
COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 17-23 Uskenbayeva R, Mukazhanov N 

17 
Mathematical and Computer Modelling 

Data decomposition for formation aggregation values of 
hypercube in multiprocessor parallel computing systems 

R Uskenbayeva, N Mukazhanov* 

Department of Computer Science and Software Engineering, International University of Information Technologies  

34 «А»/8 «А» Manas Str./Zhandosov Str., Almaty, Kazakhstan 

*Corresponding author’s e-mail: mukazhan@mail.ru 

Received 1 January 2015, www.cmnt.lv 

Abstract 

In this paper possibilities of aggregational values calculation is considered. Aggregational values are the main element of multidimensional 
operative analytical processing. The main reason of using parallel computing systems in data processing is to increase productivity level. 
Although, parallel computing systems cannot be used in processing all data types. Data processing algorithms and processing data should 
be gradually adapted to parallel computing systems’ usage. In this regard, data decomposition for formation aggregational values in parallel 
computing systems in data operative analyzing is considered in this paper. In order to identify dependence between data during the process 
of decomposition Bernstein's conditions are used. At the same time implemented course calculation of from 1-dimension to n-dimension 
and parallel computation of course interactions will also be considered. 

Keywords: OLAP, multidimensional hypercube, aggregational values, parallel computing, decomposition  

 

1 Introduction 

Intensive development of information technologies and 
their wide range usage in all production spheres requires 
effective processing of large amounts of information. 
Accordingly, in order to increase productivity of large 
amounts of information processing effective multiprocessor 
parallel computing systems are suggested. Effective usage 
of high-performance parallel calculation systems requires to 
solve several important tasks. One of them is to make 
proved parallel algorithms and data that is being processed 
by parallel computation system.  

Nowadays one of the main directions of information 
technologies which requires the large amounts of data pro-
cessing with the help of high-performance computing 
systems is data operative analytical processing. OLAP (On-
Line Analytical Processing) is created in order to perform 
operative analytical processing of data. This technology is 
created for working with large amounts of data sources and 
organizes analytical data as multidimensional hypercube and 
provides users with required data in the form of hypercube 
lays. One of the most crucial requirements of operative 
computation system at certain moment is to quickly calculate, 
formulate, suggest and store aggregational indexes in huge 
amounts of data sources. Summing of aggreagtional values is 
calculated as (sum), average value (avg), minimum value 
(min), maximum value (max) and e.g. Aggreagtional values 
size is much more less than original values, therefore request 
fulfillment of previously computed aggregation data would 
take less time. Accordingly, data bringing from aggregation 
increases the rate of demand. Previously computation of 
aggreagtional values in large amounts of data processing 
meets operative processing requirements.  

Large size of data source which is used in analytical 
hypercube performance and high quantity of dimensions 
and dimensional elements which are used in processing, 
deriving possible aggregational summing require number of 
operation courses to be performed. In order to do these kind 

of processes in short time, parallel computations are used in 
multiprocessor systems. Parallel computing systems usage’s 
opportunities in data operative processing with the help of 
OLAP are shown in workshops [1-3]. In these workshops 
decomposition by computation functions is considered. In 
processing of data parallel computation system data decom-
position has to be used as well as decomposition by 
computation functions.  

The main objective of given work is data decomposition 
for formation aggregational values which are the main 
element of multidimensional operative analytical processing 
in multiprocessor parallel computing systems. 

2 Decomposition of aggregational values computing 
operators by data 

In decomposition performance aggregation by summing of 
values and operators of summing would be considered. 
Summing algorithm and its operators are shown in source [5]. 
Division of atomic operation groups of independent values 
and independent operators in order to perform summing 
parallel is algorithm decomposition. Each of the atomic 
groups consist of internal groups dependent from each other: 
operation groups which cannot be used separately or ope-
ration groups which cannot be performed separately. Depen-
dence between values and operations groups should be iden-
tified in order to divide them into atomic groups.  

If large amounts of data is processed by certain atomic 
algorithm, these kind of data can be divided into separate 
divisions which can be processed independently from each 
other and processing would be performed by several performer 
(processor). Process results can be extracted in this way. That 
is called decomposition by data. Division for independent parts 
of numerical values produced by aggregational values in data 
decompositions will be discussed. The second type of decom-
position is division of comuations (operations) through several 
performers and data identification of certain calculator. That is 



COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 17-23 Uskenbayeva R, Mukazhanov N 

18 
Mathematical and Computer Modelling 

called decomposition by computation functions. Decomposi-
tion, task division process not always have successful finish. 
For example, some algorithms work just by one performer 
(processor). It means that just data parallel processing of atomic 
divided groups or parallel processing of operations might be 
performed. Integration to one atomic group of data that cannot 
be processed separately and operation groups that cannot be 
performed separately is performed [4]. 

Fulfillment of certain task consists of activities set and 
action groups. Each action set can be divided into atomic 
activities group. If activities are to be parallel performed 
atomic groups will be performed in several performers 
simultaneously. In that case they are two performers 
(processors) in computation system. If output data is taken 
from input data with similar format at any moment in 
parallel computing, activities set will be determinant. In 
opposite way, if different output data is taken from different 
input data, activities group will be non-determinant. Parallel 
performance can be used if activities groups are determinant. 
Bernstein’s conditions are used to identify whether program 
activities determinant or not. Let’s try to identify aggrega-
tional values calculation determination with Bernstein’s 
condition. Operator is the smallest atomic part of program 
which includes one or several operands in programming 
tasks or instructions.  

2.1 BERNSTEIN’S CONDITION 

They are input and output variableness in activities set of each 
program. Some activities set might not have such kind of 
variableness. If there is no any input variableness (data) in 
aggregational values calculation NULL value will be men-
tioned. Absence of input variableness means that hypercube 
aggregational values calculation by multidimensional index 
structure does not have original fact values.  

Let’s insert notes, activities set in program P, input 
variableness groups of activities set R(P), (borrowed from 
“read” in programming), output variableness groups of 
activities set W(P) (borrowed from “write” in programm-
ming). Bernstein’s condition will be identified as following 
for P and Q activities sets [4]: 

1) If intersection of W(P) and W(Q) is free group (Ø),  
2) If intersection of W(P) and R(Q) is free group (Ø), 
3) If intersection of R(P) and W(Q) is free group (Ø). 
Performance of P and Q sets will be determinant.  
Activities sets being as output data should not use just 

one variableness in 1-condition.  
Variableness used as input data in certain activities sets 

at the same time should not be used as output data in another 
activities sets according to the 2 and 3 conditions.  

If given conditions are performed P and Q activities sets 
are not connected with each other. That means atomic 
groups taken from P and Q activities set are not related. 
Internal groups of each of the atomic groups might be 
connected. Thus given sets would be parallel performed if 
Bernstein condition is enough to identify the determination 
of activities sets and if it is entirely performed. Certain 
atomic groups might not be determinant under activities sets 
consideration, values and operations groups, which are 
united in atomic groups might be also determinant to one 
another. Also several processes might be accessed to one 
atomic group while performance of parallel computing is 

happening. Atomic operations groups might be performed 
separately without being crossed with each other, never-
theless several processes might be accessed to the one 
atomic data group as mutual resource. These all may create 
race condition connected with which of the processes acc-
essed to data first which one did it second. In this regard, 
critical sections will be created in data parallel processing. 
Critical section is the result of race condition during the 
performance of program. 

Consideration of Bernstein’ condition identification of 

aggregational values computation operations’ determination: 

1S
, 2S

, 3S ,...,
 nS

, 11S , 
12S ,

13S ,...,
1 nkS

, 
...,

 nn kkS 1 ,...,

1...111allS , 
2...111allS ,

3...111allS  ,..., 
nkkkkallS

...321
- hypercube 

aggregational values computing operators. Accordingly, 

computing operators summing format (1-13 formula) [5]: 

1

1

1

[1]

j

i

i

S x



 , (1) 

2

2

1

[2]

j

i

i

S x



 , (2) 

3

3

1

[3]

j

i

i

S x



 , (3) 

1

[ ]

nj

n i

i

S x n



 , (4) 

11

11

1

[1][1]

j

i

i

S x



 , (5) 

12

12

1

[1][2]

j

i

i

S x



 , (6) 

13

13

1

[1][3]

j

i

i

S x



 , (7) 

1 2

1 2 1 2

1

[ ][ ]

k kj

k k i

i

S x k k



 , (8) 

1

1

1

[ 1][ ]

k kn n

n n

j

k k i n n

i

S x k k







  , (9) 

111...1

111...1

1

[1][1][1]...[1]

j

all i

i

S x



 , (10) 

111...2

111...2

1

[1][1][1]...[2]

j

all i

i

S x



 , (11) 

111...3

111...3

1

[1][1][1]...[3]

j

all i

i

S x



 , (12) 



COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 17-23 Uskenbayeva R, Mukazhanov N 

19 
Mathematical and Computer Modelling 

...1 2 3

...1 2 3
1 2 3

1

[ ][ ][ ]...[ ]

k k k kn

k k k kn

j

all i n

i

S x k k k k



   (13) 

Lower indexes of summing operators give aggeragtional 
values from 1 and n-dimensional size. If indexes of ope-
rators have similar size, they can be dynamically inter-
changing performed. Dimensions are similar with quantity 
of dimension performed in lays. Intersection of input and 
output data of values computing operators can be identified 
by Bernstein’ condition. In order to do this Bernstein’ con-
dition will be formulated on computing operators.  

Operators are organized as determinant activities groups 

and they can be performed in pseudo parallel way. 

According to this, following 
111...1allS , 

111...2allS ,
111...3allS  ,..., 

...1 2 3k k k kn
allS  - if we use original aggregational values 

compuating operators these operations will be performed 

dynamically interchanged way. All original aggregational 

values computing operators do not have connected output 

and input data. 
1...111allS , 

2...111allS ,
3...111allS  ,..., 

nkkkkallS
...321

 

- operators set will be performed in program, but their 

parallel performance at the same time has to be considered 

from to point of Bernstein’ condition. 

There is no connection between all of operators and we 

can take any two of them in order to test them by Bernstein’ 

condition because they are equal. If 
111...1allS , 

111...2allS  - if two 

operators are being performed dynamically one by one in 

(atomic actions set) program 

– If the intersection of 
111...1

( )allW S  and 
111...2

( )allW S  is 

free group (
111...1 111...2

( ) ( )all allW S W S Ø),  

– If the intersection of 
111...1

( )allW S  and 
111...2

( )allR S  is 

free group (
111...1 111...2

( ) ( )all allW S R S  Ø), 

– If the intersection of 
111...1

( )allR S  and 
111...2

( )allW S  is 

free group (
111...1 111...2

( ) ( )all allR S W S  Ø), operators 
111...1allS , 

111...2allS  might be performed at the same time in different 

processors in parallel computing system. This parallel 

computing is common for 
111...1allS , 

111...2allS ,
111...3allS  ,..., 

...1 2 3k k k kn
allS  - all operators.  

Disturbing consequence of Bernsten’s condition in dyna-

mically performed atomic sets 
111...1allS , 

111...2allS ,
111...3allS  ,..., 

...1 2 3k k k kn
allS  - is considered [6]. Disturbing of the first Bernstein’ 

condition for two operators of dynamically performed one by 

one program set 
111...1allS , 

111...2allS  is being considered.

 
– If the intersection of 

111...1
( )allW S  and 

111...2
( )allW S  is 

not free group (
111...1 111...2

( ) ( )all allW S W S   is not free),  

– If the intersection of 
111...1

( )allW S  and 
111...2

( )allR S  is free 

group (
111...1 111...2

( ) ( )all allW S R S  ), 

– If the intersection of 
111...1

( )allR S  and 
111...2

( )allW S  is free 

group (
111...1 111...2

( ) ( )all allR S W S  ), 

Performance:  

1) 

111...1

111...1

1

[1][1][1]...[1]

j

all i

i

S x



  

2) 

111...2

111...2

1

[1][1][1]...[2]

j

all i

i

S x



  

Case when output results is written down on one variab-

leness. Entering output data into one variablness in program 

might is used to save the memory. By renaming the similar 

variableness of output data we can easily solve the problem. For 

example: 
111...1allS  first output variableness is stayed untouched, 

accordingly the second one will be mentioned like this: 
111...2allS . 

Nevertheless, while entering outgoing data into one 

variableness operators stay interdependent and this is called 

output dependence. Output data dependence will not hinder to 

perform the task in parallel way, but variableness should be 

renamed. This dependence is usually mentioned like this: 

111...1 111...2

o

all allS S , graphic type like this:  

 
FIGURE 1 Output dependence 

The next, disturbing of Bernstein’s second condition for 

two operators (or operators group)
111...1allS , 

111...2allS  of program 

set which is performed dynamically one by one is considered.  

– If intersection of 
111...1

( )allW S  and 
111...2

( )allW S  is free 

group (
111...1 111...2

( ) ( )all allW S W S  ),  

– If intersection of 
111...1

( )allW S  and 
111...2

( )allR S  is not 

free group (
111...1 111...2

( ) ( )all allW S R S  not free group), 

– If intersection of 
111...1

( )allR S  and 
111...2

( )allW S  is free 

group (
111...1 111...2

( ) ( )all allR S W S  ), 

Performance:  

1)

111...1

111...1

1

[1][1][1]...[1]

j

all i

i

S x



  

2) 

111...2

111...2 111...1

1

[1][1][1]...[2]

j

all all i

i

S S x



   

Result of 
111...1allS  calculation will be used in 

111...2allS  

calculation. If given operators are performed dynamically 

one by one, they cannot be parallel performed. This kind of 

dependence is called flow dependence. Flow dependence 

mark accepted as following 
111...1 111...2all allS S  and Figure 2 

shows its graphic format. 

 
FIGURE 2 Flow dependence 

The next, disturbing of Bernstein’s third condition for 



COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 17-23 Uskenbayeva R, Mukazhanov N 

20 
Mathematical and Computer Modelling 

two operators (or operators group) 
111...1allS , 

111...2allS  of 

program set which is performed dynamically one by one 

will be considered.

 – If intersection of 
111...1

( )allW S  and 
111...2

( )allW S  is free 

group (
111...1 111...2

( ) ( )all allW S W S  ),  

– If intersection of 
111...1

( )allW S  and 
111...2

( )allR S  is free 

group (
111...1 111...2

( ) ( )all allW S R S  ), 

– (
111...1 111...2

( ) ( )all allR S W S  is not a free group), 

Performance: 

1) 

111...1

111...1 111...2

1

[1][1][1]...[1]

j

all i all

i

S x S



   

2) 

111...2

111...2

1

[1][1][1]...[2]

j

all i

i

S x



   

Result of 
111...1allS  calculation will be used in 

111...2allS  

calculation, 
111...2allS  value will be identified in following 

calculation. If aggregational values are calculated first time 

and operators 
111...1allS , 

111...2allS  are performed in set in one 

performer, in calculation 
111...1allS  value of 

111...2allS  will be 

equal to 0. In following calculations value of 
111...2allS  value 

which is taken from one iteration will be used.  

If operators 
111...1allS  and 

111...2allS  calculation is performed 

in different performers, operator 
111...1allS  use the one 

iteration earlier value of operator 
111...2allS  and in that case 

parallel performance can be entirely completed. Before 

using hyppercube formation aggreagtional values taken 

from atomic activities 
111...1allS , 

111...2allS ,
111...3allS  ,..., 

...1 2 3k k k kn
allS

will be equal to 0. Values taken from atomic activities will 

be identified after each iteration process ends and after 

iteration all values will be distributed to performers then will 

be copied to their local memory. Parallel computing will be 

continued after all this operations end. This type of 

dependence is called antidependence. Antidependence mark 

is accepted as following 
111...1 111...2

1

all allS S 
 its graphic 

format is following (Figure 3): 

 
FIGURE 3 Antidependence 

Other types of dependence are used in set program parallel 
performance except the ones which are mentioned above. They 
are: connected with condition, by recursion and etc. 

2.2 CYCLIC OPERATIONS AND THEIR PARALLEL 
PERFORMANCE IN CALCULATION OF AGGRE-
GATIONAL VALUES HYPERCUBE 

Large amounts of data processing perform consistently in 

number of program. It is the main reason of careful attention 
on set program parallel performance by data. In aggre-
gational values calculation structure which is characterized 
above is basically performed in format of massive. Massive 
should be divided into parts which are processed separately 
by certain users in parallel performance by data. In massive 
processing courses are used. It means that courses impact on 
courses parallel performance of dependence and data 
massive dependence should be identified. 

One simple dimensional and multidimensional comp-

leted courses are used in aggregational data calculation. By 

accordance of indexes taken from original fact data sum-

ming of values jointed in one massive are performed like 

one dimensional loop. All original aggregational values will 

be jointed into one dimensional massive and processing will 

be performed by one dimensional course. In formation of 

certain hypercube loop quantity performed in calculation of 

original aggregational values is equal to multiplication of all 

dimensions elements of hypercube or it might be less than 

them 1 2 3 ...r nN k k k k     . All one dimensional loops 

are free from each other. It was discussed above and they 

can be performed dynamically divided into processors. But 

iterations of loops might be interdependent. Calculation of 

original aggreagtional values operators by joining all 

aggregational values into same multidimensional indexes 

111...1allS , 
111...2allS ,

111...3allS  ,..., 
...1 2 3k k k kn

allS  is considered:  

 

1) for ( int i = 1;  i ≤ 1...111j ;  i++ ) 

2) { 

3) 1S : 
111...1 111...1 1i

all all iS S x


  ; 

4) } 
For parallel performance of given loop its iterations 

should be divided into independent parts. In order to identify 
dependence between iterations loop is considered: 

1) 
1

1S : 
111...1111...1

1

1all allS S x  ; 

2) 1

2S : 
111...1 111...1

2 1

2all all
S S x  ; 

3) 
3

1S : 
111...1 111...1

3 2

3all all
S S x  ; 

4).... 

5) 111...1

1

j
S : 111...1 111...1 1

111...1111...1 111...1all all

j j

jS S x  ; 

 

Operator 
111...1allS -  

1 1 1 . . . 11i
a l lS



 which is calculated one 

iteration before as incoming value and iteration step value 

ix  will be considered in each iteration. Marking 
k

iS  in loop 

iteration i operator kS  (or operator 
kallS ) are using for 

reincarnation. Set operators group data independence can be 

processed in open loop. Dependence by output data can be 

easily sorted by renaming variableness. It is mentioned 

above. Our next step is identification of dependence of input 

data in loops. If value 
111...1all

iS is used as output data in one 

loop iteration in aggregational values calculation it is also 

used as input data. It shows that dependence which performs 

summing operations exists in course iteration. If loop 



COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 17-23 Uskenbayeva R, Mukazhanov N 

21 
Mathematical and Computer Modelling 

iterations are performed by certain users, Bernstein’s 

condition disturbing will be noted. Input data dependence 

performance is considered. If iteration variableness values 

are "
111...1j ", λ and κ and if they are equal to 1 ≤ λ ≤ 

111...1j , 

1 ≤ κ ≤ 1...111j  source of dependence will be the following 

1
S 

 (
111...1all

S
) (massive element – as output variableness), 

1
S 

(
111...1all

S 
) – sink of dependence (massive element – as 

input variableness). Therefore value D = λ - κ is being 

calculated. This value is considered as loop dependence 

distance [4]. 
Loop parallel needs the dependence distance to analyzing 

and division. Dependence distance value gives the opportunity 
to identify type of dependence between data for performers and 
to divide iteration space into independent parts.  

Dependence distance is identified to given loop iteration 

parallel performance. For example, iterations
1

2S  and 
1

3S use 

value 
111...1

2

all
S . This value is output variableness of iteration

1

2S , 

source of dependence, but in iteration 
1

3S  – it is considered as 

input variableness, or sink of dependence. Accordingly, λ = 3, 

κ = 2. Dependence distance is D = λ - κ = 1.  
If dependence distance is equal to D > 0 , flow depen-

dence will take place between course iterations. If it is equal 
to D > 1 course will be parallel performed in processors not 
more than D. 

If dependence distance is equal to D < 0, antidependence 
will take place between loop iterations. If course iteration 
performance has required before input data is copied into 
performers, each iteration of loop can be performed in 
parallel performance.  

If dependence distance is equal to D = 0, dependence 
between courses will not be identified. Each of iteration of 
loop makes parallel performance to performers.  

It is known that several dimensions are used in hypercube. 
Multidimensional hypercube is given in the form of multi-
dimensional massive, implemented loop types are used in 
program processing of multidimensional data massive. 
Implemented loops might consist 2 or more internal loops. 
Internal loops quantity in aggregational values calculation 
which are used in each of the implemented loops are connec-
ted with dimension quantity in hypercube lays production. 
Implemented loop for n-dimensional hypercube is considered:  

 
1: for ( int 1i  = 1; i ≤ 1k ; 1i  ++ ) { 
2: for ( int 2i  = 1; i ≤ 2k ; 2i  ++) { 
3: for ( int 3i  = 1; i ≤ 3k ; 3i  ++) { 
4: ... 

5: for ( int ni  = 1; i ≤ nk ; ni  ++) { 

6: 1 2 3 ... n

allrow

i i i i
S  = 1 2 3 ... 1n

allrow

i i i i
S


 + x[ 1i ][ 2i ][ 3i ]...[ ni ]; 

7: 3 2 1...n

allcol

i i i i
S  = 3 2 1... 1n

allcol

i i i i
S


 + x [ ni ]...[ 3i ][ 2i ][ 1i ]; 

8: } 

9: } 

10: } 

11: } 
 

Each of iterations in n-dimensional implemented loop 

are identified by all value group 1i , 2i , 3i ,..., ni  of 

calculators. Value group of calculators which is used in each 

of the iteration is called n-dimensional vector I = ( 1i , 2i ,

3i ,..., ni ), iterational vector. All value groups in iterational 

vector form iterational space. We can observe the relations 

order between vectors in iterational space. If k , 1 ≤ k ≤ n 

and ki = kj , it means that I = J, also s 1 ≤ s ≤ n , k  1 ≤ 

k ≤ s and if si < sj  is I < J [4, 5]. 

Space coordination is defined by iterational vectors 

when hypercube data is offered in multidimensional space. 

According to multidimensional index structure one 

aggreagtional value is given to each iteration vector. They 

are two operators in given loop: for aggreagtional calcu-

lation by line and column. In operators calculation process 

output variableness taken from one course ( 1 2 3 ... n

allrow

i i i i
S ) is used 

as input variableness in next course ( 1 2 3 ... 1n

allrow

i i i i
S


). Disturbing 

of Bernstein’conditions is shown in this situation. Also, 

when iterational vectors x[ 1i ][ 2i ][ 3i ]...[ ni ] and x 

[ ni ]...[ 3i ][ 2i ][ 1i ] are brought out, they will have common 

values. It means, operators 1 2 3 ... n

allrow

i i i i
S and 3 2 1...n

allcol

i i i i
S are inter-

sected by input data, although while using appropriate there 

is no any order in vectors accessing and no race condition 

occasion, that is why there is no any interference from 

iterational vectors in parallel performance. The main task is 

to divide iteration vectors into private parts in parallel 

calculation performance. We have to identify dependence 

distance which is mentioned above, in order to make it in 

real. Dependence distance for multidimensional courses will 

be implemented by appropriate indicators of one dimen-

sional courses dependence distance. It is called dependence 

distance of vectors: D    . For each iterational 

variableness vector following conditions (1,1,1,...,1) ≤   ≤ 

( 1k , 2k , 3k ,..., nk ), (1,1,1,...,1) ≤   ≤ ( 1k , 2k , 3k ,..., nk ) 

stay unchangeable. 

Hypercube lays are usually taken by two dimensions. 

Parallel performance opportunities in aggreagtional values 

calculation which are taken from dimensional elements 

belonged to each of lays calculation of aggreagtional values 

in line and column by multidimensional loop are considered. 

Next, dependence distance of vectors will be defined by two 

dimensional loops.  
 

1: for ( int 1i  = 1; i ≤ 1k ; 1i  ++ ) { 

2: for ( int 2i  = 1; i ≤ 2k ; 2i  ++) { 

3: 1 2

allrow

i i
S  = 1 2 1

allrow

i i
S


 + x[ 1i ][ 2i ]; 

4: 2 1

allcol

i i
S  = 2 1 1

allcol

i i
S

  + x [ 2i ][ 1i ]; 

5: } 

6: } 

Loop steps are specified in order to identify dependence 

distance of vectors: 
 



COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 17-23 Uskenbayeva R, Mukazhanov N 

22 
Mathematical and Computer Modelling 

1: 
11

allrow

S  = 11 1

allrow

S   + x[1][1]; 

2: 
11

allcol

S  = 11 1

allcol

S   + x [1][1]; 

3: 
12

allrow

S  = 11

allrow

S  + x[1][2]; 

4: 
21

allcol

S  = 
11

allcol

S  + x [2][1]; 

5: 
13

allrow

S  = 
12

allrow

S  + x[1][3]; 

6:
31

allcol

S  = 
21

allcol

S  + x [3][1]; 

7: ... 

8: 
21

allrow

S  = 
21 1

allrow

S 
 + x[2][1]; 

9: 
12

allcol

S  = 
12 1

allcol

S 
 + x [1][2]; 

10: 
22

allrow

S  = 
21

allrow

S  + x[2][2]; 

11: 
22

allcol

S  = 
12 1

allcol

S 
 + x [2][2]; 

12: ... 

We will identify dependence distance between vectors 

in order to parallel performance of iteration of given 

multidimensional course. For example, I = (1,2) and I = (1,3) 

– vector iterations use 
12

allrow

S  value. This value is output 

variableness in vector iteration (1,2) , dependence source, 

input variableness in vector iteration(1,3) is used as depen-

dence sink. Accordingly,   = (1,3),   = (1,2). Depen-

dence distance is D = (0,1). Identification of dependence by 

data and parallel performance by distance of vectors is 

complicated issue. To find the solution to this issue, we use 

vector direction. [В.Е. Карпов. Введение в распаралле-

ливание алгоритмов и программ]. Identification of vector 

directions d as following: 

" ", 0;

" ", 0;

" ", 0.

i

i i

i

D

d D

D

 


  
  

 (14) 

Vector direction )"","(" d  is identified by given two 

dimensional loops [4]. Data dependence might be identified 

by vector directions. First one is suggested like output value, 

then it is used as input value in the next iteration of the loop, 

after all it is jointed to massive element. It is called fact 

dependence. If the internal course is suggested like whole 

operator, all dependences will be stayed in this operator, then 

parallel performance could be handled by external course 

iterations. Parallel performance cannot be completed by 

internal loop and two loops in that case of dependence. If we 

change internal and external operators and leave calculation 

unchangeably, dependence distance of vector will be D = 

(1,0), vector direction will be (" "," ")d    . Type of 

dependence stays without change. In this situation parallel 

performance by internal loop might be completed. Data 

dependence by multidimensional loop vector directions types 

is identified, parallel dependence might be performed by 

identified dependence. 
If multidimensional loop structure consists of vector 

directions elements "<" and "=". This kind of course can be 
parallel performed by index number which is appropriate to 
vector direction component "=" without any limitation. 
Parallel performance by vector direction component appro-
priate to index may cause some problems. If multidimen-
sional loop structure consists of vector directions elements 
">" and "=". This kind of course can be parallel performed by 
index number which is appropriate to vector direction com-
ponent "=" without any limitation. In parallel performance by 
appropriate indexes to vector direction component ">" input 
data movement might be required. Before course parallel 
performance implementation of original structure might be 
placed in appropriate save places.  

If vector direction taken from multidimensional course 

is (" ",...," ")d    , it will be loop independent depen-

dence and dependence type is fact dependence. Parallel 

performance might be completed by any component of 

iterational vector. Parallel performance can be completed by 

changing of implemented course levels. 

3 Conclusions 

In this paper data decomposition formulation for aggre-

gational values in high-performance parallel computing sys-

tems is suggested. Aggregational values are based on data 

operative analytical analyzing. When decomposition ends 

algorithm will introduce groups consisted of operations 

(activities) which are performed by several processors. Group 

operations brought via decomposition might be performed 

independently through certain processor. Different operations 

might be held in each of the group and they can be performed 

by different user. Parallel performance of implemented 

courses iteration which is used in program performance of 

multidimensional data processing is also considered. 

References 

[1] Arres B, Kabbachi N, Boussaid O, Boussaid 2013 Building OLAP 

cubes on a Cloud Computing environment with MapReduce. 

Conference: Computer Systems and Applications (AICCSA) 

[2] Nandi A, Yu C, Bohannon P, Ramakrishnan R 2011 Distributed cube 

materialization on holistic measures International Conference on Data 

Engineering-ICDE 

[3] Kuznecov S, Kudryavcev Y 2009 Applying Map-Reduce Paradigm for 

Parallel Closed Cube Computation  

[4] Karpov V 2010 Vvedenie v rasparallelivanie algorimov i programm 

Comuternye issledovaya i modelirovanie 3(2) 

[5] Uskenbayeva R K, Cho Y I, Bektemyssova G B, Mukazhanov N K, 

Kozhamzharova D K, Kurmangaliyeva B K 2014 Multidimensional 

indexing structure development for the optimal formation of 

aggregated indicators in OLAP hypercube Proceedings of the 14th 

International Conference on Control, Automation and Systems (ICCAS 

2014) Gwangju, Korea 

[6] Matthew D A 2010 Data-driven decomposition of sequential programs 

for determinate parallel execution University of Wisconsin-Madison 

 

 



COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 17-23 Uskenbayeva R, Mukazhanov N 

23 
Mathematical and Computer Modelling 

Authors  

 

Raissa Uskenbayeva, 1953, Kazakhstan 
 
Current position, grades: Vice-rector on the academic affairs, professor department of CSSE 
University studies: International University of Information Technologies 
Scientific interest: Macro and micro-economics, finance and banking, Industrial Automation and Control Theory, Marketing, Management and logistics, 
Information technology and software engineering, Informatics problems 
Publications: more than 100 scientific articles, monographs on Theory of control and automation industry, Information Technology and Systems, Reliability of 
mathematical and software IP 
Experience: 2012- at present Almaty: International University of Information Technologies, Vice-rector  on the academic affaires, 2003-2012 Almaty: Kazakh National Technical 
University after K. I. Satpaev, The head of the Depart. «Software of systems and nets» of the Institute Information Technologies, The Doctor of Science, professor, 1999-2003 
Almaty: Doctorate at Kazakh National Technical University after K. I. Satpaev, 1987–1999 Almaty: Kazakh National Technical University after K. I. Satpaev, The Candidate of 
Technical Science, Docent, 1981–1987 Almaty: Kazakh National Technical University after K. I. Satpaev, tutor, 1978-1981 Almaty: Research Institute of the State Planning 
Committee of the KazSSR, The Junior Research Fellow, 1975–1978 Almaty: Almaty Special. Design Bureau of The Ministry of Telecommunications Industry USSR, Engineer-
mathematic. 

 

Nurzhan Mukazhanov, 1986, Kazakhstan 
 
Current position, grades: Ph.D student 
University studies: International University of Information Technologies 
Scientific interest: Database, Information and analytical systems, Distributed data processing, Decision support systems, Artificial intelligence 
Publications: more than 10 scientific articles on Distributed data processing, Information and analytical systems 
Experience: 2012 at present Almaty, International University of Information Technologies, Ph.D student, 2010–2012 Almaty: Kazakh National Technical 
University after K. I. Satpaev, tutor, 2008–2010 Almaty: Kazakh National Technical University after K. I. Satpaev, studied in magistracy. 


