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Abstract  

The stream of elastic energy in a wave extending on a rough surface is calculated. For enough smooth surface attenuation of a superficial 
wave is defined by the transport time of a relaxation considering of non-essentially processes of scattering on a small corner. 
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1 Introduction  

In work [1] considered the spread of Rayleigh waves on a 
rough surface of an elastic isotropic half-space. The surface 
of the elastic medium assumed to be random, and the 
deviation of the random surface of the plane χ=0 was 
believed to be small compared with the length of spreading 
over the surface of the Rayleigh wave. Calculates the 
displacement vector of the medium averaged over the 
ensemble of random surfaces. Appeared attenuation τ was 
due to scattering Rayleigh waves into secondary Rayleigh 
waves and body waves. Similar problems have been 
considered earlier in work [2] and [3] by a different 
method. However, taking into account only the scattering 
of Rayleigh waves in the body waves. In some cases, the 
attenuation due to the excitation secondary Rayleigh waves, 
as shown in [1], is the main. Considered in [1] attenuation 
was calculated as the displacement pole averaged 
roughness of the Green's function of elasticity equations 
with appropriate boundary conditions. For this reason, the τ 
was determined by the scattering amplitude waves on the 
roughness and an increase in the correlation length of 
roughness d does not tend to zero. 

On the other hand, an increase in d means an appro-

ximation to a perfectly flat surface, and in this case, the 

damping would be to decrease. 

To answer this question in the present work calculated 

physical observable quantity - the energy flux density ave-

raged over the rough. It is shown that in the limit of large d 

damping is determined by the transport time τtr, decreasing 

for large d. The reason for replacing the τ to τtr related to 

the fact that the scattering at zero angle does not contribute 

to attenuation. In the calculation of the flow along with the 

Green's function is required to consider vertex diagrams, 

which leads to the appearance. The problem is being sol-

ved is close to the problem of skin-effect on the rough sur-

face [4]. Another example - the resistance of alloys [5]. 

The energy flux density  ,  ,  x s tq  in the sound wave 

determined based on the continuity equation 

 
 

, ,
, ,

d x s t
div x s t

dt


  q , 

where the energy density is determined by the expression 
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uik - strain tensor, S - a two-dimensional vector with 
coordinates y,z. Using the equations of motion 
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We obtain for  , ,q x s t  expression 

   2 2 2, , 2 2j t i ij l t j iiq x s t c u u c c u u     
 

. (3) 

From equation (2) and the boundary conditions 

 , ,n P x s t    , (4) 

that must be done on a random surface  x s ,(  - 

stress tensor), determined components of displacement 

 , ,u x s t . We assume that the force  , ,P x s t is 

different from zero in a small area on the surface and 

calculate the flow at large distances from the point of 

excitation. 

The solution of equations (2), decomposed in t and s as 

a Fourier integral, write in the form 

       , , , , xip x
u x u C e



  


  p p p , (5) 

where 
   ,u


 p  - own solution of the equations (2), 
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The   index of a column of a matrix (6) enumerates 

three independent decisions, the speed of spreading of c  

coincides with the speed of transverse waves at ,y z   

and with a speed of longitudinal waves of x  .  ,C p  

vector is determined from the boundary condition (4), which, 

after decomposition in a Fourier integral and substituting (5) 

into (4) takes the form (drop the vector indices). 

     
 
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where
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In the formulas (8) 0p   at , ,y zx p p p    at 

,y z  . As in [1], we consider the amplitude of the 

roughness is small compared to the wavelength of sound ad, 

so the derivation of (7) the left side of the boundary condition 

(4) is decomposed by ~  accurate to the second order. 

To calculate the flow required substitute (5) into (3) 
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.  (9) 

In the flow interesting us at large distances from the 

point of excitation term with 
   xp p p
   using 

conditions (4) can be reduced to the form containing

 
s

p p , then the expression (9) takes the form 
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To calculate C  need to solve the equation (7). 

Considering  s  small, we solve equation (7) iterations 

on 
 1

V  and 
 2

V . 

In the zero approximation 

         0 0 1
, , ,H P  


C p p p  

Substituting 
   0

,C p  in (5), we obtain the solution 
on a perfectly flat surface 

           
 0 1

, , , , , xip x
u x u H P e
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

p p p p . (11) 

The poles of  , ,u x p   (11) defined from a condition 

   
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c
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give the known spectrum of Rayleigh waves on the ideal 
surface 

 0

R

p p
c


  . 

The time-averaged flow of energy density, determined 

by integrating (10) with respect to p multiplier 
i se p

, must 

be calculated at 0  . On the ideal surface the result of 

integration at large distances determined by the poles and 

branch points of the expression (11), as well as the saddle 

point exponent. Recent determine the contribution of body 

waves in the flow of energy. In the integration over the 

angle between p and s are two saddle points corresponding 

to the two directions of spreading. We find the contribution 

of the poles, i.e Rayleigh waves, in the flow of energy. 

Writing the inverse matrix 
   0 1

,


H p  as near the pole in 

the form of 

        
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0, p p i R   
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  H p p , (12) 

where  R p  has no singularities, we obtain for the 

contribution of Rayleigh waves in the flow of energy the 

following estimate 

 ( ) 3 20,s,0 ( )sq d p
s


     . (13) 

The contribution of the saddle point

  2 2p s x s
c






  , available in the integral modulo 
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 
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5
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,s,0s tc x
q x d p

x s


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
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It is easy to see that the input branch at large distances 

proportional  
5

2 2 41 x s , that is small compared to (14). 

Returning to the case of a rough surface on the n  step 

iterations, we find 

   
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Substituting (15) into (10) and averaging over a rough, 
we see that there are two types of terms. In terms of the 
first type    , ,C C       p p p  average of the 

product into a product of averages. Calculate the average 
of  ,C  p , described in detail in [1], leads to the 
following result      1, , ,C p H p P p      

     
 

                
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2
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


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Members with V change spectrum of Rayleigh waves. 
Near the pole 1H   can be represented in a form similar to (12) 

      
1

1 2 2

0, Rp p i c R  


   H p p . (17) 

Asymptotic expressions for  
1

Rc


 are given in [1]. 

Note that formula (16) allows us to calculate the atten-

uation of a second order in the   , in which it is deter-

mined by the binary correlation function 

(1) (1) 2

2 2( ) (p') (2 ) ( ') ( )V V p p p      p   

Easy to see that while 
 1

V  defines as attenuation and 

the displacement the ownl frequencies, 
   2

,V p p  - 

does not contribute to attenuation. For this reason, further 
   2

,V p p  won’t be considered. 

Does not reduce to the product of the average 
expression of the second order in shown in Figure 1. 

 
FIGURE 1 The diagram of the second order 

Thin line begins with 
   0 1

,H 
  p  and ends with 

 ,P q , or begins with 
   0 1

,H  
   p p  and ends 

with  ,P   p q , and the dotted line corresponds to 

the binary correlation function
2 , at the top there is a 

multiplier 
 1

V . Performing the summation of the iterative 

series for the average 
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      *, , , , ,
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in the ladder approximation we obtain the equation 
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Later on we will be interested in the case when the 
correlation length d (an area in which 

2  significantly 
different from zero) is large in comparison with the 
characteristic length of Rayleigh waves. In deriving (18) 
we have neglected terms of order d . The time-averaged 

flow  , ,x q p  at large distances is determined by p and 
ω, are small in comparison with the characteristic 
frequency and length of Rayleigh waves. For this reason, 
the integral 
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We will calculate at small p and ω, p  corresponds to 
the length of the excited Rayleigh waves. To solve 

equation (18) multiply it by        1 1 *
, , 
  V l p V l p p p  

and integrate over p . We obtain 

 
 

       

         

2
1 1 *

2

1 1* *

, , , ,
2

, , , , ,

s

s

d p

H H P P p

  

    

 


        


     

                

l K V l p V l p p p

p p p p p p K

. (20) 

The character of the solutions of (20) is determined by 

which of the functions 

         1 1

2 , ,
    l p V l p V l p p p  or 

   1 1, ,H H        p p p  are in the integration over 

p  more acute. The first significantly changes at 

modification of the module in the range of 1 d  order, and 

the second – in the range of1 Rc . Appropriate intervals of 

the angle of the vector p :  01 dp   for  2 l p  and 

1 Rc p  for    1 1, ,H H        p p p . 

Multiplying (20) on the scalar l  and using (18) we see that 

the following limiting cases. 
The correlation radius d is large in comparison with the 

Rc . Integration with respect to the vector p  in (20) is 
performed using a sharp function  2 l p , and pole 
denominators 1H   may be submitted at  p l . In this 

case, used the ladder approximation is inapplicable 
because it omitted the derivation of (18) diagrams are large 
in parameter  

2
ap


  

At lower values of the correlation length 
Rd c

integration modulo p  performed using pole denominators, 
and the integration over the angle   - between p and l  
and using the function 

2  on condition. 

2

0

1

( ( ') ) R

P

cP d 
. (21) 

Allocating polar as denominator 

  
1

0cos Rb p p i c  


   , where   - a angle 

between p  and l , and entering the matrix which does not 

have features  
     

 

1

0

,
,

2

R
M

p

 




 
 



V l p p
l p ,

we obtain 

   , cos cos ,K i b M M d P P M M d K                          
   . (22) 

Solving (22), we find 

 
1

, cos cosK i b M M d M M d i bP P                 


           
   . 

Substituting the value K  of (22) into the expression for the polarized operator 
s  (18), we obtain 

 
1

1 1

s
cos cossH H p P P i b M M d i b M M d P P           

       


                
    . 

Presenting the inverse matrix as 
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1

,

cos

det cos

i b M M d

i b M M d N

   

     

    

    






    
 

    
 




, 

where ,N  has no features, we find 

 

   
 

 

0

1 1*

,

0

, , ,

cos

, ,

cos

s

R

s

tr R

i
p p

r
H H p N P P

i
p p

c



     

  

 


  

 


  

     

 
    

        
   
  

 p p p

p p p
, (23) 

where 

 
1

cos 1R

tr

c Sp Sp d  


     M M  

 
The last integral is determined by the range of angles 

 01 p d   , and we obtain the following estimate 

 01 p d   . (24) 

From formula (24) we see that with increasing d time 

τtr increases. Asymptotic of the flow of energy in this case 

is given by 

21 3

1 1 0

(0, ,0) exp ' ( ') ',

( ')
( )

tr R

R

R

s
q s S p P d

c

p
c d

c p

  









 

 
 
 

 


. (25)

In the case of 2 1

0/ ( ( ') ) ( )Rp p d c    estimate 
solution of equation (18) is given by the first term on the 
right side. In this case, damping is determined by the same 

order of magnitude as the displacement of the poles of the 
Green functions  1 ,H 

p . Corresponding asymptotic 
formulas are given in [1]. 
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