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Abstract 

Fluid filled pipe system was widely used in the city water supply and drainage, water power, chemical machinery, aerospace, marine 

engineering and the nuclear industry and other fields, it was play an important role for improving the living standards of the nation 

and the national economic strength. Pipe conveying fluid was easy to design and manufacture, according to the characteristics of 

fluid conveying pipe, transformed the axial vibration mathematical model of the fluid conveying pipe, which considerate the fluid 

solid coupling to the beam element model for two nodes. Using Lagrangian interpolation function, the first order Hermit 

interpolation function and the Ritz method to obtain the element standard equation, and then integrated a global matrix equation, 

obtained the response of conveying fluid pipe with the Newmark method and Matlab. With the Matlab to simulate the axial motion 

equation of the conveying fluid pipe, study the response of the system in two aspect of fluid pressure disturbance and the fluid 

velocity disturbance, and the simulation results are analysed, which provides theoretical support for the work of fluid conveying 
pipes. 
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1 Introduction 

 
Study of the fluid solid coupling vibration of pipeline in 

our country started relatively late, there is no paper of this 

aspect until the mid80's in last century, and compared 

with the international level there are still large differences 

[1-2]. In recent years, with the development of China's 

modern industry and city modernization, the domestic 

scholars made a lot of significance research for the fluid 

solid coupling phenomenon on the long distance oil 

pipeline, water pipeline, large-scale city heat supply 

system and nuclear power plant water circulation system, 

which puts forward the many methods to control pipe 

vibration. In the aspect of modelling of the fluid 

conveying pipe, Yang Ke make the pipeline axial 

vibration of fluid solid coupling four equation model as 

the foundation, introduced the two order differential 

equations group with symmetrical "rigidity", "damping" 

and "quality" matrix, which regard the displacement as 

basic variables, both considerate the Poisson coupling 

and coupling of friction and damping of pipeline [3-5]. 

Fei Wenping established the fluid solid coupling model 

of a complex pipeline system by the complex modal 

theory, and studied theoretically. Chen Guiqing pointed 

out and corrected many error equation for the current 

mathematical modelling of the pipeline system vibration, 

and reclassify the pipeline according to the ground of 

linear pipeline, the ground of nonlinear linear pipeline 

and buried pipeline, last come out the most commonly 

used pipeline vibration differential equation. In this 

paper, considering the infusion pipe liquid vibration 

condition of small deformation, take the mathematical 

model of axial vibration as plane beam element, obtained 

the standard equation with first-order Hermit 

interpolation function and Ritz method. Then obtained 

matrix equation through made each unit assembled into 

the global mass matrix, global damping matrix, the global 

stiffness matrix and the global load matrix. Apply the 

finite element method to get the numerical solution for 

partial differential equation of higher order, and obtained 

the response of pipe conveying fluid system with 

Newmark method [11-13]. 

 

2 The establish of mathematical model for the output 

response of the fluid conveying pipe 

 

Taking into account the pipe ratio for length to diameter 

is relatively large, the deformation of radial is the same, 

just only exists a certain  angle difference, which can be 

regarded the pipe as plane beam element to consider, 

using two node element, as shown in Figure 1, the node 

number of I and J. The conveying fluid pipe is only 

affected by the lateral force, no axial force, so analysis 

with the two node element, the nodal displacement model 

can be defined. 
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FIGURE 1 An example. Good quality with clear lettering 

 

2.1 A SUBSECTION THE ESTABLISH OF 

MATHEMATICAL MODEL 

 

The node number of I and J. The conveying fluid pipe is 

only affected by the lateral force, no axial force, so 

analysis with the two node element, the nodal 

displacement model can be defined [6-8]: 

( ) [ , , , ]T

i i j jy t y y  . (1) 

In the node parameter of unit, in addition to the node 

value of field function, also contains node value for a 

derivative of the field function. In order to maintain the 

continuity of field function derivative between the public 

node element, and in the end nodes to keep the derivative 

order is first for the field function, so the first-order 

Hermit interpolation polynomial is used: 
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Taken the Ritz method interpolation functions to 

establish standard unit equation of the approximate 

solution of the lateral vibration after determine the 

interpolation function: 
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2.2 THE ENTIRETY MATRIX 

 

There are some matrix must be appropriately expanded 

rewrite when the unit matrix integrated to the entirety 

matrix so that the matrix of all elements with uniform 

format, then according to the superposition to assembly. 

The usually study boundary constraint conditions 

include fixed to hinge and fixed to fixed constraints, the 

mathematical expression of its boundary is given below, 

respectively (I) and (II). 


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The four kinds of boundary conditions of above given 

all belong to the first class constraint conditions, for this 

kind of constraint conditions can usually use "row 

column method" and "multiplied with bigger number 

method". The "multiplied with bigger number method" is 

make the main diagonal element about the specified node 

displacement in the overall stiffness matrix with multiply 

by the large number  , at the same time, give the 

specified value of node displacement to the 

corresponding element of load matrix, then multiply by 

the same number as well as the main diagonal elements. 

Using the “multiplied with bigger number method "to 

deal with the boundary constraint condition by", finally 

forms the whole matrix: 

[ ]{ } [ ]{ } [ ]{ } [ ]M y C y K y Q   . (4)  

The Newmark method is used to solving the flow 

pipeline vibration response, the Newmark method is a 

step-by-step integration method, the key is to establish 

the recurrence relations of state vector from t  to  t t , 

assume at the moment of t t , the t ty 
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t ty   satisfy the dynamics equation: 

[ ]{ } [ ]{ } [ ]{ } [ ]t t t t t t t tM y C y K y Q      . (5) 

i 

j 
j  

i  iy  jy  

x  o  

y  



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(4) 37-41 Li Gongfa, Xiao Wentao, Jiang Guozhang, Liu Jia 

39 
Mathematical and Computer Modelling 

 

In addition to the Newmark method assume the 

velocity and displacement satisfy the follow equations at 

the same moment: 

[(1 ) ]t t t t t ty y y y t       , 0 1  , (6)  

21
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2
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According to the analysis results of the algorithm 

stability when the 5.0 , 4)
2

1
( 2  , the 

Newmark method is unconditionally stable. 

The calculation steps of the Newmark method can 

be summarized as follows. 

Step 1: forming the stiffness matrix K, mass 

matrix M, damping matrix C. 

Step 2: obtaining the initial state vector 0y , 0y  and 

0y . 

Step 3: choosing the time step t  as well as the 

parameter   and  , then calculated the constant: 
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Step 4: calculation of the effective stiffness 

matrix: 

0 1K K M C    , (8)  

Step 5: calculation of the effective load vector at the 

moment of t t : 

0 2 3 1 4 5
ˆ ( ) ( )t t t t t t t t t tQ Q M y y y C y y y             , (9) 

Step 6: calculation of the displacement at the moment 

of: 

ˆ
t t t tKy Q  , (10)  

Step 7: calculation of the acceleration and velocity at 

the moment of   

0 2 3( )t t t t t t ty y y y y       , (11)  

6 7t t t t t ty y y y     . (12)  

 

 

3 Simulation and analysis of the axial vibration 
 

For the axial vibration, the constraint of the fixed to hinge 

and constraint of the fixed - overhanging belonging to the 

same constraints, which is decided by its displacement 

and load form, While the boundary constraint of the 

hinge to hinge, because the axial without any restraint, 

this pipeline system is in an unstable state, the modal and 

response could not be calculated. So the axial vibration 

simulation of the fluid conveying pipeline was the main 

considerate the constraint of the fixed to hinged and 

constraint of the fixed - overhanging. In the simulation 

process, the two end points of pipe as the supporting 

point, and assumed to be rigid constrain. Then make the 

pipe length divided into 100 equal parts, a total of 101 

nodes, in the process of analysis with room temperature 

water as the fluid and rolling copper as pipe material [9-

10]. 

 

3.1 A SUBSECTION THE VIBRATION RESPONSE 

OF THE FLUID CONVEYING PIPELINE 

 

The four order mode of vibration in two kinds of 

boundary conditions. The first four order mode of 

vibration of the constraint of fixed to hinge as shown in 

Figure 2. The first four order mode of vibration of the 

constraint of fixed to fixed hinge as shown in Figure 3. 

 
FIGURE 2 The first four order mode of vibration of the constraint of 

fixed to hinge 

 
FIGURE 3 The first four order mode of vibration of the constraint of 

fixed to fixed to hinge 
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3.2 THE TWO BOUNDARY CONSTRAINTS 

VIBRATION RESPONSE 

 

As shown in Figure 4 is the vibration response of same 

node in different time for the constraint of the fixed to 

hinge, we can get the vibration cycle of the tenth nodes, 

fifty-first nodes and hundred and first nodes from the 

figure shows,  the amplitude becomes larger from tenth 

nodes, fifty-first nodes, hundred and first nodes. At the 

end of pipe the hinge hundred and first nodes is the 

maximum amplitude with match the actual situation. As 

shown in Figure 5 is the vibration response of same node 

in different time for the constraint of the fixed to fixed, 

compared with the fixed to hinge node, the node vibration 

graphs is same, but for the vibration amplitude the latter 

is small, the vibration cycle is small, in addition to the 

fifty-first node is the maximum vibration amplitude of the 

constraint of the fixed to fixed, that match with the actual 

situation. 

 
FIGURE 4 The vibration response of same node in different time for the 

constraint of the fixed to hinge 

 
FIGURE 5 The vibration response of same node in different time for the 

constraint of the fix to fix 
 

3.3 THE EFFECT OF VELOCITY AND PRESSURE 

FOR THE VIBRATION RESPONSE 

 

The effect of fluid velocity perturbation for response of 

the fluid conveying pipeline The effect of fluid velocity 

perturbation for system response of the constraint of the 

fixed to hinge as shown Figure 6. 

 

 
FIGURE 6 The effect of fluid velocity perturbation for response of the 

constraint of the fix to fix 

From the Figure 6 we can see the response of node 

periodic change in velocity perturbation, when the fluid 

velocity and pressure of nodes is a constant value, the 

vibration amplitude increases about 100 times with the 

time increased. The boundary conditions for the 

constraint of the fix to fix, the response of nodes has a 

cycle changes under the disturbance velocity, which the 

vibration amplitude increased about 100 times. 

The effect of the fluid pressure disturbance is for 

response of the fluid conveying pipeline. From the Figure 

7 we can see the response of node periodic change in 

velocity perturbation in the constraint of the fix to hinge, 

when the fluid velocity and pressure of nodes is a 

constant value, the amplitude of vibration is increased, 

but not very strong, the response is much smaller than the 

velocity perturbation. The boundary conditions for the 

response of the constraint of fix to fix constraint nodes is 

almost to the same with fix to hinge. 

 
FIGURE 7 The effect of the fluid pressure disturbance for response of 

the constraint of the fix to hinge 

3.4 CHARACTERISTICS COMPARATIVE 

ANALYSIS OF AXIAL VIBRATION OF PIPELINE 

 

The Table 1 gives the first four order natural frequency 

for response of the fluid conveying pipeline of the 

constraint of the fix to hinge and the fix to fix. Can see 

from the table, the axial vibration natural frequency of the 

fluid conveying pipeline system is bigger, the first-order 
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natural frequency of the constraint of the fix to fix is two 

times that of the fix to hinge. 
 

TABLE 1 The axial vibration of pipeline system in two kinds of 

boundary characteristics 

Frequency 
Fixed hinge 

constraint 

Fixed 

constraint 

The first-order natural frequency (Hz) 407.0157 814.0566 

The second-order natural frequency (Hz) 1221.1476 1628.314 

The third-order natural frequency (Hz) 2035.5808 2442.9732 
The fourth-order natural frequency (Hz) 2850.5163 3258.2352 

 

The effect for response of the fluid conveying 

pipeline of velocity and pressure for the vibration 

response is bigger, in a general it will increase 100 times. 
 

4 Conclusion 
 

The simulation for the response of the fluid conveying 

pipe axial motion summarized and analysed. In two kinds 

of boundary conditions, analysed the effect for the 

vibration response of the fluid conveying pipeline of 

velocity and pressure disturbance, verified the correctness 

of the established vibration model of the fluid conveying 

pipeline, and obtained the vibration characteristics of the 

fluid conveying pipe of velocity and pressure disturbance 

in the constraint of the fix to fix and fix to hinge, which 

provides theoretical support for the work of fluid 

conveying pipes. 
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