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Abstract 

Bipartition dissimilarity is a new measure introduced by Alix Boc et al. They proposed an algorithm for inferring horizontal gene 
transfer events which can rely on different optimization criteria. Simulation results suggested that the strategy based on bipartition 
dissimilarity provided better results than those based on other three existing tree comparison indices. However, no theoretical 
analysis on it has been conducted since then in the literature. The present paper reports some useful new results for this measure. The 
theoretical properties studied include minimum positive value, neighborhood, and local modifications. 
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1 Introduction 

 
Horizontal Gene Transfer (HGT) is a direct transfer of 
genetic material from one lineage to another. It plays an 
important role in the evolution of microorganisms. 
Identifying HGT accurately is one of the major 
challenges in molecular biology [1]. Numerous methods 
have appeared since the 1990s [2-10]. 

Maddison [2], Page [3] et al. considered evolutionary 
rules for modeling HGT. Hallett and Lagergren [4] 
described an exponential–time algorithm (called LatTrans 
algorithm) that maps numerous gene trees into a species 
tree. Mirkin et al. [5] designed an algorithm that provides 
in each situation a parsimonious evolutionary scenario 
consisting of mapping gene loss and gain events into a 
species tree. Moret et al. [6] presented an overview of the 
methods using network-based models to recover HGT. 
Hallett et al. [7] obtained a combinatorial model 
incorporating HGT and duplication events. Nakhleh et al. 
[8] developed the “RIATA-HGT” heuristic, the latest 
version of which is much faster than LatTrans while 
being almost equivalent in terms of HGT recovery [9]. 

Alix Boc et al. [10] presented a new algorithm for 
detecting HGT events which can rely on different criteria. 
They introduced the “bipartition dissimilarity” (BD) 
between two phylogenetic trees, and showed by 
simulation that the BD-based strategy outperforms least 
square, Robinson and Foulds distance [11], and quartet 
distance [12]. They also compared the BD-based 
algorithm with LatTrans [4] and RIATA-HGT [8, 9] and 
showed by simulation that the former is superior to the 
latters in terms of both HGT recovery and running time. 
The bipartition dissimilarity measure is also used in [13] 

for detecting partial HGT events and provides better 
results than the existing algorithms. 

To the best of our knowledge, there is no theoretical 
analysis on bipartition dissimilarity measure in the 
literature to date. In this paper we analyze this measure 
theoretically and obtain some new results. These results 
provide a better understanding of this novel measure and 
show its usefulness and powerfulness in a greater degree. 

The remainder of this paper is organized as follows. In 
Section 2, we introduce some notations and terminology, 
illustrate the definition of bipartition dissimilarity 
measure, and compare it with the Robinson-Foulds 
distance. In Section 3, we analyze the minimum positive 
value of this measure and neighborhood. In Section 4, we 
study the local modifications under this measure. We 
conclude this paper in Section 5. 

 
2 Preliminaries 
 

For sets ,A B , let ( \ ) ( \ )A B A B B A   be their 

symmetric difference. Denote by | |A  the cardinality of 

set A . A phylogenetic tree is a tree whose leaves are 

labeled bijectively by a set L  (species) and no vertex has 

degree 2. Let | |L n . Denote by n the set of 

phylogenetic trees over L . A phylogenetic tree is binary 
if every non-leaf vertex has degree equal to 3.  

A bipartition |A B  of L  is an unordered pair (i.e., 

| |A B B A ) of its subsets, such that A B L   and 

A B   . Removing an edge from tree T disconnects 

the tree and induces a bipartition. Each pendant edge (one 
of its ends is a leaf) corresponds to a trivial bipartition, 
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which must be present in every tree. Each internal edge 

corresponds to a nontrivial bipartition. Let ( )T  and 

*( )T  denote the set of bipartitions of T  and the set of 

nontrivial bipartitions of T , respectively.  
The Robinson-Foulds (RF) distance [11] is by far the 

most widely used distance measure for trees which counts 
the number of bipartitions present in one tree but not in 

the other. The RF distance between two trees 1 2, nT T  ,  

is defined as 
1 2 * 1 * 2( , ) | ( ) ( ) | /2RF T T T T   . The 

main disadvantage of RF distance is that it lacks 
robustness in the face of small modifications. Consider a 
caterpillar tree as shown in Figure 1. A caterpillar tree is 
a tree in which all non-leaf vertices form a single path. 
When one leaf at one end of the tree is removed and 
reattached to the other end of the tree, we obtain a tree that 

is as far as possible in the RF distance i.e., 3n .  

 

 
 

FIGURE 1 A caterpillar tree. 
 

The weight of two bipartitions 1 1|A B  and 2 2|A B ,  is 

defined as follows [10, 14]: 

 

1 1 2 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

( | , | )

0.5min{| | | |,

          | | | |}

min{| | | | 2 | |,          

           | | | | 2 | |}.        

wt A B A B

A A B B

A B B A

A A A A

n A A A A

   

  

   

   

 (1) 

Given two trees 1T  and 2T . For each bipartition 

1 1|A B  of 1T , define its distance to 2T , 1 1 2( | , )dis A B T  

as 
2 2 2| ( ) 1 1 2 2min { ( | , | )}A B T wt A B A B . Note that 

1 1 2( | , ) 0dis A B T  if  1 1|A B  is a trivial bipartition of 

1T . It is possible that for a nontrivial bipartition of 1T , 

2 2 2| ( ) 1 1 2 2argmin { ( | , | )}A B T wt A B A B is a trivial 

bipartition of 2T . Similarly, for each bipartition 2 2|A B  

of 2T , 2 2 1( | , )dis A B T is defined as 

1 1 1| ( ) 2 2 1 1min { ( | , | )}A B T wt A B A B . If  2 2|A B  is a 

trivial bipartition of 2T ，then 2 2 1( | , ) 0dis A B T  . It is 

possible that for a nontrivial bipartition of 2T , 

1 1 1| ( ) 2 2 1 1argmin { ( | , | )}A B T wt A B A B is a trivial 

bipartition of 1T . 

The bipartition dissimilarity between trees 1T  and 2T , 

1 2( , )BD T T , can be calculated in the following way [10]: 

  

1 1 1 2 2 2

1 1 * 1 2 2 * 2

1 2

1 1 2 2 2 1

| ( ) | ( )

1 1 2 2 2 1

| ( ) | ( )

( , )
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A B T A B T

A B T A B T

BD T T
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 

 
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 

 

 
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(2) 
 

 
 

For instance, we compute the bipartition dissimilarity 

between trees 1T  and 2T  shown in Figure 2. We have the 

following nontrivial bipartitions for 1T : |ab cde , 

|abc de , and for  2T :  |ac bde , |acd be  . We get:  

2

2

( | , ) ( | , | ) 1,  

( | , ) ( | , | ) 1,

dis ab cde T wt ab cde a bcde

dis abc de T wt abc de ac bde

 

 
 

1

1

( | , ) ( | , | ) 1,  

( | , ) ( | , | ) 2.

dis ac bde T wt ac bde abc de

dis acd be T wt acd be abc de

 

 
 

The bipartition dissimilarity between 1T and 2T , 

1 2( , )BD T T , is equal to (1 1 1 2) / 2 2.5.      

 

FIGURE 2 Two phylogenetic trees 1T  and 2T  

 
The bipartition dissimilarity can be regarded as a 

weighted extension of the RF distance. In fact, the RF 
distance uses the following binary weighting scheme: the 

weight of two bipartitions 1 1|A B and 2 2|A B , 

1 1 2 2( | , | )RFwt A B A B , is just 0 if they are identical and 

1 otherwise. It is clear that the bipartition dissimilarity 
makes better use of the information in the bipartitions. 

       Theorem 1 Let 1 2, nT T  . Then, 

 
1 2 1 2 1 2( , ) ( , ) ( , ).

2

n
RF T T BD T T RF T T

 
   

 
  

Proof. Note that for any two non-identical bipartitions 

1 1|A B  and 2 2|A B , 1 1 2 21 ( | , | ) / 2wt A B A B n     . 

Hence we get  

1 1 2 2 1 1 2 2( | , | ) ( | , | )RFwt A B A B wt A B A B  and 

1 1 2 2 1 1 2 2( | , | ) / 2 ( | , | ).RFwt A B A B n wt A B A B   
 
The desired inequalities follow from the above analysis. □ 

The bipartition dissimilarity measure is very similar to 
the matching split distance [14]. The main difference is 
that bipartition dissimilarity avoids the computation of a 
minimum-weight perfect matching in a complete bipartite 
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graph. On the other hand, the similarity between the two 
measures allows us to use some ideas of [14] in the next 
two sections.  
 
3 Minimum positive value and neighborhood 

Let
1 2 1 2min , 1 2min ( , )

nT T T TBD BD T T   . We call 

minBD  the minimum positive value of bipartition 

dissimilarity. To investigate minBD , we need the 

following definition. 
 

     Definition 1 Nearest Leaf Interchange (NLI) means 
interchanging two leaves that are incident to the same 
internal edge.  

The generic form of a NLI operation is illustrated in 
Figure 3, where the operation is performed on the edge e , 

the circles A  and B  represent subtrees over sets of leaves 

A  and B , and a  and b  represent two leaf labels. 

 

 
 

FIGURE 3 A schematic representation of the generic 
NLI operation 

 

Theorem 2 min 1,BD  which is achieved by 

performing a single NLI operation on a tree. 

Proof. Let 1T  and 2T be two trees in n . If 1 2T T , 

then we get 1 2( , ) 0BD T T  . Otherwise, it must be true 

that there is a bipartition 1 1|A B  which is in 1T  but not in  

2T , and there is a bipartition 2 2|A B  which is in 2T  but 

not in 1T . It follows that 1 1 2( | , ) 1dis A B T  , 

2 2 1( | , ) 1dis A B T  . Hence we get 1 2( , ) 1BD T T  . 

If 2T  is obtained from 1T  by performing a single NLI 

operation, as shown in Figure 3, then we get 
 

 
2( { }| { }, )

( { }| { }, { , }| ) 1.

dis A a B b T

wt A a B b A a b B

  

   
            (3) 

  

1( { }| { }, )

( { }| { }, { , }| ) 1.

dis A b B a T

wt A b B a A a b B

  

   
             (4) 

 

Since all the other branches of 1T  are left unchanged, 

we have 1 2( , ) 1BD T T  . It follows that min 1,BD   

which is achieved by performing a single NLI operation 
on a tree.   

On the other hand, it is easy to see that if 2 1T T and 

2T  is not obtained from 1T  by performing a single NLI 

operation, then 1 2( , ) 1BD T T  .  □ 

Two trees 1T  and 2T  in n  are said to be neighbors 

if 1 2( , ) 1BD T T  . The neighborhood of a tree nT   , 

denoted by ( )N T , is the set of all trees that are 

neighbors of T . Theorem 2 permits us to create the 
neighborhood of a tree. 
 

Theorem 3 For a given tree T , the number of the 

trees in ( )N T is at most 1n , and it is possible that  

| ( ) | 0.N T   

Proof. Figure 4 shows a tree  1T  with 

1| ( ) | 1N T n  and a tree 2T  with 2| ( ) | 0.N T    □     

 

 

FIGURE 4 1| ( ) | 1N T n  and 2| ( ) | 0N T   

 
4 Local modifications 

 
In order to investigate the local modifications under the 

bipartition dissimilarity measure, we need the following 
definitions. 

 

      Definition 2 [15] Let nT   and X L . The 

restricted spanning tree ( )T X  of T is the minimum 

subgraph of T  that connects all the leaves whose labels 

are in X . The simplified spanning tree of T induced by 

X is a tree 
|XT  obtained from  ( )T X  by replacing each 

maximal degree two path with an edge between the two 
ending vertices.  
 

Definition 3 [15] Let  1 2{ , , , }k nT T T   

and X  be a maximum-sized subset of L  for which 

1| 2| |X X k XT T T     . This restricted subtree is 

called a maximum agreement subtree (mast) for .     

An example of a maximum agreement subtree is shown 
in Figure 5. In applications, identifying maximum 
agreement subtrees may help to exclude a small number of 
problematic species which may cause estimates of an 
evolutionary tree to vary greatly between different data 
sets.  
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FIGURE 5 Two Trees and one of their maximum 

agreement subtrees 
 

Theorem 4 Let 1 2, nT T   and \{ }X L x .Then  

1 2 1| 2|

1 2 1| 2|

(1) ( , ) ( , ),

3
(2) ( , ) ( , ) 4.

2

X X

X X

BD T T BD T T

n
BD T T BD T T



 
   

 

                   (5) 

Proof. Each bipartition 
1 1|X XA B  of 

1|XT corresponds 

to a bipartition 1 1|A B  of 1T  such that 

1 1 { }XA A x  and 
1 1

XB B , or 
1 1

XA A and 

1 1 { }XB B x  . Thus, we get: 

1 1 2 1 1 2|( | , ) ( | , )X X

Xdis A B T dis A B T , and 

1 1 2 1 1 2|( | , ) ( | , ) 1X X

Xdis A B T dis A B T  . Since there are 

2 4n  and 2 3n  bipartitions in 
1|XT and 1T  

respectively, a bipartition of 1T  is left unmapped which 

we denote by 1 1|A B  . We have 
1 1 2( | , ) / 2dis A B T n      . 

     Similarly, each bipartition  
2 2|X XA B  of 

2|XT  

corresponds to a bipartition 2 2|A B  of 2T  such that 

2 2 { }XA A x  and 
2 2

XB B , or 
2 2

XA A and 

2 2 { }XB B x  . Thus, we get: 

2 2 1 2 2 1|( | , ) ( | , )X X

Xdis A B T dis A B T , and 

2 2 1 2 2 1|( | , ) ( | , ) 1X X

Xdis A B T dis A B T  . Since there are 

2 4n  and 2 3n  bipartitions in 
2|XT and 2T  

respectively, a bipartition of 2T  is left unmapped which 

we denote by 2 2|A B  . We have 
2 2 1( | , ) / 2dis A B T n      . 

      The desired two inequalities follow from the above 
analysis.    □ 
 

Theorem 5 Let 1 2, nT T  . If the maximum 

agreement subtree of 1T  and 2T has 1n  leaves, then 

1 2( , ) 2BD T T n   and this bound is tight.  

Proof. As shown in Figure 6 (first appeared in [14]), 

1T  and 2T have different bipartitions only at the positions 

,i is t for 0,1, , 1i k   . For simplicity, we denote by 

is and it  the bipartitions of 1T  and 2T  induced by the 

edges is and it  respectively, 0,1, , 1i k  . Note that 

( , ) 1i iwt s t   for 1, , 1i k   . Moreover, 

0 0( , ) min{| | 1, | | 1}wt s t C n C    . Hence we get 

1 2( , ) 1 | | 1 2BD T T k n C n       . 

The bound 2n  is tight. To see this, we move a 

single leaf labeled 1 of a caterpillar tree (shown in Figure 

1) to the other end of the tree. Let  1T  and 2T  be the 

original tree and the obtained tree, respectively. It is easy 

to see that 1 2( , ) 2BD T T n  .      □ 

 
 

FIGURE 6 Two Trees differ only at the position of x 
 
Although there are trees which have no neighbors as 

Theorem 3 shows, no isolated islands of trees distant from 
others exist indeed, since analysis analogous to Theorem 
5.2 of [14] gives the following result.  

 

Theorem 6 Let ,a b nT T  . There exists a sequence 

of trees in n , 1 2 1, , , ,a k k bT T T T T T  , such that  

1( , ) 2i iBD T T    where 1, , 1i k  .  

Proof. A rooted caterpillar tree is defined as a tree 
obtained from a unrooted caterpillar tree by inserting a 
degree 2 vertex as the root on one of the four outmost 
edges. All one-, two- and three-leaf binary rooted trees are 
considered to be caterpillars. 

We will perform four transformations to locally modify 

aT  and bT . Each transformation is reversible. Two of 

them are rooting (specifying a root for an unrooted tree) 
and unrooting (transforming a rooted tree into an unrooted 
one), the others consist of a series of basic operations. 
There are three types of basic operations which create 
trees at distances of 2, 0.5 and 2 respectively, as shown in 
Figure 7.  

The first transformation transforms aT  and bT  into 

rooted trees aRT  and bRT  as follows: Take any leaf and 

let it be the roots of aT  and bT  respectively. 

The second transformation transforms aRT  and bRT  

into rooted caterpillar trees aRCT  and bRCT . It starts 

from rooted subtrees of aRT  ( bRT ) in bottom-up order 

by repeatedly applying the basic operations of types I and 
II. Suppose that we are processing the interior vertex 
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v which is connected to two rooted caterpillars, as shown 

in Figure 7. We repeatedly transfer a leaf from the first 
rooted caterpillar into the second by performing 
Operations I and II, and finally two smaller rooted  
caterpillars are merged into a bigger one. Note that if 

aRT  and bRT  are binary rooted trees, then Operation II is 

unnecessary. 

The third transformation transforms 
aRCT  and

bRCT  

into unrooted caterpillar trees 
aUCT  and

bUCT  by 

canceling the root-specifying. 
 

Operation Type 

 

I 

 

II 

 

III 

 
FIGURE 7 Three types of basic operations 

 

The fourth transformation transforms aUCT  into 

bUCT  by repeatedly applying the basic operation of type 

III. 

          The desired sequence of trees is obtained easily 

from the sequence of transformations 

aT 
aRT 

aRCT 
aUCT 

bUCT 
bRCT


bRT 

bT .   □ 

 

5 Conclusions 

 

Bipartition dissimilarity is a new measure and no 

theoretical analysis on it is known to date. We analyzed 

this measure in the paper and reported some theoretical 

properties of it, including minimum positive value, 

neighborhood, and local modifications. These results 

reduce the uncertainty of this measure, offer deeper 

insights into its behavior, and thus present a theoretical 

basis on which we can use this measure more efficiently 

and reliably. It would be interesting to investigate other 

properties of this measure, or use it in the other 

applications. 
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