

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

79
Computer and Information Technologies

A line segment detection algorithm based on statistical analyses
of quantified directions in digital image

Liang Jia, Nigang Sun*

School of Information Science & Engineering, Chang Zhou University, 213164, China

Received 12 June 2014, www.tsi.lv

Abstract

Line segment detection is a typical image processing problem with constantly evolving solutions. Following the line segment detect

(LSD) by Grompone von Gioi, two branches of algorithms merged. The first branch aimed to improve its speed at the cost of lower

accuracy; the second applied in the opposite way. We investigated the philosophies of these methods, and attempt to develop a line

segment detection algorithm based on statistical analyses of quantified directions (LSDSA) to achieve better accuracy and faster

speed. We utilize a statistical approach estimating the distributions of pixels with direction values approximating the direction

changes when traversing along the edges given by any edge detector. It efficiently reduces the dimension of the input data, and incurs

limited increasing in computation time for validation process. The simulation results show that the proposed algorithm achieves

better performance compared to the existing typical LSD algorithms. The experiment using industrial data in noisy cases also

exhibits excellent performance.

Keywords: Line segment detection, Hough transformation, Image processing, Pattern recognition

* Corresponding author e-mail: ngsun@cczu.edu.cn

1 Introduction

Straight lines, such as straight roads, horizons and the

walls, are basic visual elements in the world. They are

represented by line segments in digital images. As mobile

devices and digital cameras became popular, processing

images are serviced as a common daily task for many

people, and the number of digital images has increased

heavily.

As a basis of the image processing algorithms, line

segment detection are useful for various high-level image

processing tasks such as crack detection in materials [1],

robot-navigation [2] and many others [3, 5, 6, 4].

Roughly, there are three sets of typical algorithms for line

segment detection [7]:

(1) Algorithms based on geometric duality [9, 11, 12,

10] such as Hough transformation (HT) [8] and Gaussian

kernel-based Hough Transform (KHT) [13]. They usually

suffer from the expensive computational costs of

implementing geometric duality and the low detection

accuracy. Although KHT made a great improvement of

the voting procedure introduced by HT, it totally depends

on the pre-processing procedure composed of algorithms

proposed in [14] and [15] to provide the input data.

(2) Algorithms based on the analysis of the gradient

orientations. Following the typical LSD of none-

parameter-turning features [16], Akinlar proposed a line

segment detector based on edge drawing algorithm

(EDLines) [7]. EDLines is about 10 times faster than

LSD, while its accuracy just approximates LSD. Yang

proposed a line segment detector using two-orthogonal

direction image scanning (TODIS) [22], which achieves

better detection accuracy compared to LSD, but it

consumes about 8 times of the computational time than

LSD.

(3) Algorithms using line geometrical properties and

the relative positions of pixels. They extract the line

segments by traversing along the edge pixels given by the

edge detectors. As an example, the algorithm proposed in

[20] tries to find the blurred lines in a grey level image

and its prototype is reported in [19]. Although the

algorithm detects segment accurately, it also generates

lots of positive false [7, 17, 22].

Generally, algorithms faster than LSD such as

EDLines suffer from lower accuracies; algorithms with

higher accuracies than LSD such as TODIS consume

more computation resources. In this paper, we attempt to

explore a method that could preserve higher accuracy and

higher speed, namely, faster than TODIS and more

accurate than EDLines

Inspired by the strategy introduced in [18] and

direction value processing method proposed in [23], we

develop an algorithm called LSDSA maintaining

statistical records about direction values found in steps of

the traverse and it dynamically decides whether the

current traverse should continue or cease in each step

based on the records. Once LSDSA finds the traverse

leads to a line whose direction values differ a lot from the

traversed line segment, the traverse terminates and the

line segment is stored. After all found segments are

validated, the distorted ones are split to shorter segments

based on a statistical computation of the records. Finally,

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

80
Computer and Information Technologies

LSDSA checks the possibility of linking the segments of

the similar direction values by appropriately extending

the segments.

Basically, LSDSA needs two parameters: sample size

and the minimal length of a line segment. Since there is

no record initially, we sample a number of pixels as the

first parameter. The minimal length filters the found

segments based on their lengths. Actually, we can

combine these two parameters into one parameter and

automatically determine it by the dimensions of the

image space if necessary. The experiment shows that

LSDSA runs at least 2 times faster than TOIDS and its

accuracy is higher than EDLines.

The rest of this paper is organized as follows. Section

2 introduces the work related to LSD. Section 3 presents

LSDSA. The experimental results are reported in in

Section 4. Finally, we conclude the paper in Section 5.

2 Background

In this section, we focus on two issues related to LSDSA,

namely, inner border tracing [23, 24] and foot-of-normal

method [27].

2.1 INNER BORDER TRACING

The border tracing is used to find the inner border of a

region in a binary image. Typical border tracing methods

includes versions for 4-connectivity and 8-connectivity.

They label the positions in the neighbourhoods of the

different connectivity’s by using direction values tied to

the directions in the image plane. The direction values of

8-connectivity as shown in Fig. 1 reflect more directions

than 4-connectivity.

0

1
2

3

4

5

6

7

FIGURE 1 Direction values of 8-connectivity

The border tracing algorithm of 8-connetivity is

shown in a diagram named activity diagram [25, 26]

which satisfies the standards of Unified Modelling

Language (UML) as shown in Fig. 2. The mod operations

associated with the estimation of odevity of the dir yield

values lying in a fixed range when dir can only be one of

the values shown in Fig. 1. Hence there is a mapping

between the input and output values of dir. The mapping

can be represented by a matrix, i.e., a look-up table and

the computations of the mod operations which actually

are replaced by simple searches are accordingly reduced

to O(1).

The anti-clockwise search for the non-zero pixel is

implemented by updating the variable dir after each

check of a pixel in the neighbourhood, and stops once a

non-zero pixel is found. The search will lead the centre of

the searching to move to the found pixel and repeat. A

continuous series of searches is called tracing. The

tracing always starts at the first non-zero pixel in the

upper left corner of the region and ends at the same pixel,

no matter what shape of the checked region is used. Non-

zero pixels of the inner border may be record more than

once if the region is not closed, e.g., a one-pixel-width

curve.

[dir is even] [dir is odd]

[Pi = P1 && Pi-1 = P0]

[else]

Inner Border Tracing

Find P0 with the minimal x and y coordinates

Define a variable dir and initialize its value to 7

dir = (dir + 7) mod 8 dir = (dir + 6) mod 8

Start from the direction of dir, search the 3-by-

3 neighborhood of the current pixel in an anti-

clockwise order and update dir after the search

Store the first-found non-zero pixel as Pi

Return P0, P1, … ,Pn-2 as the inner border

FIGURE 2 General structure of inner border tracing

2.2 INNER BORDER TRACING

The algorithms based on Hough transformation (HT)

usually have high computation cost. Their most

expensive step is the procedure called voting to change

the values of points (cells) in the parameter space

according to pixel coordinates s in the image foreground.

Its computational complexity is O(m ● n2) where m

denotes the degree of the parameter space discretization

and n denotes one dimension of an image.

The foot-of-normal algorithm could reduce the

computational complexity of the voting to O(n2) based on

the fact that one line can only have one intersection with

the normal which crosses the origin of the coordinate

system. The intersections just are defined as votes as

shown in Fig. 3.

X axis

Y axis G(gx, gy)

N(x0, y0)

P(x, y)

0

FIGURE 3 Foot-of-normal method

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

81
Computer and Information Technologies

The origin is a fixed reference point. Assuming P is a

point on the line and line ON is the normal of line PN ,

from the facts that vector ON is perpendicular to vector

PN and ON parallels to gradient vector (gx, gy) given

by a Sobel operator, we get

0 0/ /x yg g y x and
0 0 0 0() () 0x x x y y y    . (1)

Solving the above formulae for x0 and y0, we obtain

the formula of the voting point,

0 xx v g  ,
0 yy v g  , where

2 2

x y

x y

x g y g
v

g g

  



 (2)

Davies [27] analysed the line estimation error and

found the image should be subdivided to reduce the error.

The basic steps of the foot-of-normal method consist of

subdividing the image, computing (x0, y0) in each sub-

image whose origin is its centre instead of the upper-left

corner, and finally making a vote at (x0, y0). Fig. 4 shows

the voting results of a real-word image. The original

image is divided to 20-by-20 and 50-by-50 sub-images

indicated by white lines. The squares in the resulting

images denote the voting points. Obviously, the more the

image is subdivided, the more lines can be detected.

FIGURE 4 Results of the foot-of-normal method

3 The Proposed Algorithm

The basic idea of LSDSA is to dynamically link the

pixels in the foreground of an image by using a statistical

approach with low computational complexity. We

develop a novel approach to represent the geometrical

properties of line segments. Here, 8 infinite directions

could be represented by direction values defined in

section 2.1. The number of directions is determined by

the resolution of the input image and the size of the

neighbourhood employed. Among the neighbourhood of

small sizes, a 3-by-3 neighbourhood reflects an adequate

range of directions.

The general structure of LSDSA is shown in Fig. 5. It

requires a pre-processing to generate the binary edge

image based on the input image. The pre-processing is

denoted by a solid rectangle labelled by the text “Detect

Edge”. Any edge detector can be employed in the pre-

processing.

In Fig. 5, the largest dotted rectangle denotes the body

of LSDSA. In this rectangle, three subroutines are

designed to (1) find roughly straight-line segments, (2)

find and break distorted line segments, and (3) link

adjacent line segments with similar directions. They are

represented by rectangles marked Subroutine 1,

Subroutine 2 and Subroutine 3 in Fig. 5 and the sub steps

of Subroutine 2 and Subroutine 3 are shown in their

rectangles respectively.

When the detection of line segments is completed, the

detected segments can be directly returned or processed

by a post-processing to generate the global straight lines.

As shown in Fig. 5, the two possible choices are denoted

by two branches below the rectangle of the proposed

algorithm. By combining the foot-of-normal method and

the inverse HT algorithm [28, 29], the global lines can be

obtained as the final result.

Detect Edge

Line segments

1-pixel-width edge image

[line segments are desired]

Return line segments Apply foot-of-normal method

[global lines are desired]

Apply inverse Hough Transformation

Return global lines

Step 2.2 Find Split Position

Step 2.1 Find Distorted Segments

Step 2.3 Split Distorted Segments

Step 3.2 Estimate Linking

Step 3.1 Estimate Terminals

Step 3.3 Link Segments

Rough segments

Separated segments

Refined segments

Separated segments

Proposed Algorithm

Subroutine 2

Subroutine 3

Subroutine 1

FIGURE 5 General procedure

3.1 FINDING ROUGHLY STRAIGHT LINES

Subroutine 1 performs a scan of the edge image and

conditionally tracks each continuous curve (edge). It is

used to rapidly find roughly straight-line segments

without using any voting process. The following

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

82
Computer and Information Technologies

subroutines after Subroutine 1 do not need to scan the

whole image, and the size of the data is reduced to

segments found by Subroutine 1. T the relatively

sophisticated processing can be integrated to the

following subroutines without drastically decreasing the

speed of the algorithm. The details of Subroutine 1 are

shown in Fig. 6.

In Fig. 6, m and minLength represent the sample size

and the acceptable minimal length of the found line

segment respectively, which are configured manually as

input arguments. Variable toleranceVal is employed to

distinguish the line segments of difference directions,

e.g., if toleranceVal is set to 2, then direction values 0

and 1 are envisaged as representing the same direction

because their difference is less than toleranceVal. The

difference between two direction values is defined to be

the smaller number of sectors between the direction

values shown in Fig. 1. Namely, for direction values 0

and 3, the number of sectors can be anti-clockwise

counted as 3 or clockwise counted as 5, and the

difference is 3. The difference between two direction

values such as dir1 and dir2 can also be expressed as

if - 4 then 8 - - ;

else -

dir1 dir2 difference dir1 dir2

difference dir1 dir2

 


. (3)

When a non-zero pixel is found during Subroutine 1

scan, the scan is temporarily paused and the track

operation is inserted. The track operation first tries to

locate the right end of the curve. To locate the right end,

the subroutine only checks the positions coinciding with

direction values of 6, 7 and 0 of Fig. 1 in the

neighbourhood of a non-zero pixel, moves the searching

centre to it and repeat. The last-found pixel is envisaged

as the right end of the line segment and the sampling

starts at it. The searching procedure may split a line

segment into several short segments, for example, if we

apply the right-end searching to the right segment in

Fig.7, it will stop before the pixel labelled 5 is reached

because this pixel is in the direction 5 instead of 6, 7 or 0.

This drawback may be fixed by merging segments in

Subroutine 3.

Segments, Directions and Occurences in Fig.6

respectively are the set of found line segments, the set of

the direction values and the set of statistical information

of direction values associated with each segment.

Variables tempSegments, tempDirections and

tempOccurences contain the temporary data of Segments,

Directions and Occurences respectively. The data of

three temporary variables can be arbitrarily overwritten.

To illustrate these steps clearly, we depicts a simple

binary image whose foreground contains two line

segments in Fig. 7. Table 1 illustrates the result of its

sampling procedure. The sampling procedure is denoted

by the solid rectangle marked “Sample m pixels” in Fig.

6.

[The difference of
the compared direction
values are less than
toleranceVal]

[m pixels have been linked]

[Under 8 connectivity, a
non-zero pixel adjacent to
 the current pixel is found]

Try to scan a new pixel just adjacent to a scanned

one from left to right in a single row and from the

top row to the bottom row in the image space

[There are pixels which are not scanned] [else]

[else][New scanned pixel is non-zero]

[There is a path formed by non-zero
pixels adjacent to the right
side of the scanned pixel]

[else]

Traverse the path to its end

Start the tracing at

the end of the path

Start the tracing at

the scanned pixel

Sample m pixels

This step simply records
coordinates, direction values
and statistical information of
linked pixels respectively in
tempSegments, tempDirections
and tempOccurences, and set
all found pixels to 0

[else]

Set the last (mth) sampled pixel to the current pixel

Compare the direction values of

the current pixel and maxDir

Update tempSegments, tempDirections and

tempOccurences based on the information

of the current pixel and set its value to 0

Sample m pixels

[m pixels have been linked]

[else]

[else]

Upadte

Segments,

Directions,

Occurences

based on the 3

temporary lists

and the value

of minLength

[else]

Scan a pixel

Search the neighborhood of the scanned pixel

Initialize variables: m:int, toleranceVal: int, minLength: int, maxDir: int,

maxDirSample: int, Segments: List<List<int>>, Directions: List<List<int>>,

Occurences: List<int[]>, tempSegments: List<List<int>>, tempDirections:

List<List<int>>, tempOccurences: List<int[]>

In Occurences, find the direction value of the largest

number of the linked pixels and copy the value to maxDir

Find the direction value of the largest number of the

sampled pixels and copy the value to maxDirSample

Compare maxDir and maxDirSample

[The difference of the compared direction
values are less than toleranceVal] [else]

FIGURE 6 Details of Subroutine 1

7
7

5
5

5
7

5
54

7
7 0

7
5

7
7
6

FIGURE 7 Representation of a binary image by lattices

TABLE 1 Values of Segments, Directions and Occurrences

Member
Value

0 1 2 3 4 5 6 7 8

Segments[0] 22 39 54 69 84 101 116 131 130

Segments[1] 41 58 59 76 91 108 125 141 Ø

Directions[0] 7 7 5 5 5 7 5 5 4
Directions[1] 7 7 0 7 5 7 7 6 Ø

Occurrences[0] 0 0 0 0 1 5 0 3 5
Occurrences[1] 1 0 0 0 0 1 1 5 7

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

83
Computer and Information Technologies

3.2 DETECTING AND BREAKING DISTORTED

LINES

In order to detect and break distorted lines, we launch

three steps in Subroutine 2: (1) detect distorted segments;

(2) determine positions of split; (3) splits distorted

segments.

We detect distorted segments based on Occurrences.

We find that the distribution of the direction values of a

roughly straight line segments is similar with a uni-modal

Gaussian distribution. Any multi-modal distribution

implies the corresponding segment is distorted. Once the

multi-modal is found, the difference between the

direction values of the largest and the second largest

modals is estimated. As shown in Fig. 8, we first detect

the direction value of the second largest number of pixels

which corresponds to a modal in the distribution in

Occurrences, and then estimate the ratio and the

difference of the maximal direction value and the found

value which are respectively denoted by the variables

maxDir1 and maxDir2. Only when the difference exceeds

torleranceVal and the ratio is larger than the parameter

thresholdRatio whose value is experimentally set to 0.8,

the corresponding segment is confirmed distorted.

Initialize variables: segmentIndex: int, entryIndex: int,

maxDir1: int, maxDir2: int, thresholdRatio: double,

dirGroup: List<int>, positionsOfSplit: List<int>

Try to read an unvisited member of Segments

[There is an unvisited member in Segments] [else]

Copy the index of the unvisited member to

segmentIndex and mark the member visited

Find the largest and the second largest entries of the

member with the index segmentIndex in Occurences, then

copy their values to maxDir1 and maxDir2 repectively

[maxDir1/maxDIr2 > thresholdRatio AND the difference
between the direction values corresponding to maxDir1
and maxDir2 is not less than toleranceVal][else]

Clear the entries of positionsOfSplit and add 0 to positionsOfSplit

Try to read an unvisited entry of the member with index segmentIndex in Directions

[There is an unvisited entry in the member] [else]

Copy the index of the entry to entryIndex, mark the entry visited, and

compute the differences between the entry and every entry of dirGroup

[All differences are less than toleranceVal] [else]

Add the entry to dirGroup Add entryIndex to splitPostions

and clear all entries of dirGroup

Add the index of the last entry of the member with index segmentIndex in Directions

to positionsOfSplit, and mark the first entry of positionsOfSplit visited

Clear the entries of dirGroup

Step 2.1 Find Distorted Segments

Step 2.2 Find Positions of Split

Step 2.3 Split Distorted Segments

Check the direction value to see
whether it is a new direction value
type to the types recorded in dirGroup

FIGURE 8 Details of the two steps of Subroutine 2

Next, in Step 2.2 we attempt to find the pixels where

the main direction of a segment drastically changes. The

strategy is assuming the segment is formed by several

parts associated with specific direction value groups

represented by dirGroup in Fig. 8. For each group, the

differences among all elements are less than

toleranceVal. Initially, dirGroup is empty and then the

direction value of the first pixel encountered in the

checking is added to it. The direction values of the

following pixels are compared with the value in group. If

the difference is adequate, the pixel is taken into the part,

otherwise it is marked as a possible position in the

segment to split and recorded by positionsOfSplit in Fig.

8.

Step 2.3 shown in Fig. 9 tries to split the segment

according to postionsOfSplit. The lengths of different

parts of a segment are compared with minlength. Only a

segment with parts of lengths exceeding minLength is

split and causes Segments, Directions, and Occurences to

be updated. The updating procedure is denoted by four

solid rectangles just above the thick horizontal bar in Fig.

9.

Try to read an unvisited entry in positionsOfSplit

[There is an unvisited entry in positionsOfSplit] [else]

Find the entries in the member with index segmentIndex

in Segments according to the values of the lastest

visited and the current entries of positionsOfSplit

Compute the length between the found entries in Segments

[else] [The computed length exceeds minLength]

Find the entries in the member with segmentIndex in

Directions according to the values of the last visited

and the current entries of positionsOfSplit

Add the segments between the found entries in Segments and

Directions as the new members to Segments and Directions, and

delete the original segments in the corresponding old members

Compute the statistical information based on the new-added

segment in Directions, add the computed information as a new

member to Occurences, and delete this information from the

corresponding old member

Mark the new-added member in Segments visited

Mark the current entry of positionsOfSplit visited

Check the member with index

segmentIndex in Segments

[else] [The member exists]

Mark the checked

member visited

The values of the lastest
visited and the current
entries are envisaged as
indices of entries in
Segments[segmentIndex]

Step 2.1 Find Distorted Segments

Step 2.2 Find Positions of Split

FIGURE 9 Details of the last step of Subroutine 2

3.3 LINKING ADJACENT LINES WITH SIMILAR

DIRECTIONS

In Subroutine 3, we attempt to merge segments by

appropriately extending the segments and comparing the

directions with other segments found adjacent to the

extensions. It composes three steps: Step 3.1 estimate

terminals, Step 3.2 estimate linking and Step 3.3 link

segments as shown in Fig. 5.

Step 3.1 locates the geometrical ends of segments for

the subsequent extending operation. Although Subroutine

1 starts the traces from the right ends of segments, the

first saved pixels may not be the right end because

Subroutine 2 split segments and some of the first saved

pixels of these segments are not the right end. The details

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

84
Computer and Information Technologies

of finding geometrical ends are shown in Fig. 10. The

ends can be easily found by estimating the directions of

segments, i.e., if the maximal direction value is one of 5,

6, 7 and 0 (1 <= maxDIrection <= 4), the first recorded

pixel is the geometrical right terminal; otherwise the first

one is the left terminal.

After identifying all ends, we will estimate the path

for extending in Step 3.2. Since the values of all entries in

Directions range from 0 to 7 and these entries can reflect

the geometrical shapes of segments basically, the entries

may be envisaged as strings of letters 0 to 7 and their

patterns can thus be found using approximating string

matching [21]. Here we consider a simple but efficient

strategy. We observe that the distribution of direction

values around the middle point of a segment always

follow a certain pattern. Therefore, we construct a path by

repeatedly copying the middle direction values as shown

in Fig. 11.

The 1st entry of a
segment may not be its left
end, e.g., the 1st recorded
pixel of a segment with
maxDirection lying in [1 4] is
geometrically the right end
of the line segement

Initialize variables: maxDirection: int, leftEnd: int,

rightEnd: int, terminals: List<int[]>

Try to read a member of Segments

[There is an unvisited
member in Segments] [else]

Read a member

Copy the index of the read member to

segmentIndex and mark the member visited

Find the direction value corresponding to the largest occurrence value

by checking the member with index segmentIndex in Occurences

Copy the found direction value to maxDirection

Copy the first and the last entries of the member with index

segmentIndex in Segments to leftEnd and rightEnd respectively

[1 <= maxDIrection <= 4] [else]

Exchange the values of leftEnd and rightEnd

Add leftEnd and rightEnd to the member

with index segmentIndex in terminals

Step 3.2 Estimate Linking

Step 3.3 Link Segments

FIGURE 10 Details of Step 3.1 in Subroutine 3

Since Subroutine 1 traverses from one end of a line

segment to the other, the recorded direction values

reflects the pattern along the direction approximated by

maximal direction value. Hence, the found path is only

appropriate for one end, and inverses for the other. For

instance, two red lattices in Fig. 12 indicate two ends; the

colourful lattices between the ends denote the body of a

line segment and the grey pixels form the two paths. The

lattices of the segment except the paths are marked by

their direction values obtained by tracing from the

geometrical right terminal. The yellow pixel lies in the

middle of the segment. The path adjacent to the left

terminal, denoted by the variable leftPath in Fig. 11, is

obtained directly by copying the direction values of

lattices around the middle lattice. The path adjacent to the

right terminal is obtained by reversing the direction

values of the left path consisting of direction values 5, 3,

5, 4 and 4; the right path contains the corresponding

inverse direction values 1, 7, 1, 0 and 0. The inverse path

is denoted by rightPath in Fig. 11.

When moving along a path, we could check the

neighbourhood of the moving centre to find other

segments but it is computationally expensive. We employ

an alternative approach by checking the ends of segments

whose identities lying in a range with the identity of the

current segment as centre and parameter detectRadius in

Fig. 11 as a radius. This is because the difference

between identities of two segments in Segments partially

reflects their geometrical distance in image space. The

detectRadius is set to 20 in our experiment.

After the connection information of all segments is

collected by Step 3.2, Step 3.3 showed in Fig. 12 checks

each member of Connections to perform the merging. If

the statuses of ends indicate valid linking, it will

simultaneously merge the associated segments with the

current one and checks the statuses of the merged

segments to see whether they can be further merged with

other ones. This iterative procedure will stop until the

statuses of both ends are null. For instance, segment 1, 3

and 4 will be merged together according to Connections.

If the variable connections indicates
two ends of current segment have
been linked to other segments, then
there is no need to check the current
segment

Only the segments of
direction values similar
with the current segment
are worthy to be
detected to see whether
the linkage is possible

Try to read a member of Segments

[There is an unvisited member in Segments]

Read a member

Copy the index of the read member to segmentIndex and mark the member visited

Initialize variables: detectRadius: int, connections: List<CustomizedClass>, group: List<int>,

leftPath: List<int>, rightPath: List<int>, isLeftConnect: bool, isRightConnect: bool, tempIndex: int

Check the member of index segmentIndex in connections

[else]

Find the direction value corresponding to the largest occurrence value

by checking the member with index segmentIndex in Occurences

Compute the range whose center is segmentIndex and the radius is detectRadius

In Occurences, find the member with the indices in the computed range, then find the

direction values corresponding to the largest occurrence values of these members

Compute the differences between maxDriection and the found direction values

[At least one of the differences is of value 4 or less than the toleranceVal]

Add the indices of the members found in Occurences satisfying the above condition to group

Copy 50% direction values of the middle part of the member with the index segmentIndex in

Directions to leftPath and rightPath, and repeatedly copy the values if the total length is less

than minLength, then reverse the values of leftPath or rightPath based on maxDirection

In the image space, start from the leftEnd of the

member with the index segmentIndex in terminals,

move along the direction values recorded in

leftPath. In each move, check the neighborhood of

the moving center to see whether the ends of the

members in group are in the neighborhood

[The member contains information about leftEnd
and rightEnd with respect to the index segmentIndex]

Set isLeftConnect and isRightConnect to true

Set isLeftConnect or isRightConnect to false according to the cases in

which the member contains no information about leftEnd or rightEnd

[isLeftConnect is fasle] [else]

In the image space, start from the rightEnd of the

member with the index segmentIndex in terminals,

move along the direction values recorded in

rightPath. In each move, check the neighborhood

of the moving center to see whether the ends of

the members in group are in the neighborhood

[isRightConnect is fasle][else]

Copy the corresponding index in group to tempIndex

rightEnd of the member with index tempIndex in

terminals; tempindex; leftPath; leftEnd of the member

with index segmentIndex in terminals; segmentIndex

are sequentially recorded in members of indices

segmentIndex and tempIndex in connection

leftEnd of the member with index segmentIndex in

terminals; segmentIndex; rightPath; rightEnd of

the member with index tempIndex in terminals;

tempIndex are sequentially recorded in members of

indices segmentIndex and tempIndex in connection

Copy the corresponding index in group to tempIndex

[else] [else] [One entry of group is found in the neighborhood]

[else]

Step 3.3 Merge Segments

Step 3.1 Estimate Terminals

Geometrically, the value
 4 means the two segments
share the same slop

Namely, if the member
contains the information
about leftEnd, then set
isLeftConnect to fasle; if the
information about rightEnd is
contained, then set
isRightConnect to false,
otherwise leave isLeftConnect
or isRightConnect unchanged

The copied
50% direction
values are
appropriate
to one end of
the segment
but opposite
to the other
end

[One entry of group is found in the neighborhood]

FIGURE 11 Details of Step 3.2 in Subroutine 3

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

85
Computer and Information Technologies

This iteration tries to find
and record the chain of
segments whose left end
can be linked with the
right end of the segment
with the index globalindex
in Segments

[The member of segmentIndex in connections contains the information
about the leftEnd with respect to the index segmentIndex]

Initialize variables: globalindex: int, tempSegment: List<int>

Try to read an unvisited member of connections

[There is an unvisited member in connections][else]

Return Segments Copy the index of the member to globalindex

and tempIndex, and mark the member visited

Copy tempIndex to segmentIndex

Copy the index associated with the rightEnd

stored in the member of connections to tempIndex

Firstly generate a copy of the leftPath stored in the member of connections, secondly

generate a copy of the member with segmentIndex in Segments, then sequentially

link two copies and tempSegment, finally set tempSegment to the resulting segment

Delete the connection information about the leftEnd with

respect to segmentIndex in the member of connections

[else]

Copy the globalindex to segmentIndex and tempIndex

Copy tempIndex to segmentIndex

[The member of segmentIndex in connections contains the information
about the rightEnd with respect to the index segmentIndex]

Copy the index associated with the leftEnd stored

in the member of connections to tempIndex

Delete the connection information about the rightEnd with

respect to segmentIndex in the member of connections

[else]

Delete the connection information about the rightEnd

with respect to tempIndex in the member of connections

Delete the connection information about the leftEnd with

respect to tempIndex in the member of connections

Generate a copy of the member with tempIndex in Segments, then sequentially link

the copy and tempSegment, finally set tempSegment to the resulting linked segment

Firstly generate a copy of the member with segmentIndex in Segments, secondly

generate a copy of the rightPath stored in the member of connections, then sequentially

link two copies and tempSegment, finally set tempSegment to the resulting segment

Generate a copy of the member with tempIndex in Segments, then sequentially link

tempSegment and the copy, finally set tempSegment to the resulting linked segment

Mark the member with index tempIndex in connections visited

Mark the member with index tempIndex in connections visited

Delete the members with the same index segmentIndex

in Segments, Directions and Occurences

Delete the members with the same index segmentIndex

in Segments, Directions and Occurences

Add tempSegment to Segments and mark it visited

Clear tempSegment

This iteration tries to
find and record the
chain of segments
whose right end can
be linked with the
left end of the
segment with the
index globalindex in
Segments

To ensure the
segments in the
connection chain
are invisible to
the following
iterations

Step 3.1 Estimate Terminals

Step 3.2 Estimate Linking

FIGURE 12 Details of Step 3.3 in Subroutine 3

4 Experimental Results and Discussion

In order to evaluate the performance of LSDSA, we test

KHT [13], EDLines [7], TODIS [22] and LSDSA using

two corpora of artificial and the real-world images. We

developed an application package [30] for edge detection

using C#. In general, LSDSA achieves performance

similar to TODIS, which is a better result than KHT and

EDLines. However, the computation cost of LSDSA is

obviously lower than TODIS.

4.1 CASE COMPARISONS

Figure 13 lists some samples of line detections using

LSDSA and KTH. We use colourful lines to display the

segment results of LSDSA to distinguish the distinctive

parts of a continuous curve. For example, the circle on

the top of the building in the sub image labelled as H10

of Fig. 15 is indicated in H12. At the first glance, the

indicated circle may seem to be a false detection.

Actually, the detected circle in H12 is denoted by two

kinds of colours (blue upper and purple lower). Thus, two

roughly straight line segments are detected by the

algorithm instead of a circle. The values of parameters m

and minLength are set to 4 and 30 respectively according

to the resolution of the test images.

FIGURE 13 LSDSA compared with KHT

Fig. 14 compares the lines detected by LSDSA and

EDLines. The parameters m and minLength of LSDSA

are set to 3 and 8 respectively. All line segments detected

by EDLines are marked by solid lines in the second

column. Although the difference between LSDSA and

EDLines is not as large as the difference between KHT

and LSDSA, LSDSA can discover more significant line

segments that are ignored by EDLines, such as the seams

on the face of the building in G10 and the edges of the

front doors of the house in G20. We also note that

LSDSA can detect a line segment about the lady’s right

arm in G32, which is the border between the highlight

and the lowlight areas of the arm surface, and its

curvature continuously changes. However, EDLines fails

to detect it.

Although TODIS is the slower than EDLines, KHT

and LSD, it exhibits the best accuracy. Generally,

LSDSA achieves accuracy as good as TODIS as shown in

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

86
Computer and Information Technologies

Fig. 15. Almost all line segments detected by TODIS in

H01 are indicated by LSDSA in H02 as well, except the

broken vertical line on the left. Similar results are shown

in H11 and H12. LSDSA successfully detects the traces

in the right corner of H10 and the edges of the circle on

the top of the building. Note, the detected edges of the

circle are indicated by two colours (the blue upper/lower

curves). The two curves approximate two roughly straight

line segments. It says that LSDSA can detect roughly

straight line segments, and further example can be found

in G32 of Fig. 14. The detection of LSDSA is clearly

more accurate than TODIS inasmuch as the edges of

windows in the top of the skyscraper are detected in H22

but not in H21. The edges of the white circular lights on

the top of the hallway are indicated in H32 and ignored

by TODIS in H31. It suggests that LSDSA can detect the

roughly straight line segments correctly.

FIGURE 14 LSDSA compared with EDLines

4.2 COMPUTATIONAL COMPLEXITY

The computation cost of LSDSA is determined by

Subroutine 1 for finding roughly straight lines. The time

complexity of this part is O(l·s) where l is the largest

length of a line segment and s denotes the number of

segments. Unlike TODIS with O(n2) where n represents

one dimension of the image space, LSDSA consume less

time obviously when original images are large. This is

because the first subroutine only performs the tracing

when the current pixel is non-zero and set all traced

pixels to 0.

FIGURE 15 LSDSA compared with TODIS

Furthermore, we find a close relation between l and s.

If the length of a line segment l is very large, then the

number of segments s must decreases. Since the longer

the segments are, the more space in the image they will

occupy, and less space are left to the rest segments. It

suggests that fewer segments can be released in this

concise space. Conversely, if there are many segments,

then their lengths tend to be short. Therefore, a balance

exists between l and s.

The complexity of Subroutine 2 is Max(O(s), O(l·d))

where d is the number of the distorted line segments

found in this subroutine by performing a searching of

complexity O(s). Since d can’t exceed s, the worst case of

the second subroutine is O(l·s) as same as the first

subroutine.

The third subroutine is of complexity O(s).

Theoretically, the time complexity of the proposed

algorithm is O(l·s), while the complexity of TODIS is at

least O(n2) according to the analysis of the BU-Scan

procedure [22], which contributes only a half of the

computational cost of TODIS. Practically, we compare

the time consumed by KHT, EDLines, LSDSA and

TODIS under different conditions. The time consumed by

algorithms do not consist the pre-processing as edge

detection and post-processing as inverse Hough

Transformation.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

87
Computer and Information Technologies

FIGURE 16 Time consumptions with respect to few lines

Fig. 16 shows time spent on processing the image

containing few lines when the resolution ranges from 0-

by-0 to 2000-by-2000 in pixel. Note the unit of x-axis is

logarithm of the time, hence the crooked curve indicates a

roughly straight line in a plane with non-logarithm axes.

In Fig. 16, although TODIS consumes more time than

other algorithms, its curve implies the ratio of resolution

and time is linear (even the slop is very large). KHT,

EDLines and LSDSA all share a similar pattern when

resolution is lower than 1200 pixel in Fig. 16, but their

curves lead to different destinations when the resolution

reaches 2000 pixel. This implies their consumed time

may be quite different when the input data becomes very

large. In the level of 2000 pixel, LSDSA consumes less

time than EDLines and TODIS. This illustrates the

capability of LSDSA to reduce the dimension of input

data.

FIGURE 17 Time consumptions with respect to moderate lines

Fig. 17 shows the time consumed to process image

moderate lines when resolution is changing, As in Fig.

16, TODIS apparently consumes more time than other

algorithms, and EDLines and KHT share a similar

pattern. The curve of LSDSA follows the pattern when

resolution is higher than 1000 pixel, but still ends behind

EDLines.

FIGURE 18 Time consumptions with respect to many lines

Fig. 18 illustrates the time when the processed image

contains lots of lines. All algorithms even TODIS follows

a similar pattern when resolution is lower than 600 pixel.

As the resolution increases, EDLines and TODIS are

exceeded by KHT and LSDSA. In level of 2000 pixel,

there is a large gap between the group of algorithms with

capability of reducing input dimension, i.e., KHT and

LADSA, and the group of algorithm with no such

capability, i.e., EDLines and TODIS.

Generally, when the processed image is small, there

are little difference among the time consumed by KHT,

LSDSA, EDLines and TODIS. As the resolution

increases, the number of lines contained by image

becomes an important factor affecting the consumed

time. If lines are few, the difference may still remain

small even when resolution increases. If lines are many,

there will be an obvious gap between the time consumed

by algorithms with or without capability of reducing

input dimension. Hence, the feature of LSDSA illustrated

by Fig. 16 to Fig. 18 is the capability of fast processing

images with high resolution and complicated content.

5 Conclusions and Future Work

In our proposed method, LSDSA employs a statistical

tracing strategy to reduce the dimension of the input data

and distinguish the distorted segments by analysing the

distributions of direction values which are approximate

quantified values of geometrical directions in image

space. LSDSA collects statistical data of quantified

directions, so it is able to achieve higher speed under the

condition of good accuracy. We report the experiment

results of LSDSA using test images and industrial

images, and compare its performance with typical LSD

algorithms such as KHT, EDLines and TODIS. It

indicates that the accuracy of LSDSA is clearly better

than KHT and EDLines, and it is as good as TODIS. But

LSDSA consumes much lower computation cost than

TODIS does.

In order to further increase the accuracy of LSDSA,

we plan to explore more refined direction values and

large neighbourhood in the following research. At the

same time, we will investigate how to simplify its

processing procedure and proposed algorithm.

Acknowledgments

This work is supported by National Natural Science

Foundation of China under Grant 61103172. The authors

would like to thank Geyong Min of Bradford University

in UK and Shiren Ye of Changzhou University in China

for their comments and insightful suggestions.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 79-88 Jia Liang, Sun Nigang

88
Computer and Information Technologies

References

[1] Mahadevan S, Casasent D P 2001 Detection of triple junction

parameters in microscope images Proc. SPIE 4387 204-14
[2] Kahn P, Kitchen L, Rieseman E M 1990 A fast line finder for

vision-guided robot navigation IEEE Trans. Pattern Anal. Mach.

Intell. 12(11) 1098–102
[3] Tupin F, Maitre H, Mangin J F, Nicolas J M, Pechersky E 1998

Detection of linear features in SAR images: application to the road
network extraction IEEE Trans. Geosci. Remote Sens. 36(2) 434–

53

[4] Zhu Y, Carragher B, Kriegman D J, Milligan R A, Potter C S, et al
2001 Automated identification of filaments in cryo-electron

microscopy images Journal of Structural Biology 135(3) 302–12
[5] Yu X, Lai H C, Liu S X F, Leong H W 2005 A gridding Hough

transform for detecting the straight lines in sports videos In Proc.

Int. Conf. on Multimedia and Expo., Amsterdam, The Netherlands,
6-8 Jul. 2005 45–8

[6] Zheng Y, Li H, Doerman D 2005 A parallel-line detection
algorithm based on HMM decoding IEEE Trans. Pattern Anal.

Mach. Intell. 27(5) 777-92

[7] Akinlar C, Topal C 2011 EDLines: A real-time line segment
detector with a false detection control Pattern Recognition Letters

32(13) 1633-42
[8] Hough P V C 1962 Method and Means for Recognizing Complex

Patterns U.S. Patent No. 3069654

[9] Aguado E, Montiel A S, Nixon M S 2000 On the intimate
relationship between the principle of duality and the Hough

transform Proc. Roy. Soc. A 456(1995) 503-26
[10] Wright M, Fitzgibbon A, Giblin P J, Fisher R B 1996 Convex

Hulls, Occluding Contours, Aspect Graphs and the Hough

Transform Image Vision Comput. 14(8) 627-34
[11] Bhattacharya A, Rosenfeld A, Weiss I 2003 Geometric and

Algebraic Properties of Point-to-line Mappings Pattern Recogn.
36(2) 483-503

[12] Bhattacharya A, Rosenfeld A, Weiss I 2002 Point-to-line Mappings

as Hough Transforms Pattern Recogn. Lett. 23(14) 1705-10
[13] Fernandes L A F, Oliveira M M 2008 Real-time Line Detection

Through an Improved Hough Transform Voting Scheme Pattern
Recognition 41(1) 299-314

[14] Pope A R, Lowe D G 1994 Vista: A software environment for

computer vision research In Proceedings of Computer Vision and
Pattern Recognition, Seattle, WA, USA 768–72

[15] Lowe D G 1987 Three-dimensional object recognition from single
two-dimensional images Artificial Intelligence 31 355–95

[16] Burns J B, Hanson A R, Riseman E M 1986 Extracting Straight
Lines IEEE Trans. Pattern Anal. Mach. Intell. 8(4) 425-55

[17] von Gioi R G, Jakubowicz J, Morel J M, Randall G 2010 LSD: A

fast line segment detector with a false detection control IEEE
Trans. Pattern Anal. Mach. Intell. 32(4) 722-32

[18] Etemadi A 1992 Robust Segmentation of Edge Data In Proc. Int.
Conf. on Image Processing and Its Applications, Maastricht, the

Netherlands, 7-9 Apr 1992 311–4

[19] Debled-Rennessona I, Feschet F, Rouyer-Degli J 2006 Optimal
Blurred Segments Decomposition of Noisy Shapes in Linear Time

Computers & Graphics 30(1) 30-6
[20] Kerautret B, Even P 2009 Blurred Segments in Grey Level Images

for Interactive Line Extraction In Proc. Int. Conf. on Combinatorial

Image Analysis, Playa del Carmen, Mexico, 24-27 Nov. 2009 176-
86

[21] Skiena S S 2008 Set and String Problems In The Algorithm Design
Manual, 2nd ed. NY: Springer, Ch. 18, sec. 4, 631-6

[22] Yang K, Ge S S, He H 2011 Robust Line Detection Using Two-

orthogonal Direction Image Scanning Computer Vision and Image

Understanding 115(8) 1207-22

[23] Shapiro V 2006 Accuracy of the Straight Line Hough Transform:
The non-voting approach Computer Vision and Image

Understanding 103(1) 1-21

[24] Sonka M, Hlavac V, Boyle R 2008 Image Processing, Analysis,
and Machine Vision 3rd ed. CT, USA: Cengage Learning

[25] Jacobson I, Booch G, Rumbaugh J 2005 Unified Modelling
Language User Guide 2nd ed. MA, USA: Addison-Wesley

[26] Rumbaugh J, Jacobson I, Booch G 2010 Unified Modelling

Language Reference Manual 2nd ed. MA, USA: Addison-Wesley
[27] Davies E R 2005 Machine Vision: Theory, Algorithms,

Practicalities 3rd ed. CA, USA: Morgan Kaufmann
[28] Anastasios L, Kesidis A L, Papamarkos N 1999 On the inverse

Hough transform IEEE Trans. Pattern Anal. Mach. Intell. 21(12)

1329-43
[29] Kenzie D S, Protheroe S R 1990 Curve description using the

inverse Hough transform Pattern Recogn. 23(3-4) 283-90
[30] Jia L, Sun Y, Wang M, Gu Y 2011 A Research on Implementation

of Image Scattergram by Using C# In Proc. Int. Conf. on System

Design and Data Processing, Tai Yuan, China, 26-28 Feb. 2011

353-5

Authors

Liang Jia

Current position, grades: is a faculty member at Changzhou university of Jiangsu province in China.
University studies: MS degree in computer science from the Nanjing university of Science and Technology in 2009 and the BS degree in computer
science from Beifang university of Nationalities in 2004.
Scientific interests: image processing, computer vision, service-oriented software development.

Nigang Sun

Current position, grades: joined East China University of Science and Technology in 2007 and Changzhou University in 2010. Now he is an associate
professor in the department of the Computer Science and Technology.
University studies: Ph.D. degree in information security, University of Chinese Academy of Sciences, 2007.
Scientific interests: formal methods, system modelling and analysis, information security.

