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Abstract 
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1 Introduction and main results 

 
In this paper, we are concerned with the quasi-

periodically forced nonlinear wave equation 

( , ) ( ) 0,

0, / 2

tt xxu u u g t x h u

x

  

 

   

  
 (1.1) 

under the periodic boundary conditions 

( , ) ( , 2 ),u t x u t x     (1.2) 

where  is a small positive parameter; the function 

( , ) ( , ),g t x g x   ( , ) mx    is real analytic in 

( , )x and quasi-periodic in t with frequency vectors   

1 2( , , )m    [ ,2 ]m  for some constant 0;  and 

the nonlinearity h  is a real analytic function of the form 
3 4( ) ( ).h u u u   

The technology of the Birkhoff normal forms has 

been widely used in the study of the dynamics of 

Hamiltonian systems close to elliptic equilibrium points. 

For example, obtaining Birkhoff normal forms of the 

Hamiltonians is the most important step of the KAM 

approach, which is one of the main tools to deal with the 

existence of periodic and quasi-periodic solutions of 

nonlinear PDEs. 

This paper is devoted to transform the Hamiltonians 

of a kind of wave equations to the four-order Birkhoff 

normal forms. This kind of systems contains nonlinear 

terms with quasi-periodically forcing and the space 

variable. We obtain a quantitative description about the 

Hamiltonian's proposition in a ball of a Sobolev type 

phase space. The result in this paper provides a basis for 

the forthcoming research of the existence of periodic or 

quasi-periodic solutions. The method in this paper can be 

considered as an idea to deal with the infinite-

dimensional systems whose nonlinear terms depend on 

the time or space variables. 

For the Birkhoff normal forms of wave equations 

under Dirichlet boundary conditions, the reader is 

referred to [1-4]. However, the partial differential 

equations with periodic boundary conditions are more 

complicated since the eigenvalues are not distinct but 

multiple. This fact would bring a lot of trouble in 

constructing normal forms. The reason mainly lies in the 

notorious “small divisor problem”, which makes it 

difficult to obtain the regularity of the symplectic 

transformations. In [5], the author studied the completely 

resonant nonlinear wave equation under periodic 

boundary conditions. But the difficulty caused by the 

multiplicity of eigenvalues was avoided since the author 

only considered the even solutions. Articles [6] and [7] 

succeeded in constructing Birkhoff normal forms of wave 

equations with periodic boundary conditions and proved 

that the existence of quasi-periodic solutions. However, 

their results cannot be used in equations with constant 

potential. 

In this paper, we are interested in the nonlinear wave 

equations with constant potential and with the nonlinear 

terms depending on time or space variables. In fact, Berti 

and Procesi [8] considered the periodically forced wave 

equations: 
1( , ) 0

( , ) ( , 2 ),

tt xxv v f t v

v t x v t x





  


 
 with the nonlinear 

forcing term: 2 1 2

1 1( , ) ( ) ( ),d df t v a t v v     

1,d  d   being 12 /   -periodic in time .t   

Zhang and Si [9] focused on the quasi-periodically 

forced nonlinear wave equations: 

http://www.baidu.com/link?url=0djac4xxSWyRG8sGYhBBoG1DMf167exu4ytnXUNuhsSxtkT7ZMo8CVeu7GxLrp6z
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( ) ( ) 0, 0tt xxu u u t h u        with Dirichlet 

boundary conditions, where  is real analytic quasi-

periodic function and 
2 1 2 1

1 2 1 2 1

1

1 2 1

( ) ,

, 0, .

r k

r k

k r

r

h u u u u

r

  

 

 

 

 



  

 


 

In the above equations, one needs to deal with 

essentially finite small divisors. Moreover, the above 

equations exclude those cases where the nonlinear terms 

contain the space variable, while in this paper; we 

provide an idea to deal with those cases. Factually, in 

those cases, the important “compactness property” cannot 

hold. Thus, one would confront essentially infinite small 

divisors. To overcome this point, we truncate the 

unperturbed term as well as the perturbed term. 

Therefore, although the “compactness property” is not 

satisfied, we can also estimate the measure of the small 

divisors. Our main Theorem 3.1 proves that there is a 

canonical transformation, which can change the 

Hamiltonian to a four-order Birkhoff normal form. 

The paper is organized as follows. In section 2, we 

will give the expression of Hamiltonian. Section 3 is 

devoted to the Birkhoff normal form of the Hamiltonian. 

 

2 Hamiltonian setting 

 

Throughout this paper, we assume that: 

0 0
0

1
( ) : lim ( , ) . 0 .

T

T
g g t x dt const g

T



   H   

For 0,f   the equation (1.1) becomes:  

0.tt xxu u u    (2.1) 

The operator 
2

2

d
A

dx
    with periodic boundary 

conditions admits a complete orthogonal basis of 

eigenfunctions 
2 ([0, 2 ]),j L   ,j  with 

corresponding eigenvalues 2 ,j j    if one sets 

0 1/ 2   and for 1,j   
1

( ) cos( ),j x jx


  

1
( ) sin( )j x jx


  . 

Every solution of the linear wave equation (2.1) can 

be written as a super-position of the basic modes j , 

namely, for  any subset of  and : ,j j   

( , ) cos( ) ( ),j j j j

j

u x t t x   


   with amplitudes 0j   

and initial phases .j   

In the whole of this paper, we denote by C the 

universal constants if we do not care their values. For 

some 1 0   and 0  , we suppose that g  analytically 

in , x  extends to the domain 
1 1( ) ( ),D D   where 

1 1 1( ) { | | Im | }D       and ( ) { | | Im | }.D x x     

We rewrite the wave equation (1.1) as follows:  

, ( , ) ( ),u v v Au g t x h u      (2.2) 

where 2 2/ , .A d dx t     As is well known, the 

equation (2.2) can be studied as an infinite dimensional 

Hamiltonian system by taking the phase space to be 

product of the Sobolev spaces 1 2

0 ([0,2 ]) ([0,2 ])H L   

with coordinates u  and .tv u   The Hamiltonian for 

(2.2) is then 
1 1

( , ) ( , ) ( , , ) ,
2 2

H v v Au u u x t dx       

where 
4 51

( , , ) ( , )[ ( )],
4

u x t g t x u u     and ( , )   

denotes the usual scalar product in 2 ([0,2 ]).L    

We introduce the coordinates 0 1 1( , , ,...)q q q q  and 

0 1 1( , , ,...)p p p p  by setting ( , ) ( ) ( ),j j

j

u t x q t x


  

( ) ( )j j

j

v p t x


 . 

The coordinates are taken from some Banach space 

(s 0)s

bl   of all real valued bi-infinite sequences 

0 1 1( , , , )q q q q   with finite norm ( ) | |,s

js
j

q j q


  

where ( ) max(1,| |).j j  We can obtain the Hamiltonian: 

,H G   where 

2 2 21
( ), ( ) ( ), ,

2
j j j j j

j j

q p G q t x x t dx    


 
     

 
 

 and .j j    

The equations of motion are: 
.

2,j j j j j

j j j

H H G
q p p q

p q q


  
      
  

 with respect 

to the symplectic structure i id p dq  on .s s

b bl l   

To make the system turn into an autonomous system, 

we introduce a pair of action-angle variables 

( , ) m mJ     ( : / 2 )m m m  by assuming that 

.t   Then, ,j

j

H
q

p





 ,j

j

H
p

q


 


 ,   

dxG
J




 


   

 


 can be written as a Hamiltonian 

system (with respect to the symplectic structure 

( )i id dJ dp dq     with the Hamiltonian: 

2 2 21
, ( ) ( , ).

2
j j j

j

H J q p G q         (2.3) 
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To continue our investigation of the Hamiltonian 

(2.3), we need to establish the regularity of the nonlinear 

Hamiltonian vector field 
GX  associated to ,G  where 

,     is the standard inner product in m . 

To this end, let 2

bl  and 2L , respectively, be the Hilbert 

spaces of all bi-infinite, square summated sequences with 

complex coefficients and all square-integrable complex-

valued functions on [0,2 ].  Let 

2 2 i1
: , jx

b j

j

l L q q q e


    be the inverse 

discrete Fourier transform, which defines an isometry 

between the two spaces. Let 1.s   The subspaces 2s

b bl l  

consist, by definition of all bi-infinite sequences with the 

finite form ( ) | | .s

js
j

q j q  Through  we define 

subspaces 2[0,2 ] [0,2 ]sH L   that are normalized by 

setting .
s s

q q   

The following lemma was proved in [7], we only give 

the result. 

Lemma 2.1 For all 0,s   the space s

bl  is a Banach 

algebra with respect to convolution of the sequences 

( ) : ,j j k k

k

q p q p   and 2 .s

s s s
p q q p   

Using the above lemma, we can prove the following 

lemma. 

Lemma 2.2 For all 1,s   the gradient 
qG  is real 

analytic as a map from some neighbourhood of origin in 

,s s

b bl l  with 
3

( ).q ss
G q    

Proof Let .s

bq l  Consider as a function on [0,2 ],  

j ju q   is in sH  with .
s s

u q  From Assumption 

( )H , we assume 

i i ,

0

| | 1

i , i

0

| | 1

( , )

1
,

x k

k

k

k x

k

k

g x g g e e

g g e e

  



  





 


  



  



  
 

   
   

   



 
 where the 

prime symbol in the summation sign indicates that the 

sum runs over all .   By using of Lemma A.1 in [10], 
1

1

| | | |

( ) ( )
| | ( , ) .

k

k D D
g g x e e

  

 
  


   

Furthermore, for 1( ),
2

D


  

1

1

1

1

| |
| |i , | | 2

( ) ( )
| | 1 | | 1

| |

( ) ( )

( , )

( , ) ,

k
kk

k D D
k k

D D

g e g x e e e

C g x e


   

 

 

 





  


 









 
 

because of the convergence of the series 
1| |

2

| | 1

.
k

k

e






  

Hence, for 1( , ) ( ) ( ),
2 2

x D D
 

     

1
0 ( ) ( )

| |
| | 2

| | 0

( , ) | | ( , )

( ) ,

s D D

s

g x g C g x

e e C

 




 



   









 


  (2.4) 

because of the convergence of the series 
| |

2

| | 0

( ) ,
k

se









  

where C  depends on ,g  
1,  s  and .  That is 

( , ) [0,2 ].sg H     By the algebra property and the 

analyticity of g  and h  from (2.4), the function 

( , ) ( )g x h u  also belongs to [0,2 ]sH   with 

3
( , ) ( )

s s
g x h u C q   in a sufficiently small 

neighbourhood of the origin, where C  depends on s , ,  

1  and .g  On the other hand, since 

( , ) ( ) ( )j

j

G
g x h u x dx

q
  




  . 

The components of 
qG  are the Fourier coefficients of 

( , ) ( ),g x h u  so qG  belongs to ,s

bl  with 

q s
G  

3
( , ) ( ) .

s s
g x h u C q   The regularity of 

qG  

follows from the regularity of its component and its local 

boundedness.  

 

3 Partial Birkhoff normal forms 

 

Since 4 51
( , , ) ( , )[ ( )]

4
u x g x u u     and ,j j

j

u q   

we find that 

5

, , ,

( , ) ( , ) ( ).
4

i j d l i j d l s
i j d l

G q g x dxq q q q q


          

From ( H ), we can get that  

i k,

0

| | 1

( , ) ( ) .k

k

g x g g x e   



   (3.1) 

It follows from (3.1) that 

, , ,

5i k,

,

| | 1, , , ,

( , )
4

( ),
4

ijdl i j d l

i j d l

k ijdl i j d l s
k i j d l

G q G q q q q

G e q q q q q





 



 






 where  

0

,

and

( ) , | | 1.

ijdl i j d l

k ijdl k i j d l

G g dx

G g x dx k

  

  



 




  (3.2) 

An easy computation shows that 0ijdlG   unless 

0i j d l     for at least one combination of plus and 

minus signs. In particular, we have 
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0

0 ( )

0

(2 )
, 0

4

(2 )
, 0

4

, 0,
2

ij

i j

ijij

g
if ij

g
G if ij

g
if ij



















 






, where 

1,

0, .
ij

i j

i j



 


 This will play an important role later on. 

Given a fixed finite subset of indices 

1{ , , }N Nn n    with | | | |i jn n , if ,i j  we 

decompose the Hamiltonian (2.3) as ,NH H H   

where  

,N N NH G    (3.3) 

,H G      2 2 21
, ( ),

2
N j j j

j

J q p 


      

, , , , 0

, 5

,

| | 1, , , ,

1
( , )

4

1
(| | ),

4

N

N

N ijdl i j d l

i j d l i j d l

i k

k ijdl i j d l

k i j d l

G q G q q q q

G e q q q q q


    

 

 



 




 (3.4) 

2 2 21
( ),

2

( , ) ( , ),

N

j j j

j

N

q p

and G G q G q



 







  

 


 (3.5) 

where 5(| | )q  denotes the five order terms, in which all 

the subscripts of q  belong to the subset 
N

 and noticing 

that N  is finite. 

We introduce the complex coordinates jz , 1,2,...,j   

N  by 
1

( i )
2

j j j

j

j n n n

n

z q p


   and define 

2 2 2

1| | | | ... | |Nz z z    for a vector 
1( ,..., ).Nz z z  So we 

obtains the Hamiltonian: 

2

1,2,...,

( , )

, | | ( , , ),
j

N N N

n j N

j N

H z z G

J z G z z



   


   

      (3.6) 

with symplectic structure i j j

j

d dJ dz z    , where 

0, , , , 1,...,

1
( , , )

4

( )( ) ( ) ( )

2 2 2 2

i j d l

i j d l

i j d l

N n n n n

n n n n i j d l N

j ji i d d l l

n n n n

G z z G

z zz z z z z z



   

    



  



  

i k,

,

| | 1 , , , 1,...,

5

1

4

( )( ) ( ) ( )
(| | )

2 2 2 2

i j d l

i j d l

k n n n n

k i j d l N

j ji i d d l l

n n n n

G e

z zz z z z z z
z



   

 

 





  


 
 (3.7) 

 

By using the method in [7], for the remaining 

coordinates, one introduces the notation, for 1,   

2( , ) , if , ,

, if | | for some ,

N

N

q q

x

q

 





 

  





   


  
   

and similarly for , ,j Np j  denoted in term of 

, 1,
N

y 

    with N  as above, namely, 2N   if 

both , N    and 1N   otherwise. For ,kd 1,k   a 

sequence of strictly positive integers uniformly bounded 

by some d   , let   denote the set of infinite 

sequences 
1 2( , ,...)x x x    with kd

kx  . Then we can 

introduce the following family of Banach spaces 
s

 , 

s , 
1

{ || | | | }.dk

s

s k

k

Z Z k Z 



    Clearly, for 

, s

bq p l  one has , ,sx y    and ( , , , )H z z p q
 reads in 

these notations 

( , , , , ) ( , ) ( , , , ),H z z x y x y G z z x    
       

2 2 2

1

1
( , ) ( | | | | ),

2
x y x y  







      (3.8) 

and 
3 4

4 5

0 0

| | ( | | ) ( | | ).
l ll l

s s
l l

G z x z x
 



 

      

Theorem 3.1 Choose 
0

 small enough. Consider the 

Hamiltonian .NH  For each fixed subset , ,N N    

satisfying | | | |i jn n  when ,i j  there is a subset 

[ ,2 ]m  with 0meas  such that for any  , 

and there is a real analytic, symplectic change of 

coordinates 
N  in a complex neighbourhood: 

1( ) : { |
2

D


   1

1|Im | , 0}
2


   of the tour m  and 

a neighbourhood of the origin in N  such that for all 

0,   the Hamiltonian (3.3) can be transformed into 

2 5ˆ (| | ),N N N N N NH G G K z           where 

4 6

0
ˆ (| | ), (| | ),N NG z K z   and 

2 2

, 1

1
( , ) | | | |

2

N

N ij i j

i j

G z z g z z


   with uniquely determined 

coefficient  
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| | | |

| | | |

| | | |

0

0

| | | |

0

| | | |

3
, if ;

4

9
,

  

if and 0;
16

3
, if and 0.

8

i j

i i

i i

n n

ij i j

n n

i j

n n

g
i j

g
g i j n n

g
i j n n

 

 

 








   


   



  

Furthermore, setting ,
s s

N   
   1  one has 

H K        with 

3 4
4 5

0 0

| | ( | | ) ( | | ),
l ll l

s s
l l

K z x z x
 



 

      (3.9) 

where 1  denotes the identity map.  

Before the proof of the above theorem, we first prove 

the following lemmas. 

Lemma 3.1 There is a set [ ,2 ]m ( 0)  such 

that for any   satisfying that 

1
| , | , 0

| |

m

m
k for all k

k





      (3.10) 

And 
1(1 ) ,mmeas C     where the constant 

1C  

depends on m . 

Proof Let 0 mk  , 

1

1
[ ,2 ] :| , | ,

| |

m

k m
k

k


 



 
    
 

 and 

1 1

0

.
m

k

k 

  Consider two hyperplanes 

1
, .

| |m
k

k





    We have 

1
1 1 1

1 2

2 2( 2)
meas | | ( 2 ) .

| | | |

m
m m

k m m

m
m k

k k

 
 

 
    

It follows that 

1 1 1

2

0 0

1 ( 2)

1 1

1

1
meas meas 2( 2)

| |

(2 1) ,

m m

m m

k m

k k

m m m m

p

m
k

C p p C



 





   


  



 

  

 


 

because the series 1 ( 2)

1

(2 1)m m

p

p p


  



  is convergent. 

Therefore, this lemma is true when we assume that 
1[ ,2 ] \ .m    

Now, we use the notation 
| |

sgn .
ii ni      

 

Lemma 3.2 Assume that 
| | | | | | | |, , ,i j d l Nn n n n   are 

integers, , , , {1, 1,2, 2,..., , }i j d l N N     and 

01 | |k K  , where we choose 1

0 0 0

1

4
: ( )' .K K ln


    

Then, for the parameter set [ ,2 ] ,m  there is a subset 

[ ,2 ]m  with 

2

1

0

1 ,
ln( )

m C
meas




 
   

 
 (3.11) 

satisfying that, for any ,   

1

0

, ,' ' ' 'i j d l m
k

K


    


        (3.12) 

where 
2C  is a constant depending on N , m , and 

1 . 

Proof Assume  
2

,

1

0

{ [ ,2 ] :|

,

'

|

' '

}

'm

ijdl k i j d l

m
k

K

    






    

  
 and 

0

2 2

,

1 | | , , ,

.ijdl k

k K i j d l 

   It follows that, by using of the 

same method in the proof of Lemma 3.1, for fixed 

, , ,i j d l  and k ,  

2

, 1 1

0 0

meas ,
|

 
|

m m

ijdl k m m
C C

K k K

 
 

   (3.13) 

where C  depends on .m  It is well known that the 

number 

1{ :| | } 2 .m m mk k l l     (3.14) 

So  

0

1

0 0

1

{ :1 | | } 2 2 .
K

m m m m m

l

k k K l K



      (3.15) 

It yields that, from (3.13), 

0

2 2

,

1 | | 1 | |,| |,| |,| |

4 2

0 21 1

00 0

meas meas

(2 ) 2 ,
ln( )

ijdl k

k K i j d l N

mm m
m m

m

CC
N K C

KK

 

   

 

 

  

 where 
2C  is 

a constant depending on N , 1,  and m . Finally, we 

only need to assume 2[ ,2 ] / .m    This completes 

the proof.  

Now we prove Theorem 3.1.  
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Proof of Theorem 3.1 We always suppose, that 

| | | | | | | |, , ,i j d l Nn n n n  . It is convenient to adopt the notation 

j jz w , ,j jz w  1,2,..., ,j N  in which 
NH  reads, 

from (3.6) and (3.7), 

 

N N NH G     

| | | | | | | |1 , , , , 0

i , 5

,

| | 1 , , ,

, '
16

' (| | ),
16

j

i j d l

N

n j j ijdl

j i j d l n n n n

k

i j d l k ijdl i j d l

k i j d l

J w w g

w w w w g e w w w w w


 






    

 





   

 

 

 

 

 

where 

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

,

,

,

,

i j d l

i j d l

i j d l

i j d l

n n n n

ijdl

n n n n

k n n n n

k ijdl

n n n n

G
g

G
g

   

   





 (3.16) 

and the prime symbol in the summation sign indicates 

that the sum runs over all indices 

, , , {1, 1,..., ,i j d l N  }N . 

Consider a Hamiltonian function 

0

, , ,

i ,

,

0 | | , , ,

'

'

ijdl i j d l

i j d l

k

k ijdl i j d l

k K i j d l

F F w w w w

F e w w w w

 

  

 

 





 
, where we define, for 

0k  , i ,
16( )

ijdl

ijdl

i j d l

g
F

   


     
 if 

, , , { , , , }i j d l a a b b           and | | | | | | | | 0i j d ln n n n     

and i 0,ijdlF   if , , , { , , , }i j d l a a b b           and 

| | | | | | | | 0i j d ln n n n    , or | | | | | | | | 0i j d ln n n n    ; for 

0,k   

,

,

,

, if 0,
16 ,

i

, .
16( , )

k ijdl

i j d l

k ijdl

k ijdl

i j d l

g

k
F

g
otherwise

k

   


    


      

 
 

         

  

In the same way with [3] and [7], we can prove that, 

for the integers | | | | | | | |, , ,i j d l Nn n n n   satisfying 

| | | | | | | | 0,i j d ln n n n     the following inequality 

2 3/2
| | 0,

( )
i j d l

c

M


   


       


  (3.17) 

holds, where c is some absolute constant and minM   

| | | | | | | |{ , , , }i j d ln n n n . 

Let 1

N X   be the time-1 map of the vector-field of 

the Hamiltonian .  Expanding at 0t   and using 

Taylor's formula we can obtain that 
1

0

2

1
2

0

{ , } (1 ){{ , }, }

ˆ{ , } { , }

(1 ){{ , }, } ,

t

N N N N N

N N N N N

t

N

H H H t H X dt

G F G G F

t H F F X dt

   



     

      

  





  

where 
| | | | | | | |

0

, , , , 0

i , 5

,

0 | | , , ,

ˆ( , ) ( , ) ( , )

1
'

16

1
' (| | ),

16

i j d l

N N N

ijdl i j d l

i j d l n n n n

k

k ijdl i j d l

k K i j d l

G w G w G w

g w w w w

g e w w w w w

  

   

 

 

 



 



 

 

and { , }   is the Poisson bracket of smooth functions: 

1 2 1 2 1 2 1 2

1 2

1

{ , } i ( ).
N

j j j j j

G G G G G G G G
G G

J J z z z z  

       
   
       



 

Now let us compute { , }:N F   

| | | | | | | |

0

, , , , 0

0 | | , , ,

i ,

,

{ , }

i '( )

i '( , )

i j d l

N

i j d l ijdl i j d l

i j d l n n n n

i j d l

k K i j d l

k

k ijdl i j d l

F

F w w w w

k

F e w w w w

   

    

   

 

 

 

      

         





 
 

Hence 

 

| | | | | | | |

0

, , , , 0

,

, , , 0 | |

i k, 5

,

5

, 1

{ , }

1
'( i( ) )
16

1
' i( , )

16

(|

' ' ' '

( '

| )

1
(| | )

' ' '

)

2

i j d l

N N

ijdl i j d l ijdl

i j d l n n n n

i j d l

k ijdl i j d l

i j d l k K

k ijdl i j d l

N

N ij i

i j

G F

g F

w w w w

g k

F e w w w w w

G w g w w



   

    

   

 

 





 

    



       



  





 

 5(| | ),i j jw w w 

  

where if i j , 

| | | |

0324

16 4
i j

ij i ij j

n n

g
g g

 
   ; if i j  and 

| | | | 0i jn n  , 

| | | |

0912

16 16
i i

ij i ii i

n n

g
g g

 
   ; if i j  and 

| | | | 0i jn n  , 

| | | |

0312

16 8
i i

ij i ii i

n n

g
g g

 
   . 

The uniqueness can be proved in the classical way as 

same as in [11]. Hence, we have 
2

1
2 5

0

ˆ { , }

(1 ){{ , }, } (| | ).

N N N N N N

t

N

H G G G F

t H F F X w

  

 

     

   
  

CLAIM. The vector-field of the Hamiltonian FX  is 

real analytic in a complex neighbourhood 1( )
2

D


  of 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(4) 42-49 Wang Yi 

48 
Mathematical and Computer Modelling 

 

m  and some neighbourhood of the origin in N , and 

satisfies 3| | (| | ).wF w  In fact, letting 

1 2( , ,...,w w w ) N

Nw   
1( )D  , we have that 

2 2

1| | | | ...w w    2| | ,Nw  and from (3.17), (3.16) and 

(3.2), we have that 

| | | | | | | | 0

| | | |
16( )

| | | | .
j d l

jdl

jdl jdl

j d l

n n n n

g
F C g

C
G C g C





 

   



 
     

  

  

Now we let   . By using of Lemmas 3.1 and 

3.2, it is obvious, that (1mmeas  1C   2

1

0

)
( )

C

ln




. So 

0meas  when   is small enough. In addition, for 

1( , ) ( )x D   ( )D  , by Lemma A.1 in [10] and from 

(3.1): 

1

1

| |

( ) ( )
| ( ) | ( , )

k

k D D
g x g x e



 
 


  (3.18) 

is always true. Therefore, when  , if 

0,j d l           from (3.10), (3.2) and (3.16), we 

can get  

1

| | | | | | | | 1

1

1

1
,

, ,

1 1
| |

, ( ) ( )

| |1

( ) ( )

| |
| | | |

16 ,

| | | |
| | ( , )

| | ( , ) .

j d l

m
k jdl

k jdl k jdl

m m
k

k n n n n D D

km

D D

g k
F C g

k

k k
C G C g x e

C k g x e





 



 



 

 


   





 








 
 

 



 

If 0,j d l           we have that, from (3.12), 

(3.2) and (3.16),  

1

| | | | | | | | 1

1

1

1
, 0

, ,

1 1

| |0 0

, ( ) ( )

| |1

0 ( ) ( )

| | | |
16( , )

| | ( , )

( , ) .

j d l

m
k jdl

k jdl k jdl

j d l

m m

k

k n n n n D D

km

D D

g K
F C g

k

K K
C G C g x e

CK g x e





 





 



 

     


   





 









 
        

 



  

It follows that, by using of (3.15),   

| | | | | | | |

0

1

0

1 1

1

, , ,

i k,

,

0 | | , ,

1

0 ( ) ( )
, , , , 0 | |

| | | | 3

( ) ( )

1

0

1

| | 4 ' | | |

4 ' | || |

' | | ' ( , )

| | | | ( , )

j d l

w jdl j d l

j d l n n n n

k jdl j d l

k K j d l

m

j d l D D
j d l j d l k K

k k

j d l D D

m

F F w w w

F e w w w

C w w w CK g x

e e w w w C w C g x

K











 

 

 





  

 

 




 









 

 

 





 

  

0

3 3 1 3 3

0 0

| |

| | | | 2 | | | ,|m m m

k K

w C w CK K w C w



  

 

where C  depends on 1 0, , , , , , ,m g N K    and  . 

Therefore, we can get that 

2 3

1

| | | | (| |) ,
N

w wF F C w




   (3.19) 

where C  depends on 
1 0, , , , , , ,m g N K N  , and  . 

Similarly, we can prove that, for 1( , ) ( ) ( ),
2

x D D


     

| | | | | | | |

| | | | | | | |

1

, , , 0

i , 4

, , ,

| | 1

, , , 0 , , ,

| | 1

| |
4 32

1
| ( ) | | || |

4

1
| || | (| | )

4

| | | |

| | (| |

'

) | |

'

'

'

'
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It follows from (3.18) and (3.14) that, for | | 1,w   
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by using of convergence of series 
1

1 2

1

2
l

m m

l

l e








 , where 

C  depends on 
1, , , ,m g N   , and  . Thus 

3| ( ) | (| | ).N wG w  (3.20) 

Suppose that  
1

0
{ , } (1 ){{ , }, } .t

N N NK G F t H F F X dt      

By using of (3.20) and (3.19), we get that 

6|{ , }| (| | ).NG F w  (3.21) 

Using of Cauchy estimates for the fact that 
5 4|{ , }| | (| | ) | (| | )N N NF G w G w      and from 

(3.19), it results 

6|{{ , }, }| (| | )N F F w   (3.22) 
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2 2
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  Moreover, using Cauchy estimates for 
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8|{{ , }, }| (| | ).NG F F w  It follows from (3.22) and (3.3) 
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that 6|{{ , }, }| (| | ).NH F F w  Therefore, 
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where C  depends on 
1, ,g    and ,  as 

0
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enough. It follows that  
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where C  depends on 
1, , , ,g     and .N  Hence, 

4

0
ˆ (| | ).NG w  This completes the proof.  
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