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Abstract 

There are large amounts of data has accumulated along with technology of computer, information and network developed. How can 

we using these data and mining out the valuable information are hot topics in information processing field. There are some distress 

and difficulties caused by the high-dimensional data on data modelling and data analysis. In this paper, a local linear embedding 

algorithm based on the improved uniform sample set and the weight value matrix is proposed. The test shows that the improved 

dimensionality reduction algorithm accuracy is significantly higher than the original LLE algorithm. 
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1 Introduction 

 
Big data cause a lot of inconvenience on applications 

because of the diversity and complexity of the data. 

These rich data resources bring convenience to people but 

have also brought a lot of problems at the same time. 

Such as Information overload, Data is difficult to choose 

and useful information submerged in the massive 

amounts of data, etc. Faced with these difficult to deal 

with data, we cannot mining out the effective information 

implied in big data and cannot speculate on future trends 

if we have no effective means for analysis and 

processing[1]. 

Data dimensionality reduction techniques [1-2] can be 

used to solve the above-mentioned problems. It can 

explore the internal structure and association of the 

original data, and eliminated redundant data, improved 

efficiency of computation. It can also improve the 

understand ability of the data to improve the accuracy of 

data [2]. 

 

2 Dimensionality reduction principle 

 

Depending on the type of the data to be processed, 

existing dimensionality reduction algorithm [3-4] is 

divided into two categories: linear dimension reduction 

technique and nonlinear dimensionality reduction 

technique.  

Define: Let 
T)X

1 2 D
(x ,x ,...,x  is a vector in high-

dimensional space, by the following formula: 
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We can get a vector 
T)Y

1 2 D
=(y ,y ,...,y  in low-

dimensional space. If each component 
iF  of F is a linear 

function, then F is a linear dimensionality reduction. 

Otherwise, F is nonlinear dimensionality reduction. 

 

3 Locally linear embedding algorithm LLE analyses 

 

Locally linear embedding algorithm that proposed by 

Roweis and Saul [5] in 2000. It is a method for nonlinear 

dimensionality reduction. Its core idea is using local 

linear approaching global nonlinear, keep the geometry 

structure of local sample points unchanged and using 

local neighbourhood data that overlapped with each other 

to provide global information. So as to maintain the 

overall geometric properties of whole sample points [3]. 

Assuming that the sample set consists of N D-

dimensional vector Xi and the entire sample points in a 

( )d d D -dimensional manifold. When we have a 

sufficient number of sample points, we can think 

approximately that each sample point and its adjacent 

sample points in a local linear manifold. In this case, each 

sample point can be represented with a linear 

combination of its adjacent sample points that possessed 

weighting coefficient [4]. These weighting coefficients 

reflect the local geometry information of a small area. We 

can use this information to seek out a low-dimensional 

embedding space that keeps the geometrical 

characteristics of the original high-dimensional space. We 

can get the overall information of the original high-
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dimensional space by the overlapping local 

neighbourhood and get a global coordinate system [5]. 

The greatest advantage of this method is that the data 

does not produce a large offset. That because of the 

curvature of the manifold is very small so it can be 

approximated as flat. 

LLE using matrix 
,D NX  as it input and matrix ,d NY  as 

it output. Here 
,D NX  and 

,d NY  are composed by N d-

dimensional vector (d<<D) and the Kth column of matrix 

Y corresponding to K-th column of matrix X. 

The algorithm is divided into three steps. 

1) Looking for a point and its adjacent point, 

constitute a piece of local adjacent area. For a 

sample point 
iX (i=1,2,…,N) that in the high-

dimensional space, we can calculate the distance 

between 
iX  and the other  N-1 sample point. 

According to their distances, we can find a close 

neighbour points of 
iX . We usually measure the 

distance between two points using the Euclidean 

distance, that is 
ij i jd X X  . There are two ways 

for choosing nearest neighbour points: Choosing 

the K points that have minimum distance from 
iX  

as the adjacent points of 
iX . All the points that 

iX  as the centre and all the points within the 

sphere of radius   are the adjacent points of 
iX . 

We generally use the first method to determine the 

adjacent points. Each point in the space have the 

same number of neighbour points due to .the 

number of K is defined. Thus, calculate getting 

more simple and convenient.  

2) Calculate the weight of 
iX  and its nearest 

neighbour points. Weight values describe the 

degree of approximation between the two points. 

When we defined 
iX  and found its K adjacent 

points, we need to calculate the weights between 

this point and each of its adjacent point. Assume 

that jX  is a close neighbours point of the of 
iX , 

then the weight between them is 
22

i jx x

ijW e 



 , 

wherein   is a parameter. The calculated weight 

ijW  that between 
iX  and each of its adjacent 

points, and let the error minimum when 
iX  is 

reconstructed by this K points, then: 
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In order to ensure translational invariance, make 

1

1.
N

ij

j

w


  If we want to make ( )W  minimum, 

then: 
2

1

( )
N

T

i i ij j ij ik jk i i

j

W X w X w w c W CW


      , 

where 
1 2 3( , , )i i i i iKW w w w w      are K 

components that value are not 0 of 
iW . Now the 

loss function can be rewritten as: 

1 1

min ( )
N N

T

ij i j

i j

Y M y y
 

 .  

Construct a local covariance matrix C: 
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T

K
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When K>D, C is a singular matrix. Therefore, we 

need a renormalization operation for it. We sum 

regular numbers on the diagonal of the singular 

matrix: 
2

( ) ( )jk jk jkC C Tr C
K




  , where ( )Tr C  

is the trace of C, 2 1  . 
2

( ) ( )jk jk jkC C Tr C
K




  , where ( )Tr C  is the 

trace of C, 2 1  . 

3) Calculated points 
iY  in low-dimensional space. 

The final step of LLE is a calculating of the value 

of low-dimensional embedding space according to 

samples 
iX  in the high-dimensional space and the 

weight values ijW . ijW  is the weight value between 

iX  and its adjacent point jX . To make the low-

dimensional space as much as possible be 

consistent with the partial linear structure in the 

high-dimensional space, a local information ijW  

should be fixed. We should minimize a loss 

function 

2

1 1

( )
N N

i ij j

i i

Y Y w Y
 

   , taking into 

account requirements for ( )Y  without 

deformation, translation, rotation and scaling 

transformation. Thus, 
1

0
N
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Y
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  and 

1

1
1

N
T

i j

i

Y Y
N 

 . So, 

2

1 1

( )
N N

i ij j

i i

Y Y w Y
 

   , 

= (( ) ( ))Ttr Y WY Y WY  = ( )Ttr Y MY , wherein M 

is an N * N stacked matrix: (1 ) (1 )TM W W   . 

At this moment, the minimization solution of a loss 

function is eigenvectors matrix that consisted by several 

minimum eigenvalues of matrix M. We take the non-

feature vector that corresponding m eigenvalues of matrix 

M according to the order of small to large. Because the 

smallest eigenvalue is infinitely close to 0, therefore we 

discarded this eigenvector so as to satisfy the condition 
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1

0
N

i

i

Y


 . The rest of 2 to m +1 feature vectors will 

compose a matrix. This matrix is the samples in the low-

dimensional space. LLE algorithm processes are shown 

in Figure 1. 

 
FIGURE 1 LLE algorithm processes 

 

4 The improved LLE algorithm - DLLE 

 

The data that correspond to LLE algorithm is static. That 

is every time it will enter the entire sample set and then 

mapped sample set to a low-dimensional embedding 

space and get the corresponding samples from the 

embedding space finally. When a new sample point (the 

new data) is added, the new sample point and the original 

sample must be merged into a new sample set.  The new 

sample set will be re-entered into LLE algorithm and be 

running. 

K value of LLE algorithm indicates the quantity of 

selected adjacent sample points. LLE is very sensitive on 

K. The larger the value K, the greater the difference of the 

geometric characteristics of high-dimensional space 

manifold. This will be lead to the range of data mining 

conclusions greater and lead to reduced accuracy. 

Eventually. But, if the value of K is not big enough (i.e, 

the number of adjacent points is not enough), then this 

may cause the continuous manifold in high-dimensional 

space split into disconnected submanifold. Obtained 

conclusions by data mining can be completely unrelated 

with expected ones. References [6-8] have analysed how 

to select the range of K value. For the large number of 

data, the ranges of K value are between 5 and 20 

generally.  

In the really big data mining process, we found that 

the different component values have different effects on 

mining conclusions. This means that the weights values 

of each component importance are not the same and the 

different values will have a huge impact on the actual 

results. We propose an improved algorithm to solve the 

considered problems.  

In order to reduce the sensitivity of the LLE algorithm 

on the value of K, we design a new method for definition 

of distance, where the average of the distance between a 

central point and its K neighbouring points is represented.  

This new approach allows to obtain the distance 

between the samples in the sample-point-intensive areas 

(relatively increased) and the distance between the 

samples in the sample point’s sparse area (relatively 

narrow). Thus, the distribution of the sample set leads to 

homogenizing and reducing of the impact on the K value 

for LLE calculation result [6]. 

For solution of the problem of weights values 

between components, we present an idea of embedded 

importance weights into LLE algorithm. 

Indicating the original sample set, the paper contains 

N samples, setting an importance weight vectors. Each 

component is a positive number and the sum of all the 

components is equal to 1. Calculating a new eigenvector 

using LLE algorithm of original sample set, we can get 

the weight matrix and the sample, which in embedding 

space [7]. 

Making the neighbours of all the sample points in the 

original sample set non-changed, we can get the weight 

matrix of the samples space. Finally, by step 3 (section 

3), we obtain the sample set of low-dimensional space, 

realizing data dimensionality reduction. 

 

5 Experiments and conclusions 

 

Randomly select a UCI database as experimental data to 

compare the effect of the improved DLLE algorithm and 

traditional LLE algorithm. This database contains a 

training set and a test set. 2000 samples from the training 

set to do the training object and take 1000 samples from 

the test set to do the test were taken. The principle of 

nearest neighbour to look for the K-nearest neighbours of 

the training set for each test sample was used. The range 

of dimension d in embedding space is from 2 to 10 and 

the range of K is from 2 to 10. Two experiments use the 

same training samples and the same test samples. The 

result of the experiment is as follows tables. 

Based on the data in Table 1 and Table 2 can be seen 

that the error rate of improved LLE algorithm lower than 

the error rate of original LLE algorithm and the accuracy 

of dimensionality reduction higher than the original LLE 

algorithm obviously. 
 

TABLE 1 The average error rate of the original LLE algorithm 

 2 3 4 5 6 7 

10 0.192 0.124 0.118 0.092 0.082 0.076 
11 0.212 0.136 0.112 0.084 0.072 0.066 

12 0.256 0.182 0.158 0.108 0.098 0.092 

13 0.328 0.174 0.144 0.120 0.116 0.110 
14 0.282 0.168 0.138 0.104 0.108 0.098 

20 0.386 0.364 0.332 0.324 0.302 0.284 
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TABLE 2 The average error rate of the improved LLE algorithm 

 2 3 4 5 6 7 

10 0.142 0.118 0.084 0.080 0.078 0.062 
11 0.164 0.130 0.096 0.088 0.074 0.068 

12 0.208 0.166 0.104 0.094 0.082 0.076 
13 0.220 0.158 0.118 0.106 0.098 0.104 

14 0.234 0.144 0.126 0.104 0.102 0.086 

15 0.246 0.182 0.154 0.126 0.116 0.104 
16 0.262 0.262 0.186 0.148 0.124 0.108 

17 0.266 0.294 0.242 0.186 0.158 0.132 
18 0.274 0.308 0.278 0.230 0.212 0.188 

19 0.280 0.314 0.306 0.264 0.232 0.206 

20 0.298 0.344 0.312 0.272 0.238 0.220 
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