 
the application of the method presenting a computer tool which helps in evaluating reliability and 
financial effects of changes in maintenance policy of an ageing equipment. 

The main contents of the paper is divided into three parts. The first one (section 2) presents general 
description of the methodology which is based on state-transition deterioration models, semi-Markov 
processes and the concept of a life curve used for visualisation of equipment ageing. The problem of 
automatic model adjustment is presented in the second part (section 3) which includes detailed discussion 
of possible numerical algorithms that can be implemented for probability approximation. Finally, in the last 
part (section 4) the method of model adjustment is used in a computer tool which uses the concept of  
a life curve and discounted cost to study the effect of the equipment ageing under different hypothetical 
maintenance strategies 
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2. Modelling the Ageing Process 
 

There are numerous factors that have an effect on the ageing process of equipment that undergoes 
scheduled inspections and maintenance actions. Among them there are various aspects related to its physical 
characteristics, operating practices, and the maintenance policy. The method described in this paper uses  
a generic model that assumes that the equipment will deteriorate in time and, if not maintained, will 
eventually fail. To counteract, the scheduled inspections are performed and if the deterioration process is 
discovered, preventive maintenance is applied which can restore the condition of the equipment. Such  
a maintenance activity will return the system to a specific state of deterioration, whereas repair after failure 
will restore to “as-new” condition ([9–10]). With these assumptions, the maintenance policy components 
that must be recognized in the model are: monitoring or inspection (how the equipment state is determined), 
the decision process (which determines the outcome of the decision), and, finally, the maintenance actions – 
the repairs (or possible decision outcomes). 
 
2.1. The State-Transition Model 
 

One of the approaches that can properly incorporate all the above suppositions about the aging 
process and maintenance activities is based on state-space (Markov) model ([11–16]). The model consists 
of the states the equipment can assume in the process, and the possible transitions between them.  

The method described in this paper uses a model of the Asset Maintenance Planner (AMP) that 
was initially developed and implemented by George J. Anders and Henryk Maciejewski ([17–18]).  
The AMP model is designed for equipment exposed to deterioration but undergoing maintenance at prescribed 
times. It computes the probabilities, frequencies and mean durations of the states of such equipment.  
The basic ideas in this approach are the probabilistic representation of the deterioration process through 
discrete stages, and the provision of a link between deterioration and maintenance. 

For structure of a typical AMP model see Figure 1. In the model, the deterioration progress is 
represented by a chain of deterioration states D1 … DK which then leads to the failure state F. In most 
situations, it is sufficient to represent deterioration by three stages: an initial (D1), a minor (D2), and  
a major (D3) stage of deterioration (K = 3). This last is followed, in due time, by equipment failure (F) 
which requires extensive repair or replacement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to slow deterioration and thereby extend equipment lifetime, the operator will carry out 
maintenance according to some pre-defined policy. In the model of Figure 1, regular inspections (Is states) 
are performed which result in decisions to continue with, e.g., minor (Ms1) or major (Ms2) repair (more 
than two types of repairs can be modelled), or to return to the deterioration state Ds without any repair. 
The expected result of all maintenance activities is a single-step improvement in the deterioration chain; 
however, it is possible to take into account also cases where no improvement is acquired or even where 
some damage is done through human error in carrying out the maintenance, which results in returning to 
the stage of more advanced deterioration. 

 

I1 

D1  …  DK 

D1 

M11 

… 

M12 

D1  …  DK 

… 

…

Is 

D1  …  DK 

Ds

Ms1

…

Ms2

D1  …  DK 

…

IK 

D1  …  DK 

DK 

MK1

…

MK2 

D1  …  DK 

… 

… F 
Deterioration 

states 

Inspection 
states 

Repair 
states 

Returns to 
det. states 

 

Figure 1. The state-transition model representing the deterioration chain with inspection and repair states 
(an example with two types of repairs is shown) 
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The choice probabilities (at transitions from inspection states) and the probabilities associated with  
the various possible outcomes are based on user input and can be estimated, e.g., from historical records 
or operator expertise. Therefore, creation of the model and then its fine-tuning to some real historical data 
of equipment operation and maintenance records is a complex task that requires expert intervention. 

Mathematically, the state-transition model of Figure 1 can be translated into a semi-Markov process, 
and then solved by the well-known procedures. The solution will yield all the state probabilities, 
frequencies and mean durations. Another technique, employed for computing the so-called first passage 
times (FPT) between states, will provide the average times for first reaching any state from any other 
state. If the end state of the passage is F, the FPTs are the mean remaining lifetimes from any of  
the initiating states. For state D1 this estimates the expected equipment life for the maintenance policy 
that has been incorporated in the model. 
 
2.2. Using the Model in Reliability Analysis 

A convenient way to represent the deterioration process is by the life curve of the equipment ([9]). 
Such a curve (see the first graph in Figure 2) shows the relationship between asset condition, expressed in 
either engineering or financial terms, and time. This concept is easy to comprehend for a non-expert end 
user (for example, a manager analysing various options of the maintenance policies) who does not need to 
know all the intrinsic details of state-transition models and Markov processes. 

A life curve that corresponds to some given Markov model can be created as follows. As pointed 
out above, computing the average first passage time (FPT) from the first deterioration state (D1) to the failure 
state (F) yields an average lifetime of the equipment, i.e., the length of the curve. On the other hand, 
solving the model for the state probabilities makes possible computing the expected state durations, which 
are then used to determine the shape of the curve, i.e. the rate of deterioration over different phases of 
equipment wear (some additional decisions are required as to how the deterioration states are mapped to 
ranges of the asset condition values). 

Simple life curves obtained for specific maintenance policies (i.e. specific models) can later be combined 
in composite life curves which describe possible complex maintenance scenarios ([1], [8]). The second 
graph in Figure 2 shows an example of such a scenario when a preventive maintenance is performed at 
some moment in time (restoring the asset condition to approx. 80%) after which the failure occurs leading 
to equipment replacement. This curve is composed of three segments of simple life curves and they do 
not need to represent the same models, i.e. a situation can be modelled when a change in maintenance 
policy takes place, e.g. after the repair. 

Furthermore, having the model and its (simple) life curve, one can compute the probability of 
failure (PoF) within given time period T for the equipment which currently is in some specific deterioration 
condition AC. The procedure is as follows: 

(1)  for the current value of asset condition AC, find from the life curve the corresponding 
deterioration state Dc and then compute a state progress SP (%), i.e. estimate how long  
the equipment has already been in the Dc state 

(2)  running FPT analysis on the model, find the probability distribution functions dc(t) and dc+1(t) 
of First Passage Time from the current state Dc and the subsequent deterioration state 
D(c + 1), to the failure state F 

(3)  interpreting the state progress SP as a weight which balances the current equipment condition 
between Dc and D(c + 1), estimate the final value of the probability as: 

 

Time

Equipment 
condition [%] 

100 

0     

 

Maintenance 
action 

Failure 

Time 

Equipment 
condition [%] 

100

0

Figure 2. A simple life curve computed from the semi-Markov model (left) and a complex life curve 
representing some maintenance scenario (right) 
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PoF( T ) = dc( T ) ⋅ (1 – SP) + dc+1( T ) ⋅ SP. (1) 

When equipment deterioration over the time period T is represented by a complex life curve, then 
the above procedure must be applied to the every simple curve segment which is included in T. 
 
3. Adjusting the Model to Different Repair Frequencies 
 

In practical applications when different maintenance policies need to be investigated, one of the most 
important aspect of system operation is appropriate representation of various types and frequencies of 
repairs that may be included in possible maintenance policies under consideration. In the approach presented 
in this paper it is the task of the expert to properly incorporate these characteristics of the original 
(“continue as before”) policy in the model, but once such model is available the non-expert end user may 
wish to analyse various hypothetical policies that are created by simple modifications of the original 
repair frequencies. For example, the end user may wish to consider an option “what if the minor repair 
rate is reduced by half” or “what if the minor and major repairs are removed completely but the medium 
repair is performed twice as often”. Such studies require a mechanism that, having the expert-created 
model representing some original repair policy, would be able to generate a derived model that would 
correspond to the same equipment (i.e. the same deterioration chain as presented in Figure 1) but submitted 
to a modified repair policy with different repair frequencies. It should be noted that the same mechanism 
would be also helpful during construction of the model by the expert when fine-tuning of repair 
frequencies is needed in order to achieve compliance of the model with some real-world repair policy 
stored in historical records of equipment operation. 
 
3.1. The Adjustment Procedure 

Let’s assume that the deterioration model under consideration consists of K deterioration states and 
R repairs. Also, let Psr denotes probability of selecting maintenance r in state s (assigned to the decision 
after inspection state Is) and Ps0 represents probability of returning to state Ds from inspection Is which 
corresponds to a situation when no maintenance is scheduled as a result of the inspection. The foremost 
condition that must be met at all times is that in all deterioration states s = 1 … K: 

 
0P P 1s sr

r
+ =∑ . (2) 

 

Let Fr represents the frequency of some repair r as it is generated by the model. The problem of model 
adjustment can be formulated with various assumptions and with different goals in mind but in this 
approach it is defined as follows: 

Given an initial semi-Markov model M0, with internal structure representing deterioration, 
inspection and repair states as described above and producing the initial vector of repair 
frequencies F0 = [ 1

0F , 2
0F  … R

0F ], modify the probabilities Psr assigned to transitions from 
inspections states Is so that the resulting model generates some requested vector of goal 
frequencies FG. 

Usually, the vector FG may represent the observed historical values of the repair frequencies (when 
an expert user is working on fine-tuning of the initial model) or some hypothetical frequencies (when  
an end user investigates possible modifications of the repair policy). 

There are numerous approaches that can be used in order to accomplish such model adjustment.  
In the proposed solution, an iterative approximation approach has been chosen in order to preserve  
an original construction of the model M0 as mush as possible. In this method a sequence of tuned models 
M0, M1, M2,… MN is evaluated in N steps with each consecutive model approximating desired goal with  
a better accuracy. Starting with i = 0, the procedure consists in the following steps: 

1°  for the current model Mi compute its vector of repair frequencies Fi 

2°  evaluate an error of Mi as a distance between vectors FG and Fi 

3°  if the error is within the user-defined limit ε, consider Mi as the final model and stop the procedure 
(N = i); otherwise proceed to the next step 

4°  create a new model Mi+1 by tuning values of sr
iP , then correct 0P s

i  according to condition (2) 

5°  return to the step 1° for the next iteration.  
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The error computed in step 2° can be expressed in may ways. As the absolute values of repair 
frequencies may vary in a broad range within one vector Fi, yet the values of all are significant for model 
evaluation, the relative measures work best in practice: 

∑
=

−=−
R

r

rr
ii R 1

GG 1F/F1FF  (3) 

or 

1F/Fmax GG −=− rr
iriFF . (4) 

The latter formula is more restrictive: it ensures that any repair does not differ from the goal more 
than the imposed limit and therefore this version was used in the numerical implementation of the method 
that is considered in this paper. 
 
3.2. Generation of the Adjusted Model 
 

Of all the steps that compose the iteration run, it is clear that adjusting probabilities sr
iP  in step 4° 

is the heart of the whole method. This is accomplished with the following two assumptions that are 
introduced not only to simplify the task, but also to improve quality of the result. 

The first assumption is related to the fact that although, in general, the Psr probabilities represent 
K⋅R free parameters that could be freely modified in order to arrive at the requested goal, their uncontrolled 
modification can lead to serious deformation of the model and this should be avoided. To this point a restrictive 
condition is adopted: if the probability of some particular repair must be modified, it is modified 
proportionally in all deterioration states, so that during the adjustment the proportion between this repair 
probabilities over all states remains unchanged and are the same as in the initial model M0: 

∀ i, r   r1
0P : r2

0P : … : Kr
0P   ~  r

i
1P : r

i
2P : … : Kr

iP . (5) 

This assumption also significantly reduces dimensionality of the problem, because now only R 
scaling factors, denoted as the vector Xi+1= [ 1

1X +i , 2
1X +i , … R

i 1X + ], must be found to compute all new 
probabilities required to create the model Mi+1: 

srr
i

sr
i 011 PXP ⋅= ++ ,   r = 1…R,  s = 1…K. (6) 

Moreover, and this observation leads to the second assumption, although the frequency of a repair 
r depends on the probabilities of all repairs (modifying probability of one repair changes, among others, 
state durations in the whole model; thus, it changes the frequency of all states) it can be assumed that, in  
a case of a single-step small adjustment, its dependence on repairs other than r can be considered negligible 
and 

( ) ( )r
i

r
i

R
iii

r
i

r
i XFX...X,XFF 21 ≈= . (7) 

With these two assumptions, generation of a new model in step 4° of the above described 
procedure is reduced to the problem of solving R non-linear equations in the form of  

( ) r
G

r
i

r
i FXF =  . (8) 

This task can be accomplished with one of the standard root-finding algorithms which will be 
presented in the next point. 

One aspect of the procedure requires additional attention, though: applying equation (6) with Xi+1 > 1 
may violate condition 

1P 1 ≤∑ +
r

sr
i  (9) 

in some deterioration state s. This situation needs special tests that would detect such illegal probability 
values and then reduce them proportionally so that their sum does not exceed 1: a so called scale-down 
transformation needs to be applied. As the case studies show such situations do occur during model 
tuning towards repair frequencies that are remarkably higher than in the initial model M0. In its simplest 
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form, the scale-down operation consists in dividing each probability Psr in the offending state s by  
the sum of all repair probabilities in this state, as they are computed with equation (6) without scaling: 

∑
=

==
R

r

sr
DsDs

srsr SS
1

P,PP . (10) 

This will also lead to Ps0 = 0 which means that every inspection ends with some repair and there 
are no direct returns from inspection state Is to deterioration state Ds. Moreover, this obligatory correction 
mechanism can result in violation of the proportionality rule (5) as an unavoidable side effect. In such 
cases modification of the model is more serious than the initial assumptions allow but this must be 
tolerated if the goal repair frequencies requested by the end user are to be achieved. 
 
3.3. Numerical Methods Used for Probability Estimation 
 

With all the assumptions regarding scaling factors and their influence on repair frequencies, 
generation of a new model is now reduced to the problem of solving R equations in the form of (8). This 
can be accomplished with one of the standard numerical algorithms for finding roots of a non-linear 
function. The method described in this paper has been tested with implementation of the following three 
algorithms: the Newton method working on linear approximation of ()F r

i , the secant method and the false 
position (falsi) method. 
 
3.3.1. Newton method on Linear Approximation (NOLA) 
 

In this solution it is assumed that ()F r
i  is a linear function defined by points )X(F i

r
i  (obtained after 

solving the model in step 1°) and )0(Fr
i  (which can be assumed to be equal zero). Then simply 

r
i

rr
i  / FFX G1 =+ . (11) 

Noteworthy advantage of this approach lies in the fact that no other solution than the current 
frequency )X(F i

r
i  is required to compute the next approximation, so errors of previous steps do not 

accumulate and convergence is good from the first iteration (the method has no memory effects). 
Table 1 and Figure 3 present the details of exemplary model adjustment with this method implemented. 

The sample model consisted of three deterioration states and three types of repairs: minor, medium and 
major (K = R = 3). The values of goal frequencies has been selected to be ≈ 50% of that in the original 
repair policy (FG = ½F0) which corresponds to some hypothetical repair policy “what if repair frequencies 
of this piece of equipment are reduced by half”. 
 
Table 1. Sample model adjusted to FG = ½F0 with the NOLA method, ε = 1E-4 
 

Relative freq. of repairs rr
i GFF  Scaling factors r

i 1X +
 

i 
r = 1 2 3 

Error 
r = 1 2 3 

0 2.007762 2.000581 2.049800 1.049814 0.49810 0.49990 0.48780 
1 1.127838 1.230000 1.254300 0.254331 0.88670 0.81300 0.79720 
2 1.018676 1.039839 1.044400 0.044398 0.98170 0.96170 0.95750 
3 1.002895 1.006516 1.007300 0.007255 0.99710 0.99350 0.99280 
4 1.000467 1.001065 1.001200 0.001179 0.99950 0.99900 0.99880 
5 1.000076 1.000161 1.000200 0.000183 0.99990 0.99980 0.99980 
6 1.000010 1.000032 1.000000 0.000040 1.00000 1.00000 1.00000 

 
As it can be seen from the submitted data, the adjustment process goes smoothly and without any 

perturbations: the average convergence ratio is nearly constant and the model firmly approaches the required 
goals for all three frequencies. As the goal vector has been assumed to be 50% of the frequencies in  
the original (initial) model, the relative error in the first iteration equals to approx. 100% (the frequencies 
are twice as large as required) and in each subsequent iteration it is reduced by a factor of 4 to even 6. 
Finally, the imposed accuracy of 1E-4 (0.01%) is reached after 6 steps. It should be noted that such high 
precision in model tuning has been selected for illustrative purposes in this paper, while in practical 
engineering cases accuracy of 1% is more than adequate; in the discussed example such level is obtained 
after just three steps. 
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3.3.2. The Secant Method 

In this standard technique the function is approximated by the secant defined by the last two 
approximations computed for points r

i 1X − , r
iX ; thus the new solution is calculated as: 

( )rr
ir

i
r
i

r
i

r
ir

i
r
i G

1

1
1 FF

FF
XXXX −

−
−

−=
−

−
+

 . (12) 

After that r
i 1X −  is discarded and r

i 1X +  and r
iX  are considered as the pair defining the secant for  

the next iteration. 
To begin the procedure two initial points are needed. In this approach we propose to choose  

the first point equal to the initial frequency of the model M0 ( r
0X  = 1), while the second point is computed 

as in the NOLA method: rrr
0G1  / FFX = . Having the pairs r

0X , r
1X  (r = 1, 2, … R) the procedure starts 

according to equation (12) in iteration i = 1 and continues so in further steps. 
In our exemplary case this method produced not-so constant convergence rate compared to  

the NOLA method presented in the previous point. Looking at the error values listed in table 2 for every 
iteration, there are some steps with very good improvement (e.g. error reduction from -0.1 to 0.008 for i = 3) 
but those are followed by mediocre progress in the next iteration (reduction from 0.008 to 0.006 for i = 4). 
Nevertheless, this does not exclude the method from application in the discussed system: the required 
accuracy is achieved in just one additional step (i = 7 compared to 6 for the NOLA method) and this is 
still an acceptable result. 
 
Table 2. The same adjustment case (FG = ½F0, ε = 1E-4) controlled by the secant method 
 

Relative freq. of repairs rr
i GFF  Scaling factors r

i 1X +
 

i 
r = 1 2 3 

Error 
r = 1 2 3 

0 2.007762 2.000581 2.049800 1.049814 0.49810 0.49990 0.48780 
1 1.127838 1.230000 1.254300 0.254331 0.85360 0.70140 0.66440 
2 0.990467 0.918355 0.893500 -0.106504 1.01190 1.11150 1.14910 
3 0.995514 1.004032 1.007800 0.007832 1.01050 0.99530 0.99110 
4 1.006038 0.999935 0.999600 0.006037 0.99410 1.00010 1.00040 
5 1.000219 1.000161 1.000200 0.000218 0.99980 0.99990 0.99990 
6 1.000000 1.000129 1.000100 0.000120 1.00000 0.99980 0.99990 
7 1.000010 0.999903 1.000000 -0.000084 1.00000 1.00010 1.00000 

 

The graphs in Figure 3 provide an additional explanation of the problem for this particular case. It can 
be seen that for i = 3 the method proposed actually a very good approximation but with just a little overshoot 
and this caused problems in the next iteration. This is a known setback of the secant method which is 
removed in the falsi method. 
 
3.3.3. The False Position (Falsi) Method 

In this approach r
i 1X +  is computed as in (12) but the difference lies in choosing points for the next 

iteration. While in the secant method always r
i 1X −  is dropped, now r

i 1X +  is paired with that one of r
iX  or 

r
i 1X −  which lies on the opposite side of the root. In this way when (12) is applied the solution is bracketed 

between r
iX  and r

i 1X −  (which is the essence of the falsi method). 
As in 3.3.2, the two initial points are needed but now they must lie on both sides of the root, i.e. 

( ) ( ) 0FFFF G1G0 <−⋅− rrrr  (13) 

Choosing such points may pose some difficulty. To avoid multiple sampling, as in the secant 
method it is proposed to select r

0X =1 and to compute r
1X  like in NOLA method, but now with some 

“overshoot” that would guarantee (13):  

( )αrrr
0G1  / FFX =  (14) 

with a new parameter α > 1 controlling the overshoot effect. The overshot must be sufficient to ensure 
condition (13) but, on the other hand, it should not produce too much of an error as this would deteriorate 
approximation process during initial steps and would produce extra iterations. If (13) is not met by initial 
value of r

1X  (14) can be re-applied with an increased value of α, although it should be noted that each 
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such correction requires solving a new M1 model and in effect this is the extra cost almost equal to that of 
the whole iteration. 
 
Table 3. The sample case (FG = ½F0, ε = 1E-4) adjusted by the falsi method 
 

Relative freq. of repairs rr
i GFF  Scaling factors r

i 1X +
 

i 
r = 1 2 3 

Error 
r = 1 2 3 

0 2.007762 2.000581 2.049800 1.049814 0.24810 0.24990 0.23800 
1 0.591533 0.686129 0.691200 -0.408464 1.87420 1.71690 1.72780 
2 1.067305 1.086871 1.092200 0.092239 0.93400 0.90950 0.90310 
3 1.004705 1.005032 1.004800 0.005045 0.99510 0.99430 0.99450 
4 1.000238 1.000258 1.000300 0.000313 0.99980 0.99970 0.99960 
5 1.000010 1.000000 1.000000 0.000014 1.00000 1.00000 1.00000 

 

Theoretical characteristics of the falsi technique are well illustrated by the data shown in Table 3 
and Figure 3. Of all three methods presented here, this one generated the requested accuracy with the minimum 
number of iterations: 6 vs. 7 of NOLA and 8 of secant. The α parameter that controls the overshoot effect in 
the first approximation was equal 2 and this indeed generated an overestimation in the model M1 but this 
was properly and quickly compensated in the steps that followed. As a result, the convergence flow which 
can be seen in Figure 3 is close to the ideal case with two deviations from the target: an overestimation 
immediately followed by an underestimation after which the solution arrives at the final goal. 
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Figure 3. Adjusting the sample model to FG = ½F0 (ε = 1E-4) with three different numerical methods: NOLA (top), secant (middle) 

and falsi (bottom) 
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3.3.4. Evaluation of the Methods 

Figure 4 illustrates efficiency of the three approximation methods in another typical adjustment 
cases. For these tests the model used in the previous examples was adjusted to the policies FG = [0, 0, 3

0F ] (only 
major repair is performed with the other two types removed) and FG = ¼F0 (frequencies of all repairs reduced  
to 25%). A short comment should be made about the first of these examples. With FG = [0, 0, 3

0F ], it is very easy 
to remove any repair from the model by simply assigning Psr = 0 in all the states, effectively increasing the value 
of Ps0 at the same time. In such case no adjustment is required as the requested goal (Fr = 0) is achieved 
immediately. Nevertheless, such modification does affect the frequencies of other repairs that are left in the model 
(F3 in this case) and the adjustment mechanism is still necessary just to return them to their requested values. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparing the effectiveness of the methods it should be noted that although simplifications of  
the NOLA solution may seem critical, in practice it works quite well. As it was noted before, due to its 
simplicity this method has one advantage over its more sophisticated rivals: since computation of the next 
solution does not depend on previous approximations, selection of the starting point is not so important 
and the accuracy during the first iterations is often better than in the secant or falsi cases. For example, in 
the case used in 3.3.1 ÷ 3.3.3 the NOLA method reached accuracy of 4.4% already after 2 iterations, 
while for secant and falsi methods the error after two iterations was, respectively, 11% and 9.2%. 
Superiority of the latter methods, especially of the falsi algorithm, manifests itself in the later stages of the 
process when the potential problems with an initial selection of the starting points have been diminished. 
 
4. Asset Risk Manager 
 

In this section we will present the “Asset Risk Manager” (ARM) software package which uses  
the concept of a life curve and discounted cost to study the effect of equipment ageing under different 
hypothetical maintenance strategies [1]. The results generated by the program are based on Markov 
models that were presented in the previous sections and in many cases the models were adjusted to  
the modified maintenance policies as it has been described in section 3. 

For the program to generate automatically the life curves, default Markov model for the equipment 
has to be built and stored in the computer database. This is done through the prior running of the AMP 
program by an expert user. Therefore, both AMP and ARM programs are closely related, and usually, 
should be run consecutively. 

Implementation details of Markov models, tuning its parameters and all other internal particulars should 
not be visible to the non-expert end user. All final results are visualized either through an easy-to-comprehend idea 
of a life curve or through other well-known concepts of financial analysis. Still, prior to running the analysis some 
expert involvement is needed, largely in preparation, importing and adjusting AMP models. 
 
4.1. User input 
 

A typical study is described through a comprehensive set of parameters that are supplied by a non-
expert end user. They fall into three broad categories. 
(A) General data. The Markov model of the equipment in question and its current state of deterioration 
form the primary information that is the starting point to most of ARM computations. The Markov model 
represents the equipment with present maintenance policy and is selected from a database of imported 
AMP models which need to be prepared by an expert in advance. Deterioration state, referred to as “Asset 
Condition” (AC) throughout the ARM, must be supplied by the end user as a percentage of “as-new” 
condition. Besides, a number of additional general parameters need to be specified, such as the time 
horizon over which the analysis will be performed, discount and inflation rates for financial calculations etc. 
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Figure 4. Convergence rate of the three approximation methods for two sample maintenance 
policies: FG = [0, 0, 3

0F ] (left) and FG = ¼F0 (right); ε = 0.01% in both cases 
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(B) Description of the present maintenance policy. It is assumed that three types of maintenance 
repairs can be performed: minor, medium and major. These correspond to the appropriate states in 
Markov model and not all of them must be actually present in the policy. For each repair user supplies its 
basic attributes, e.g. cost, duration and frequency. 
(C) List of alternative actions. These are the hypothetical maintenance policies that decision-maker can 
chose from. Each action is defined as one of four types:  

• continue as before (i.e. do not change the present policy), 
• do nothing (i.e. stop all the repairs), 
• refurbish, 
• replace. 
Apart from the first type, every action can be delayed for a defined amount of time. Additionally, 

for “non-empty” actions (i.e. any of the last two types) user must specify what to do in the period after 
action; the choices are: 

(a) to change type of equipment and / or  
(b) to change maintenance policy. 
In case of option (b), the new maintenance policy will require a different Markov model which, in 

turn, may need to be generated by the adjustment algorithm discussed in section 3. Such generation is done 
automatically on the background of the system operation and the end user does not even know about this fact. 

For every action the user must also specify what to do in case of failure: whether to repair or 
replace the failed equipment, its condition afterwards, cost of this operation etc. Thank to these options a broad 
range of maintenance situations can be described and then analysed. 

The first action in the list is always “Continue as before” and this is the base of reference for all 
the others. The ARM can be directed to compute life curves, cost curves, or probabilities of failure – for 
each action independently – and then to visualize computed data in many graphical forms to assist  
the decision-maker in effective action assessment. 

It should be noted that while the need for some action (e.g., overhaul or change in maintenance 
policy) is identified at the present moment, the actual implementation will usually take place only after  
a certain delay during which the original maintenance policy is in effect. Using ARM it is possible to 
analyze the effect of that delay on the cost and reliability parameters. 
 
4.2. Life Curves 
 

As it has been pointed out before, computing the average first passage time (FPT) from the first 
deterioration state (D1) to the failure state (F) in the Markov model yields the average lifetime of  
the equipment, i.e. length of its life curve. On the other hand, solving the model for the state probabilities 
of all consecutive deterioration states makes possible computing the state durations, which in turns 
determine the shape of the curve. Simple life curves obtained for different maintenance policies are later 
combined in constructing composite life curves which describe various maintenance scenarios. 

For sake of simplicity and consistency, exactly three deterioration states, or levels, are always 
presented to the end user: minor, medium and major, with adjustable AC ranges. In case of Markov 
models which have more than three Ds states, the expert decides how to assign the Markov states to three 
levels when importing the model. 

Figure 5 shows exemplary life curves computed by ARM for typical maintenance situations. In each 
case the action is delayed for 3 time units (months, for example) and the analysis is performed for a time 
horizon of 10 time units. In case of failure seen in “Do nothing” action, equipment is repaired and its 
condition is restored to 85%. 
 
 
 
 
 
 
 
 
 
 
 
 
 0

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 1 2 3 4 5 6 7 8 9 10
Delay [t.u.] 

Continue as before 

Action3 (type: DoNothing)A
ss

et
 c

on
di

tio
n 

[%
] 

Action1 (type: Replacement) 
Action2 (type: MajorRef.) 

 
 

Figure 5.  Life curves computed for three different actions (“Action1” … “Action3”)  
and compared to the present maintenance policy (“Continue as before”) 
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4.3. Probability of Failure 
 

For a specific action, probability of failure within the time horizon (PoFTH) is a sum of two 
probabilities: of failure taking place before (PoFB) and after (PoFA) the moment of action. It is assumed 
that failures in these two periods making up the time horizon are independent, so 

PoFTH = PoFB + PoFA – PoFB ⋅ PoFA . (15) 

To compute PoF( T ) within some time period T, the Markov model for the equipment and the life 
curve are required. Then, the procedure for computation of PoFA and PoFB can be applied as it has been 
described in section 2.2, equation 1. 

For better visualization, rather than finding a single PoFTH value for action defined by the user in 
input parameters, ARM computes a curve which shows the PoFTH as a function of action delay varying in 
a range 0 ÷ 200% of user-specified initial value. An example is demonstrated in Figure 6 for “Do nothing” 
action (user-defined delay = 3 time units), where also the two probability components PoFB and PoFA are 
shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A more detailed analysis is shown in Figure 7. In this case we consider a situation when, with 
initial equipment deterioration estimated as 80% of “as-new” condition, some specific actions – a repair 
or just a change in maintenance policy – will take place after a 3-year delay while the effects will be 
evaluated for a 10-year time period. The actions in the scenarios will be as follows: 

- adopting “do nothing” policy, which means just stopping all inspections and repairs; in case of 
failure the equipment will be repaired and its condition restored to 85%, 

- replacing the equipment with “as-new” one and then switching to the “do nothing” policy, 
- performing a major refurbishment of the equipment which restores its condition to 85% and then 

continuing with a medium repair only. 
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Figure 7.  Probability of equipment failure within a period of 10 years for  
different cases of maintenance scenarios 
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Figure 6. Probability of equipment failure within the time horizon 
for a modelled action, computed as a function of action delay 
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Probability of failure within the time horizon computed for these strategies is shown in Figure 7. 
Values on the graphs are presented as functions of the action delay time (100% = 3 years) and they are 
compared against the probability of failure for the unmodified standard maintenance (“continue as before”). 
The value of this probability has been computed to be 42%. 

It can be seen in case of all three scenarios that, since the new maintenance policy after the action is 
more or less reduced, the more the action is delayed, the less probable equipment failure becomes. For evident 
reasons adopting “do nothing” policy leads to the highest values of the failure probability, while replacing 
the equipment and “doing nothing” afterwards turned out to be a less dangerous strategy (in terms of 
failure probability) than refurbishing and then keeping only the medium repair. Whether the differences in 
the economic expenses of these two possible strategies justify this discrepancy in the reliability parameter 
or not – it remains an open question in further cost analysis and generally depends on the costs associated 
with the equipment failures. 

One interesting observation can be made about the curve for “do nothing” strategy: its decrease is 
not strictly monotonic and there is a local minimum at the level of 61% for the delay equal to 164% 
(4.9 years) after which the probability begins to rise slowly. To explain this rise, two components: the 
probability of failure before and after the action should be investigated and they are shown in Figure 8.  
In general, these two components behave as expected: the later the action takes place, the higher the 
probability of failure before and the lower the probability of failure after the action but the rates of these 
two flows – increasing and decreasing – are not constant and do not sum up into a monotonic decrease.  
In this case, the probability of failure after the action falls down to some extent slower after the point of 
164% and this causes the local minimum in the total probability of failure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.4. Cost Curves 
 

In financial evaluations the costs are expressed as present value (PV) quantities and this approach 
should also be used in this kind of studies because maintenance decisions on aging equipment include 
timing, and the time value of money is an important consideration in any decision analysis. The cost 
difference is often referred to as the Net Present Value (NPV). In the case of maintenance, the NPV can 
be obtained for several re-investment options which are compared to the “Continue as before” policy.  
Cost evaluation for any maintenance scenario involves calculation of the following three fundamental 
classes of components: 

1. cost of the maintenance activities, 
2. cost of the selected action (i.e. refurbishment or replacement), 
3. cost associated with failures (cost of repairs, system cost, penalties). 
To compute the PV, inflation and discount rates are required for the specified time horizon. The cost 

of maintenance over the time horizon is the sum of the maintenance costs incurred by the original maintenance 
policy for the duration of the delay period (up to the action), and the costs incurred by the new policy for 
the remainder of the time horizon (after the action). The costs associated with the equipment failure over 
the time horizon can be computed similarly except that the failure costs before and after the action should 
be multiplied by the respective probabilities of failures, and two products added. 
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Figure 8. Probability of equipment failure before and after the action for “do nothing” scenario 
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Figure 9 presents the plots showing the cost analysis for the scenario “replace and then do nothing”. 
Again (as it has been in the case of probability of failure) the values are visualized as functions of the action 
delay varying in the range 0 ÷ 200% of user-specified reference value. The cost of replacement (“Action”), 
although does not depend on the delay, is not constant on the plot due to the PV calculations. It is also 
evident that delaying the action causes more repairs to be performed as elements of the present repair 
policy before “do nothing” becomes effective, hence several noticeable leaps appear in the maintenance 
cost flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusions 
 

The paper described a modelling methodology which helps in choosing effective yet cost-efficient 
maintenance policy. Based on semi-Markov models representing the deterioration process, the equipment 
life curve and other reliability parameters can be evaluated. Once a database of equipment models is 
prepared, the end-user can perform various studies about different maintenance strategies and compare 
expected outcomes. As the results are visualized through the relatively simple concept of a life curve, no 
detailed expert knowledge about internal reliability parameters or configuration is required. 
Additionally, the paper presented a method of model adaptation that allows automatic adjustment of the 
basic model to user-expected changes in maintenance policy. The numerical part of the method can be 
solved with common root-finding algorithms and it has proved its validity in numerous practical 
examples. Ability to adjust the models to such changes is crucial in practical studies of various possible 
maintenance scenarios. 

Another important issue is how the adjustment modifies behaviour of the model in addition to 
reaching the desired repair frequencies and how the model should be constructed in order to 
accommodate the modifications without undesired side effects. For discussion of these problems please 
refer to [5–7]. In particular, while there is usually no problem with reduction of repair frequencies with 
the method described in this paper, special care must be taken when increase is requested because  
the probabilities cannot be enlarged indefinitely. In cases when the limit (2) is reached in all states even 
with Ps0 = 0 and the requested frequencies are still not achieved, more substantial modifications of  
the model may be necessary. This also leads to specific directions as to how the model should be 
constructed in order to avoid such situations. 
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1. Introduction 

 
The area of our research centres on developing deterministic and statistical algorithms in job-shop 

scheduling, i.e., in determining quasi-optimal schedules for multiroute (job-shop) problems with n  jobs 
and m  machines [1–17]. 

The procedures described below for taking decisions in conflict situations (jobs queued up for  
a single machine) are, in essence, the simplest simulation models with which a quasi-optimal plan can be 
drawn up for feeding the jobs to the machine for a varied-route problem with n  jobs and m  machines. 
Thus, the paper under consideration is a further development of Refs [11–15]. We will henceforth use  
the terminology of [11]. 

Suppose that as a result of such a conflict situation at a certain moment of time t  there is a queue 
of nr ≤  jobs waiting to be fed into machine M . Denote the consecutive numbers of these jobs 

rqqq ,...,2,1 . 
To devise a definite rule of preference means to work out such an algorithm as will make it possible 

to determine a numerical characteristic for each of the jobs in the queue ξqJ , r,1=ξ . The numerical 

characteristic is the preference coefficient 
 

{ } { }ξϕξ qtTtTqJQ ,,,= , (1) 

 

where symbol tT  is the initial technological matrix T  transformed by moment t  (after excluding  

the operations already done by moment t ). Job ξqJ  , which corresponds to optimal value { }ξqJQ , is 

selected from the queue and is fed first into the machine. 
Depending on the random effect, the preference rules are subdivided into deterministic and random 

ones. The randomising procedure of preference rule Q  centres on the following: first, the preference 

coefficients of the jobs in the queue { }ξqJQ , r,1=ξ , are normalized by 
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{ } { }
{ }∑

=

=∗
r

qJQ

qJQ
qJQ

1η
η

ξ
ξ , (2) 

 

after which random value γ  is simulated by the Monte Carlo method and equi-distributed in interval [ ]1;0 . 
Job ξqJ  is fed into the machine, there the relation exists 
 

{ } { }∑
=

≤<∑
−

=

∗ ξ
γ

ξ

1

1

1
qJQqJQ  (3) 

(sum ∑
0

1
is taken as equal to zero). 

 

The physical idea of randomisation in preference rules consists in the fact that of the jobs 
demanding to be fed into the machine, the ones fed in usually have a larger preference coefficient. Note 
that if the use of deterministic preference rules always leads to the drawing up of a determined schedule 
(the assignment matrix can be determined by rule Q  back in the stage preceding the start of the system's 
work by a preliminary simulation of the system's activity), in the case of randomisation principles, values 

ijS  are random in nature. As a result, in the deterministic version one can investigate the relative 
efficiency of two alternate preference rules 1Q  and 2Q  by comparing two determined values; the preference 
rule leading to the value of optimisation criterion K  for a concrete technological matrix T  is preferable. 
In a randomisation case, the preference of one rule or another should be decided by comparing statistical 
samplings (from the general totality of random values of criterion K ), and applying the theory of checking 
statistical hypotheses. 

We thus come to the statement of the basic shortcoming of preference rules: a comparative analysis 
of their efficiency can be made only for a concrete technological matrix T , and in turn, conclusions are to 
be drawn if T  changes can also change. In fact, even if given a large number of existing preference rules 
proved in practice, one can always devise technological matrix T , for which we can draw up a new 
preference rule, more efficient than all the existing ones. 

Let us now describe the best known and most widely applied preference rules. 
 
2. Non-Combined (Local) Preference Rules 
 
2.1. The Shortest Processing Time (SPT) Rule [16] 

 
What this rule means is that when resolving a conflict situation, preferred is the job in set 

{ }ξqJQ , r,1=ξ , waiting to be fed into released machine M , which has the shortest operation duration. 

In other words, 
 

{ }
ξξ

ξ jqt
qJQ 1

= , (4) 

 

( ξξ jqt  being the duration of doing the ξj -th operation of job ξqJ  on machine M). 

 
2.2. The Longest Remaining Time (LRT) Rule [16] 
  

Under the LRT rule, job ξqJ , for which the total duration of all remaining operations is the maximum, 
 

{ } ∑
=

=
m

jk
kqtqJQ ξξ , (5) 

 

is fed into machine M  first. 



 
 

Applied Statistics and Operations Research 

 23

 
2.3. The Rule TSW: SPT, LRT, and “Tense Job” Expectation Rules [13] 
 

Of the many decisions that can be taken at any moment t , the one is taken that corresponds to the 
minimal change of the lower estimate of the criterion. This estimate is based on the sum of the time for 
performing the remaining operations. The approximation of the method consists in that the criterion estimate 
forecasted after each decision is regarded as the true value of the criterion, as a result of which, movement 
along only one branch of the decision tree takes place and the other branches are not memorized. Let us 
deal in more detail with realization of the preference rule. 

At any moment t  of freeing machine M , q  “tense” job appears whose total time for performing 
the remaining operations (the time left for finishing an operation begun is not included in the total) is  
the maximum. The schedule for doing the remaining operations of the tense job depends strongly on  
the value of the criterion. If the tense job is in queue for machine S , it is fed in at moment t . If it has not 
yet been placed in the queue, compute the remaining time ∗

St  for doing the tense job's operations till the one 

to be done on machine M , and compare it with time ξξξ
jqtSt min=∗∗ , the briefest operation of the jobs 

in queue for machine M  (the SPT rule). If ∗>∗∗ StSt , the machine stands idle till moment ∗+ Stt .  

If ∗≤∗∗ StSt , machine M  is fed by job ηqJ  ( ηη jqtSt =∗∗ ). Similarly, rule SPT can be substituted by 

rule LRT. 
 
2.4. The Rule of Pairwise Comparison PC [10, 13] 
 

For any two jobs iJ  and kJ  requiring to be operated on freed machine M , denote symbols ijO  

and kO  for the routine operations, and symbols kmOkOimOjiO ,...,1,,,...,1, ++  for the remaining 

operations of jobs iJ  and kJ , respectively. 
Let ijt , kt  stand for the time to carry out operations kOijO ,  and kij ττ ,  stand for the time to 

carry out all the remaining operations of jobs iJ  and kJ , respectively. There exist two possible ways of 
feeding in the jobs: 1) First iJ , then kJ ; 2) First kJ , then iJ . For the first way, we must calculate 

value ( ) [ ]kktijijtIF ττ ++= ,max , and for the second, ( ) [ ]ijijtkktIIF ττ ++= ,max . Say the first is 

preferable if there holds condition ( ) ( )IIFIF < . By comparing pairwise all jobs requiring operation on 
machine M , we can discover the job with the greatest priority. 
 
3. Combined Preference Rules 
 
3.1. The Rule of SPT and Feeding in Tense Jobs (Rule TS) [13–14] 
 

A tense job is assigned to a freed machine if it must be done by moment t . Otherwise the next job 
is selected by the SPT rule. In keeping with the characteristic of rule (3), if at moment of time t  jobs 

riJiJ ,...,1  have completed operations rjriOjiO ,...,11  and have not yet begun their next operation, 

while jobs niJiiJ ,...,1+  are still performing operations njniOrjriO ,...,11 ++ , job ξiJ  is considered 

a tense one if ( ) ( )tkink
ti τξτ ≤≤
=

1
max , ( ) ∑

+=
=

m

j
kittki

1γ
γτ  holds. 

 
3.2. The Rule of PC and Starting a Tense Job (Rule TPC) [13–14] 
 

A tense job is assigned first to a freed machine if it must be carried out. Otherwise, the job is 
chosen by rule PC. 
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3.3. The FIFO Rule [16] 
 

The FIFO rule, in case a conflict situation appears, directs onto a machine the job from the queue 
waiting longest to be done, and consequently requiring to be done on that machine ahead of others. In other 
words, this is the principle of first come, first served. 

Rules 4.1–4.3, following, employ as a parameter of the preference function the total time that the 
operations prior to the conflict situation waited in queues to be handled. Experimental calculations have 
shown that using such a parameter for several practical problems makes the preference function more 
efficient [14]. 
 
4. Total Time Heuristic Preference Algorithms 
 
4.1. A Combination of LRT and Total Waiting Time [13–14] 
 

Use symbol ( )iJtT  for the total time of waiting in queues for job iJ  at moment t . In other words, 

( )
( )
∑
=

−=
tij

j
ijttiJtT

1
, where ( )tji  is the last operation of job iJ  completed by moment t . Suppose that at 

moment t  jobs riJiJ ,...,1  are to be done on one and the same machine. In such a case, the machine is 

fed job ξiJ , r≤≤ ξ1 , for which the sum ⎥⎦
⎤

⎢⎣
⎡+⎟

⎠
⎞⎜

⎝
⎛

ξξ iJLRTiJtT  is maximized. 

 
4.2. A Combination of FIFO, Total Waiting Time, and LRT [13, 14] 
 

If at moment t   jobs riJiJ ,...,1  are to be done on freed machine M , job ξjJ , first in the queue, is 

fed in. If there are several jobs of that kind jJjJ ,...,1 , job ξjJ , ,1=ξ , is fed in, the sum 

⎥⎦
⎤

⎢⎣
⎡+⎟

⎠
⎞⎜

⎝
⎛

ξξ jJLRTjJtT  being maximized for it. 

 
4.3. A Combination of Waiting for a Tense Job, Total Waiting Time, and LRT [14] 
 

If at moment t  jobs riJiJ ,...,1  are waiting to be done on the machine simultaneously, the tense 

job is found and moment ∗t  is determined for it to be fed in. If ttt −∗=Δ  is no less than the time of  
the forthcoming operation for a part in the queue of jobs jJjJ ,...,1 , job ξjJ  is chosen and fed in, 

according to rule 4.1. Otherwise, the machine is idle and there is a wait for the tense job. 
 
4.4. A Combination of Waiting for a Tense Job and FIFO 
 

The procedure of preference rule 10 remains unchanged, except that of the set of jobs jJjJ ,...,1 , 

the job first in queue is fed into the machine. If there are several such jobs, apply rule 4.1. 
All the preference rules described above can be applied both in deterministic and randomized 

versions. 
 
5. Using mn-Permutations 
 

Note that, due to [15], the mn-permutations described can be regarded as priority vectors, the operation 
being given the greater priority the farther left the corresponding number in the mn-permutation is 
situated. This makes it possible to simulate various priority rules. 

We will demonstrate how the most widespread priority rules, SPT and LRT, can be obtained by 
such an approach. 
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Transform initial matrix T  as follows: Say 
 

∑
+=

=
m

jk
iktij
1

τ , imtim =τ , ni ,1= , 1,1 −= mj . 

 

Write all the elements of matrix ijτ  one after the other, in a row, so that element ijτ  stands at 

the ( )[ ]jmj +−1 -th place, after which write the row in descending order. Based on the indexes obtained 
of the elements of that row, the mn-permutations are determined with the help of the auxiliary algorithm 
of an actual schedule, described below. The schedule obtained will coincide with the one obtained by rule 
LRT (with accuracy of an ambiguous selection of operations by the LRT rule itself, when several 
operations have priority under that rule). 

The SPT rule can be simulated as follows: Form two mn-length vectors 1A  and 2A , filling their 
elements consecutively from left to right. To determine the consecutive element ( )kA1 , take the leftmost 
element not crossed out in every row of matrix T  and choose the minimum among them, which will then 
be crossed out of the matrix. Let the element crossed out have index ( )ji, . Then assume ( )kA1  equals 

ijt , and ( ) ( ) jmikA +−= 12 . Then, on the basis of the auxiliary algorithm, devise an actual schedule, 
using vector 2A  as the initial mn-permutation. The resulting schedule coincides with the one obtained by 
rule SPT (as in the case of LRT, to an ambiguity accuracy resulting from the SIO rule itself). 

The work of the auxiliary algorithm is as follows. Assume that in keeping with the procedure 
described in [15], at the k -th step of determining a possible schedule based on an mn-permutation, 
operation ijO  is assigned, with completion time equal to ijt , and to be done on the M -th machine. Let 

job iJ  be ready at moment iτ  to do operation ijO . Look from left to right, beginning with moment iτ , at 
all the idle intervals of the M -th machine. As soon as we find an idle interval with a duration more than 
zero, assign the corresponding operation ijO . The starting moments of several operations can move to 

the right by a value no greater than ijt . 

This is how the last can be performed: Let operation ijO  be fed in during a certain idle interval of 

the i -th machine, and after the idleness, operation 11 jiO  is to be done, to which the element at the j -th 

place, kj < , in the mn-permutation corresponds. In this case, the k -th element of the mn-permutation 
takes the j -th place, and the elements numbered 1,...,1, −+ kjj  move one place to the right. Then 
return to the ( )1+j -th element of the mn-permutation, and with it continue assigning the next operations. 

From what has been said, it follows that an individual preference rule Q , the most efficient of  
the existing “rules bank” { }iQ  must correspond as well to each individual technological matrix T .  
We believe such a pseudo-optimal rule should be built on the principles of self-edification with the help 
of a balanced probability combination of rules { }iQ . We must make use of methods of search for  

the optimal balanced combination { }iδ  to make possible full use of the information provided by initial 
technological matrix T . 

Suppose that there exists a data bank of preference rules consisting of d  rules pQ , dp ,1= , and 
we know how long it takes to do all the jobs with the help of each rule. 

In keeping with the results of [11–15] say that we apply rule ∑
=

=
d

p
pQpQ

1
δ  to technological 

matrix T  if at the moment when a routine conflict situation arises, rule pQ  is applied to the queue of 

jobs with probability pδ . Algorithmically, this means that every time, a rule ξQ , d,1=ξ , is chosen, 
such that for its ordinal number relation 
 

∑
=

≤<∑
−

=

ξ
δη

ξ
δ

1

1

1 p
p

p
p , (6) 
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holds, where η  is the routine value of a random variable equi-distributed in interval [ ]1;0 . Rule ξQ  is 
applied (randomly or determined) to the queue of jobs according to the method described above. 

Now we take up the development of an algorithm for forming an optimal set of weights { }pδ . 
The algorithm described below employs the procedure aimed at a random search, and consists of the 
following stages: 

Stage I. Simulate d -dimensional vector ∑  equi-distributed on a d -dimensional hyper-surface 

∑
=

=
d

p
px

1
1 , 10 ≤≤ px , and denote the vector coordinates by symbols dδδδ ,...,, 21 , [13]. 

Note that the order of enumerating coordinates pδ  in sequence { }pδ  does not change from now. 

Stage II. Use the Monte Carlo method to simulate a random variable η , equi-distributed in 
interval [ ]1;0 . 

Stage III. Determine ordinal number { }d,1∈ξ , such that relation (6) holds. 

Stage IV. Draw up a calendar plan schedule for launching jobs on the machines in keeping 
with a periodical repetition of the Stages II⇒ III procedure and a set of values determined at Stage I for 
coordinates of vector ∑  for each conflict situation. In other words, simulate the work of the system by 

deterministic or randomised rule ∑
=

=
d

p
pQpQ

1
δ . 

Stage V. Calculate the value of optimisation criterion K  for a single realization of the model for 
drawing up a calendar schedule. 

Stage VI. Repeat the procedure of Stages II-V a sufficiently large number of times ( N  times) to 
obtain representative statistics, and subsequent calculation of mathematical expectation [ ]KE  for 

simulated values dδδ ,...,1 . Denote the value obtained by symbol [ ]{ }TpQpKE δ , which signifies the estimate 

of the efficiency of the balanced preference rule ∑
=

=
d

p
pQpQ

1
δ  for the initial technological matrix T . 

Stage VII. Compare values [ ]{ }pQpKEA δ=  and [ ]{ }TpQK
p

B min= . If inequality BA <  holds, it 

means we have determined (for initial matrix T ) a better preference rule ∑=+
p

pQpdQ δ1  than those in 

the data bank, and we turn to Stage X of the algorithm. If BA ≥ , go to the next stage. 

Stage VIII. Counter 1η  of the number of consecutive unsuccessful tests at the initial point of 
search now functions. If counter >< 1η  shows no more than the limit number of unsuccessful tests 

ICmax , turn to Stage I. This means that the procedure of Stages I-VI is again repeated, in order to provide 

a better balance rule 1+dQ . If ICmax1 >><η , transfer to the next stage of the algorithm. 

Stage IX. For the initial point of a local search, take vector-point ( ) ( )11
pδ=Σ , where ( ) 01 =pδ  

when γ≠p , and ( ) 11 =pδ  when γ=p , { }d,1∈γ , [ ]{ } BTQKE =γ . Further, turn to Stage XI, 

preliminarily sending the coordinate values of vector-point ( )1Σ  and of minKB =  to a special array Z . 

Stage X. Take vector-point ( ) ( ){ }11
pδ=Σ  as the initial point of the local random search for an extremum, 

with ( ) A
T

pQpKE =
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ 1δ . The coordinates of vector-point ( )1Σ  and value minKA =  are sent to array Z . 
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Stage XI. Make a local random search by 
 

( ) ( ) X+Σ=Σ 12 , (7) 
 

where X  is a random d -dimensional vector-point, whose coordinates px  satisfy relations 0
1

=∑
=

d

p
px  

and D
d

p
px =∑

=1
2 , where D  is a previously accepted length of the search step. 

Stage XII. Correct vector-point ( )2Σ  if it leads beyond the region of ( ) 120 ≤≤ pδ , dp ,1= . There 
are several ways to effect that correction, in particular by reducing search step D  (by halving, for instance) 

till restrictions ( ) 120 ≤≤ pδ  are satisfied. 
Take note of the fact that the search procedure can also be followed in other ways, including 

heuristic elements, for example, by relation 
 
( ) ( )

psignDpp αδδ ⋅+=∗ 12 , (8) 
 
where pα , dp ,1= , are independent values of a random variable equi-distributed in interval [ ]1;1 +− , 
and subsequent correction 
 

( )

( ) ( )

( )

( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∗>

∗<

≤∗≤∗

=∗∗

200

211

1202

2

pwhen

pwhen

pwhenp

p

δ

δ

δδ

δ , (9) 

 

( ) ( )
( )∑ ∗∗

⋅∗∗=∗

p
p

pp 2
122

δ
δδ . (10) 

 
Stage XIII. Perform the procedure of Stages II-VI ( N  times), preliminarily clearing counter 1η  

and subsequently calculating value ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

T
pQpKE 2δ . 

Stage XIV. Compare value ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

T
pQpKE 2δ  with the contents of the cell in array Z , where the 

minimal value of criterion minK  is stored. If the new estimate is less than value minK , transfer to  
Stage XVI. If not, move on to the next stage. 

Stage XV. Counter 2η  of the consecutive unsuccessful search steps now functions. If >< 2η  is 

less than limit number IICmax , transfer to Stage XI for a repeated realization of a random search step from 

the previous vector-point ( )1Σ . Otherwise, turn to Stage XVIII. 

Stage XVI. Clear counter 2η  and then compare values 

( )

min

min
2

1 K

K
T

pQpK −
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

=Δ

δ
 and minΔ , 
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where minΔ  is a pregiven relative error of the convergence of the optimisation criterion for a local 
random search. If min1 Δ≤Δ , turn to Stage XIX; otherwise advance to Stage XVII. 

Stage XVII. Send values of vector-point ( )2Σ  and ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

T
pQpKE 2δ  to array Z , subsequently 

transferring to Stage XI. In other words, the new vector-point ( )2Σ  takes the place of the previous one 

( ) ( )12 Σ⇒Σ , and the random search is carried out from the new point. Value ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

T
pQpKE 2δ  now 

becomes minimal value minK . 

Stage XVIII. Choose and print the local optimum, an optimal set of balance coefficients ( )
⎭
⎬
⎫

⎩
⎨
⎧ opt

pδ  

from array Z , and the corresponding value minK . After this, proceed to Stage XX. 

Stage XIX. Choose and print the local optimum ( )
⎭
⎬
⎫

⎩
⎨
⎧ 2

pδ  and the value of optimisation 

criterion ( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡=

T
pQpKEK 2

min δ . Further, turn to the next stage of the algorithm. 

Stage XX. Counter 3η  of the determined local optimums works. If >< 3η  exceeds the limit 

number IIICmax , proceed to Stage XXII. Otherwise, go to the next stage of the algorithm. 

Stage XXI. Clear counters 1η  and 2η  and array Z . Further, return to Stage I. 

Stage XXII. Choose an overall optimum, set { }∗pδ , furnishing a minimum of local optimums built 
on Stages XVIII–XIX, after which the work of the algorithm terminates. 

 
Note that such an adaptive algorithm, as we see it, especially efficient in case it is necessary to 

perform operative control of the process of feeding jobs to machines at random durations of separate 
operations ijO , i.e., at the stage of actual production. In such a case, at moment t  for each conflict 

situation, jobs must be chosen for machines according to the optimal set { }∗pδ  determined at moment t . 

The durations ijt  of the remaining operations ijO  are equated to their mathematical expectations, and 

the reduced matrix tT , including only the operations still to be done, is taken as the technological matrix T . 
If another conflict situation arises, we do the same, each time acting on decisions taken, i.e., working out 
the appropriate control action. 
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Fisher’s linear discriminant analysis is a widely used multivariate statistical technique with two closely related goals: 
discrimination and classification. The technique is very popular among users of discriminant analysis. Some of the reasons for this 
are its simplicity and un-necessity of strict assumptions. In its original form, proposed by Fisher, the method assumes equality of 
population covariance matrices, but does not explicitly require multivariate normality. However, optimal classification performance 
of Fisher's discriminant function can only be expected when multivariate normality is present as well, since only good 
discrimination can ensure good allocation. In practice, we often are in need of analysing input data samples, which are not adequate 
for Fisher’s classification rule, such that the distributions of the groups are not multivariate normal or covariance matrices of those 
are different or there are strong multi-nonlinearities.  

This paper proposes a new approach to pattern recognition based on comparison of maximum separations in the input data 
samples, where maximum separations are determined via Fisher’s separation criterion. The approach represents the improved 
pattern recognition procedure that allows one to take into account the cases which are not adequate for Fisher’s classification rule. 
Moreover, it allows one to classify sets of multivariate observations, where each of the sets contains more than one observation.  
For the cases, which are adequate for Fisher’s classification rule, the proposed approach gives the results similar to that of Fisher’s 
classification rule. Illustrative examples are given. 

Keywords: Fisher’s separation criterion, input data samples, maximum separation, pattern recognition 

 
1. Introduction 
 

Humans have developed highly sophisticated skills for sensing their environment and taking actions 
according to what they observe, e.g., recognizing a face, understanding spoken words, reading handwriting, 
distinguishing fresh food from its smell. We would like to give similar capabilities to machines. A pattern 
is an entity, vaguely defined, that could be given a name, e.g., fingerprint image, handwritten word, human 
face, speech signal, etc. Pattern recognition is the study of how machines can observe the environment, 
learn to distinguish patterns of interest, make sound and reasonable decisions about the categories of the 
patterns. We are often influenced by the knowledge of how patterns are modelled and recognized in nature 
when we develop pattern recognition algorithms. Research on machine perception also helps us gain deeper 
understanding and appreciation for pattern recognition systems in nature. Yet, we also apply many 
techniques that are purely numerical and do not have any correspondence in natural systems. Pattern 
recognition techniques find applications in many areas: machine learning, statistics, mathematics, computer 
science, biology, etc. There are many sub-problems in the design process. Many of these problems can 
indeed be solved. More complex learning, searching and optimisation algorithms are developed with advances 
in computer technology. There remain many fascinating unsolved problems. 

The aim of pattern recognition is to classify data (patterns) based on either a priori knowledge or 
on statistical information extracted from the patterns. The patterns to be classified are usually groups of 
measurements or observations, defining points in an appropriate multidimensional space. Many pattern 
recognition methods can be decomposed into two stages: discrimination followed by classification.  
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In some cases, the decomposition is explicit while in others it is a matter of interpretation. Discrimination 
and classification represent multivariate techniques concerned with separating distinct sets of objects  
(or observations) and allocating new objects (observations) to previously defined groups. There exist 
situations in which one may be interested in (1) discrimination: separating, say, two classes of objects or (2) 
classification: assigning a new object to one of two classes (or both). 

The most popular separation criterion of establishing rules for discrimination and classification of 
patterns is the Fisher’s discriminant (separation) ratio. Fisher's idea was to transform the (p ≥ 2) multivariate 
observations x to univariate observations y such that the y's derived from populations π1 and π2 were 
separated as much as possible. Fisher suggested taking linear combinations of x to create y’s because they 
are simple enough functions of the x to be handled easily. Fisher's approach does not assume that  
the populations are normal. It does, however, implicitly assume that the population covariance matrices are 
equal, because a pooled estimate of the common covariance matrix is used. A fixed linear combination of 

the x‘s takes the values y11, y12, …, 
11ny for the n1 observations of the 1nx = (x11, …, 11nx ) from the first 

population π1 and the values y21, y22, …, 
22ny for the n2 observations of the sample 2nx = (x21, …, 22nx ) 

from the second population π2. The separation of these two sets of univariate y's is assessed in terms of 
the difference between the sample means 1y  and 2y  expressed in standard deviation units. The separation 
criterion proposed by Fisher is given by  
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and has to be maximized with respect to u (transformation vector), where 
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is the pooled estimate of the variance. The sample means vectors and covariance matrices are determined 
by 
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Since it is assumed implicitly that the populations π1 and π2 have the same covariance matrix Σ,  
the sample covariance matrices S1 and S2 are combined (pooled) to derive a single unbiased estimate of Σ, 
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Theorem 1. (Separation criterion: maximization). Let Spooled be positive definite and )21 xx( − be  
a given vector. Then the optimal transformation vector is given by 
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with the maximum attained 
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Proof. By the extended Cauchy-Schwarz inequality [1], 
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Because u ≠ 0 and Spooled is positive definite, 0.pooled >′ uSu Dividing both sides of the inequality (8) by 

the positive scalar uSu pooled′ yields the upper bound 
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Taking the maximum over u gives Equation (7) because the bound is attained for )21
1

pooled xx(Su −= − . 

This completes the proof. 
Fisher’s linear discriminant analysis has been successfully used as dimensionality reduction 

technique to many classification problems, such as face recognition and multimedia information retrieval. 
The Fisher discriminant criterion is the benchmark for the linear discrimination in multidimensional space [2]. 
The criterion purpose of the Fisher linear discriminant for pattern analysis is to find an optimal discriminant 
direction based on the Fisher criterion so that the projected set of training samples on it has the maximal 
ratio of between-class distance to within-class distance [3–4]. Sammon extended the Fisher linear discriminant 
method to the optimal discriminant plane in 1970 [5]. Then Foley and Sammon [6] further extended this 
in 1975 and proposed the optimal set of discriminant vectors by which the well-known Foley-Sammon 
Transform (FST) can be constituted. Their important result has attracted many researchers' attention in 
the field of pattern recognition [7–8] and has been used in many pattern classification applications [9–10]. 
 
2. Fisher’s Approach to Pattern Recognition 
 
2.1. Case of Two Populations 
 

In this case, Fisher’s approach to pattern recognition is as follows: 
Discrimination. At this step, the optimal transformation vector (Fisher’s solution), which allows 

one to maximally separate the two populations (π1 and π2), is determined by (6). The maximum separation 
in the samples is given by (7). 

Classification. At this step, Fisher’s solution to the separation problem (Fisher’s discriminant function) 
is used to classify new observations as follows: 

Allocate x0 to π1 if 
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Allocate x0 to π2 if 
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Thus, the allocation rule based on Fisher’s discriminant function to classify x0 is given by 
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A pictorial representation of Fisher’s procedure for two p-variate populations with p=2 is given in Figure 1. 
 

 
 

Figure 1. A pictorial representation of Fisher’s procedure for two p-variate populations with p = 2 
 

The misclassification probabilities are shown on Figure 2. 
 

 
 

Figure 2. The misclassification probabilities based on Y 
 

Thus, Fisher’s approach to pattern recognition has optimality properties (in particular, the minimum 
total probability of misclassification) only if the underlying distributions of the groups of univariate 
observations (in terms of the random variable Y) obtained via transformation of the groups of multivariate 
observations (in terms of the random variable x) are symmetrical with equal variances. 

 
2.2. Case of Several Populations 

 
In this case, Fisher’s approach to pattern recognition consists in the following: 
Discrimination. At this step, the optimal transformation vector (Fisher’s solution), which allows 

one to maximally separate the (m > 2) populations (π1, …, πm), is determined by  
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where 
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represents the criterion of separation in the input data samples, 
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is the sample between groups matrix which includes the sample sizes ni, sample mean vectors 
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which is the p × 1 vector average taken over all the sample observations in the set of input data samples, 
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is the sample within group matrix. 
The maximum separation in the input data samples can be obtained as follows. Maximizing I (u) 

by taking the derivative with respect to u and setting it to 0, 
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we have 
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Thus, we deal with a standard eigenvalue problem. Now, we must solve 
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for the r nonzero eigenvalues (λ1, …, λr) of BW 1− , where r ≤ min (m − 1, p). Then the corresponding 
normalized eigenvectors are obtained by solving 
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and scaling the results such that  
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Thus, the maximum separation in the input data samples based on the criterion (14) is given by  
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Classification. At this step, Fisher’s solution to the separation problem (Fisher’s discriminant 
function) is used to classify new observations as follows: 

Allocate x0 to πl, l∈{1, …, m} if 
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where ∗
ku is defined in (21), lklky xu )( ′= ∗ and r ≤ min (m − 1, p).  

 
3. Pattern Recognition Based on Comparing of Maximum Separations in Data Samples  
 
3.1. Case of Two Populations 
 

Discrimination. At this step, based on (7) we determine the maximum separations in the two input 
data samples taking into account a new observation x0.  

Classification. In order to classify a new observation x0 to one of the two populations (π1, π2), we 
take decision based on comparison of the maximum separations in the two source data samples as 
follows:  

Allocate x0 to π1, 
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Allocate x0 to π2,  
 

if the maximum separation )()( 2)0(1
1

pooled(1)2)0(1 xxSxx −′− − (x0 has been added to the sample 1nx from π1)  

< the maximum separation )()( )0(21
1

pooled(2))0(21 xxSxx −′− − (x0 has been added to the sample 2nx from π2). (31) 
  

Thus, the allocation rule based on comparison of the maximum separations in the two input data 
samples to classify x0 is given by  
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3.2. Case of $Several Populations 
 
3.2.1. Version I (Paired-comparison procedure) 
 

Discrimination. At this step, based on (7) we determine the maximum separations in the input 
data samples taking into account a new observation x0.  
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Classification. In order to classify x0 to one of several, say, m (m > 2) populations, we use  
the ratio of the maximum separations in the input data samples as follows. At first, any two data samples 
from populations, say, πk and πr, respectively, are considered. 

The allocation rule based on the ratio of the maximum separations in the above data samples to 
classify x0 is given by  
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If x0 ∈πk, then the population πr is eliminated from further consideration. If (m − 1) populations 

are so eliminated, then the remaining population (say, kth) is the one to which the observation x0 being 
classified belongs. 
 
3.2.2. Version II 
  

Discrimination. At this step, based on (25) we determine the maximum separations in the input 
data samples taking into account a new observation x0. 

Classification. At this step, the maximum separation in the input data samples is used to classify 
x0 as follows: 

Allocate x0 to πl, l∈{1, …, m}  if 
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where x0 has been added to the sample lnx from πl, ∗
)(lku (k = 1, …, r) are defined via (12), and r ≤ min 

(m − 1, p).  
 
4. Examples 
 
4.1. Example 1 
 

This example is adapted from a study [11] concerned with the detection of hemophilia A carriers. 
To construct a procedure for detecting potential hemophilia A carriers, blood samples were assayed for 
two groups of women and measurements on the two variables, 

 
X1 = log10 (AHF activity) and X2 = log10 (AHF-like antigen) (38) 
 
recorded (see Table 1). (“AHF” denotes antihemophilic factor.)  
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Table 1. Hemophilia data 
 

Group 1: Noncarriers (π1) Group 2: Obligatory carriers (π2) 
No. log10 (AHF activity) log10 (AHF –like antigen) No. log10 (AHF activity) log10 (AHF –like antigen)
1 -0.23 -0.3 1 -0.45 0.015 
2 -0.18 -0.3 2 -0.43 -0.095 
3 -0.13 -0.3 3 -0.42 -0.12 
4 -0.16 -0.24 4 -0.41 -0.25 
5 -0.025 -0.2 5 -0.38 -0.28 
6 -0.12 -0.08 6 -0.35 -0.015 
7 -0.075 -0.14 7 -0.34 0.1 
8 -0.02 -0.15 8 -0.33 -0.13 
9 -0.13 -0.05 9 -0.24 0.28 

10 -0.08 -0.055 10 -0.24 0.15 
11 -0.025 -0.09 11 -0.26 0.08 
12 -0.06 -0.04 12 -0.26 -0.075 
13 0 -0.08 13 -0.25 -0.04 
14 0.05 -0.08 14 -0.22 -0.015 
15 0.07 -0.1 15 -0.22 0.024 
16 0.03 0.11 16 -0.21 -0.04 
17 0.05 0 17 -0.175 -0.09 
18 0.04 -0.03 18 -0.2 0.25 
19 0.1 0 19 -0.19 0.175 
20 0.075 0.02 20 -0.075 0.17 
21 0.055 0.05 21 -0.015 0.15 
22 0.06 0.1 22 -0.03 0.0135 
23 0.09 0.09 23 -0.025 0.08 
24 0.1 0.05    
25 0.11 0.035    
26 0.1 0.125    
27 0.12 0.125    
28 0.14 0.07    
29 0.21 0.11    

 
The first group of n1 = 29 women were selected from a population of women who did not carry the 

hemophilia gene. This group was called the normal group. The second group of n2 = 23 women was 
selected from known hemophilia A carriers (daughters of hemophiliacs, mothers with more than one 
hemophilic son, and mothers with one hemophilic son and other hemophilic relatives). This group was 
called the obligatory carriers. The pairs of observations (x1, x2) for the two groups are plotted on 
Figure 3. Also estimated contours are shown containing 50% and 95% of the probability for bivariate 
normal distributions centred at 1x  and ,2x  respectively. Their common covariance matrix was taken as 
the pooled sample covariance matrix Spooled. In this example, bivariate normal distributions seem to fit  
the data fairly well. 

The following information is given below: 
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It follows from (6) that the optimal transformation vector is 
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Figure 3. Scatter plots of [log10 (AHF activity), log10 (AHF-like antigen)] for the normal group and obligatory hemophilia A carriers 
 

For instance, measurements of AHF activity and AHF-like antigen on a woman who may be  
a hemophilia A carrier give x1 = −0.210 and x2 = −0.044. Should this woman be classified as π1 (normal) 
or π2 (obligatory carrier)? 

Using Fisher’s approach, we obtain 
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Using the proposed approach based on the ratio of the maximum separations in the input data 
samples, we obtain 
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Applying either (42) or (43), we classify the woman as π2, an obligatory carrier. Thus, Fisher’s 
approach and the proposed one give the same result in the above case.  
 
4.2. Example 2 

 
Consider the observations on p = 2 variables from m = 3 populations. The input data samples are 

given below.  

π1 (n1 = 3)                                          π2 (n2 = 3)                             π3 (n3 = 3) 
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We found that 
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To solve for the r ≤ min (m − 1, p) = min (2, 2) = 2 nonzero eigenvalues of BW 1− , we must solve 
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We find that λ1 = 2.867071 and λ2 = 0.904357. Then the corresponding normalized eigenvectors are 
obtained by solving 
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and scaling the results such that  
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Thus, we obtain 
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Using Fisher’s approach to classify the new observation [ ]310 =′x  in accordance with (26), we have 
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Since the minimum of∑ =
−

2
1

2
0 )(

k lkk yy occurs when l = 2, we allocate x0 to population π2. It will be 
noted that the approach proposed in this paper gives in the above case the same result. The situation, in 
terms of the classifiers iy is illustrated on Figure 4. 

 

Figure 4. The points ,0y ,1y ,2y and 3y in the classification plane 
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5. Conclusions 
 

The methodology described here can be extended in several different directions to handle various 
problems of pattern recognition that arise in practice (in particular, the problem of change-point detection 
in a sequence of multivariate observations).  
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