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Abstract 

An H∞ fault-tolerant control scheme based on fault diagnosis observer was developed for a class of nonlinear singular systems with 

external disturbances and actuator faults. A fault diagnosis observer was designed to estimate the system states and the actuator faults 

and a sufficient condition for the existence of this observer was presented in the form of feasibility problem of a linear matrix inequality. 

Based on linear matrix inequality (LMI) technique and the estimates of the states and faults, an H∞ fault-tolerant control scheme was 

worked out. The H∞ fault-tolerant control system via a state feedback controller can be made solvable, impulse free, asymptotically 

stable, and the effect of external disturbances on the system was attenuated in terms of the prescribed H∞ performance index. Finally, 

a simulation example was given to illustrate the procedure of designing the fault diagnosis observer and the state feedback controller, 
and the simulation result showed the effectiveness of the proposed method. 

Keywords: singular systems, H∞ control, fault-tolerant control, observer, linear matrix inequality (LMI) 

 

1 Introduction 

 

The safety, reliability and maintainability in actual systems 

and industrial process have motivated researchers to 

concentrate on the so-called fault-tolerant control (FTC) [1-

5]. FTC is primarily meant to ensure safety, i.e., the 

stability of a system after the occurrence of a fault in the 

system. There are two approaches to synthesize controllers 

that are tolerant to system faults. One approach, known as 

passive FTC, aims at designing a controller which is a prior 

robust to some given expected faults. Another approach, 

known as active FTC, relies on the availability of a fault 

detection and diagnosis (FDD) block that gives, in real-

time, information about the nature and intensity of the 

fault. This information is then used by a control 

reconfiguration block to adjust online the control effort in 

such a way to maintain stability and to optimize the 

performance of the faulty systems. Researches on FDD for 

systems have long been recognized as one of the important 

aspects in seeking effective solutions to an improved 

reliability of practical control systems. Accurate fault 

estimation can determine the size, location and dynamic 

behaviour of the fault, which automatically indicates FDD, 

and has thus attracted interests recently. Many methods 

have been proposed for FDD, e.g., parity relations approach 

[6], Kalman filters approach [7], parameter estimation 

approach [8] as well as observer-based approach [9-11]. 

Observer-based FDD is one of the most effective methods and 

has obtained much more attention. So far, various 

observer-based FDD approaches have been reported in the 

literatures. Based on Euler approximate discrete model 
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observer, a fault estimation method was proposed in [9]. A 

novel augmented fault diagnosis observer design was well 

addressed in [10], which not only broaden application 

scopes of adaptive fault diagnosis observer, but also cope 

with system disturbances. In [11], the observers were 

designed for both linear and nonlinear systems considering 

both noise and uncertainties, and the main advantage of 

these observers is that they can handle both noise and 

uncertainties simultaneously. Overall, the basic idea 

behind the use of the observer for FDD is to estimate the 

state or/and output of the system from the measurement by 

using some type of observers, and then to construct a 

residual by a properly weighted the state or/and output 

error. The residual is then examined for the likelihood of 

faults by using a fixed or adaptive threshold. 

However, only a few efforts were made to investigate 

FTC for nonlinear singular systems. Nonlinear singular 

system model characterizes a class of rather complex 

systems, which not only possesses nonlinearities, but also 

has singular nature of the algebraic constraints. Therefore, 

the investigation on this class of systems is more difficult 

and challenging [12-15]. Several works on FDD and FTC 

for nonlinear singular systems were reported in [16, 17]. 

For nonlinear singular systems, [18] designed an observer 

based on the new parameterization of the generalized 

Sylvester equations solutions, and the condition for the 

existence of the observer was given and the sufficient 

condition for its stability was derived using linear matrix 

inequality (LMI) formulation. By using the linear matrix 

inequality (LMI) technique, an interesting descriptor 

estimator was presented to simultaneously estimate system 
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states, output noises and sensor faults for a class of 

Lipschitz nonlinear descriptor systems [19]. However, 

some restrictive equivalent transformations were needed 

for obtaining the state-space observer in the [19]. 

Obviously, the usages of restrictive equivalent 

transformations are not desirable from the viewpoint of 

computation. Moreover, it is not possible to totally 

decouple the fault effects from the perturbation effects on 

the system, and the H∞ control theory has been proved to 

be an effective tool to tackle the issue. Consequently, this 

motivates us to investigate the topic of FTC and H∞ 

control, which is very important in many practical systems. 

Our objective in this paper is to propose an observer-

based FTC and H∞ control method for a class of nonlinear 

singular systems with input disturbances and actuator 

faults, a novel design method of fault diagnosis observer is 

presented, which can overcome the nonlinearity and 

precisely estimate the values of the states and actuator 

faults. By linear matrix inequality (LMI) technique and by 

using the obtained states and faults information, robust 

fault-tolerant state feedback control scheme is worked out. 

The solvability, asymptotic stability and H∞ performance 

of the closed-loop system are guaranteed after the 

actuators occur faults. 

Throughout this paper, ,  denote real number set 

and complex number set respectively, n  denotes the n  

dimensional Euclidean space and n n  is the set of all 

n n  real matrices. I is the identity matrix with 

appropriate dimensions. 
min ( )P  and 

max ( )P  refer to the 

minimal and maximal eigenvalues of the matrix P  

respectively. The vector norm x  is defined as 

Tx x x . For a symmetric matrix, * denotes the matrix 

entries implied by symmetry. 

 

2 Problem statement and preliminaries 

 

Consider the following nonlinear singular system with 

actuator faults as well as external disturbances: 

1

2

( ) ( ) ( ) ( , ) ( )+ ( )

( ) ( ) ( ),       (0) 0

fEx t Ax t Bu t g t x Fu t D w t

y t Cx t D w t x

   


  
, (1) 

where nx  is the state vector, mu  and 
p

y  

denote respectively the control input and the measurable 

output vectors, h

fu   is the unknown actuator fault 

vector and nE  is singular with ( )rank E r n  . 

1 2, , , ,A B C D D  and F  are known constant real matrices 

with appropriate dimensions.  , ng t x   is a vector-

valued time varying nonlinear perturbation with

 ,0 0g t   for all 0t   and satisfies the following 

Lipschitz constraint: 

0( , ) ( , ) || ( ) || || ||g t x g t x G x x x x       (2) 

for all ( , ),t x  ( , ) nt x   , and G  is a known constant 

real matrix,   and 
0  are both known positive scalars 

and are called Lipschitz constants. 
2( )w t   is the 

external disturbance on the system, and there exists a 

position constant f  such that  | ||fu t f . In the paper, 

only actuator faults are investigated and it is assumed that, 

when no fault occurs, ( ) 0, 0fu t t   . 

In this paper, our first goal is to design a fault diagnosis 

observer to estimate the systems states ( )x t  and the fault 

signal ( )fu t  simultaneously on the basis of the known 

input ( )u t  and the measured output ( )y t . The second goal 

is to work out a state feedback controller for FTC and H∞ 

control by mean of the estimates of the system states and 

faults. 

Now, one first recalls a lemma that will be used in the 

next sections. 

Lemma 1 (Schur Complement Lemma) Given constant 

matrices 
1 2,   and 

3  with appropriate dimensions, where 

1 1 2 20,  0T T        , then 1

1 3 2 3- 0T       if and 

only if: 

1 3

3 2

0

T  
 

  
, or 

2 3

3 1

0
T

  
   

. 

 

3 Fault detection and fault diagnosis 

 

3.1 FAULT DETECTION OBSERVER DESIGN 

 

In this section, a state-space observer will be proposed for 

FDD, which can provide the information of states and 

faults. The information is sent to the controller to obtain 

the control law, which is sent to the actuator.  

For the system to admit a feasible FTC solution, the 

following assumptions are made: 

Assumption 1: The row vectors of the matrices E and 

C  in the Equation (1) must be a basis of the n  

dimensional vector space, that is, 
T

T TCrank E n    . 

Assumption 2: The linear part of the Equation (1) has 

to be observable, that is  

    C  ,
T

T Trank sE A n  
 

 s  . 

Under assumptions 1-2, a fault detection observer can 

be constructed as follows: 

          

   

     

     

1

2

ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ, ( )

ˆ

ˆˆ ˆ

P

f

D

z t Az t Bu t L y t Cx t

g t x Fu t D w t

x t z t L y t

y t Cx t D w t

     

  


 


 

, (3) 
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where ˆ nz  is the state vector of the detection observer, 

ˆ nx  denotes the observed state vector, ˆ py  is the 

output vector of the observer, ˆ h

fu   is the estimate of the 

system faults, 
1 2

ˆ ˆ ˆ ˆ, , ,A B D D  and F̂  are known parameter 

matrices with appropriate dimensions. 
It’s easy to derive that the assumption 1 and the 

assumption 2 imply that the trio  , ,E A C  is completely 

observable, so the matrix 
DL  can be selected to make 

matrix 
DE L C  be non-singular. To guarantee the 

asymptotical stability of the detection Equatuon (3), 
PL  to 

be designed and the Lipschtiz constant   should make the 

following inequality hold [19]: 

  -12

min

max

1

ˆ2 ( )

T T

D P

T

P

C C L L d

C L F

  




   
 , (4) 

where d  is a pre-specified positive constant.   and   

should be chosen properly such that inequality (4) can be 

satisfied. 

Supposing the state error vector ˆ( ) ( ) ( )me t x t x t  , the 

residual signal vector ˆ( ) ( ) ( )ye t y t y t  , the fault error 

vector ˆ( ) ( ) ( )f f fe t u t u t  , respectively, then the 

detection error equation can be written as follows: 

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆˆ( ) ( ) ( , ) ( , ) ( ) ( ) ( )

m

P y f

e t Ae t A AE C x tm

B B u t g t x g t x L e x F F e x

    

     
. (5) 

In next subsection, one will give the fault diagnosis rule 

for the Equation (1). 

 

3.2 FAULT DIAGNOS 

 

In this subsection, we will discuss the design method of the 

fault diagnosis observer. According to the detection error 

Equation (5), the following fault detection rule is 

introduced 

1) If || ( ) || || ( ) ||y me t Ce t   , then no fault occurs at time t, 

2) If || ( ) || || ( ) ||y me t Ce t   , then faults have occurred at 

time t, 

where   is a pre-specified threshold. 

According to the above rule, the fault diagnosis 

observer is presented as follows: 

       

    

     

     

1

2

ˆ ˆ ˆ

ˆ, ( )

ˆ

P f

D

e t Ae t Bu t D w t

L y t y g t x Fu t

x t e t L y t

y t Cx t D w t

    

   


 


 

, (6) 

where ne  is the state vector of the diagnosis observer, 
nx  denotes the observed state vector, py  is the 

output vector of the observer. h

fu   is the estimates of 

the system faults. 

Now, one will provide a sufficient condition for the 

existence of the fault diagnosis observer. 

Theorem 1. For the Equation (1), there exists an 

asymptotical steady state-space observer in the form of 

Equation (6) to make the estimated error as small as any 

desired accuracy, if there exist a positive definite matrix 

0n nP    and a matrix p nQ   such that  

11
0

PW

TW P I

 
  
  

, (7) 

where 2

11
ˆ ˆT T T T TA W P PWA C Q QC D P PD I        , 

and  
1

DW E L C


  . Specifically, the gain 
DL  is 

selected such that 
DE L C  is non-singular, and 

PL  can 

be computed as 1 1

PL P W Q  . Obviously, Equation (7) 

is a LMI with respect to matrices ,P Q . 

Proof: For the Equation (1), the detection error 

Equation (5) and the fault diagnosis observer Equation (6), 

the error dynamic equation can be characterized as 

follows: 

   

1 ˆ( ) ( ) ( ) ( )

( ) , ,

D Pe t E L C A L C e t

Dw t g t x g t x

   

 
, (8) 

where ( ) ( ) ( )e t x t x t  . 

Define a Lyapunov function as ( ( )) ( ) ( )TV e t e t Pe t  

with 0P  . 

Letting 1( ) , ( , ) ( , )DW E L C g t x g t x      the 

derivative of ( ( ))V e t  along Equation (6) can be obtained 

as follows: 

1 2

1 2

( ( ))

ˆ(( ( ) ( ))

ˆ( ( ) ( )))

T T

P P

T T

P P

V e t

e W A L C D L D P

P W A L C D L D e W Pe ePW



   

      

 

1 1 2 2

1

2

1 2 2

ˆ ˆ( ( ) ( )

)

ˆ ˆ( ( ) ( )

)          

T T T T

P P

T T T T T T

P P

T T T T T

P P

T T T

P P

e A W P PWA WL C P P WL C

D P PD D L P PD L e e PWW Pe

e A W P PWA WL C P P WL C D P

PD D L P PD L I PWW P e

   

     

    

   

 

Letting ,PQ PWL  thus Equation (7) can be recast to 

the following inequality by the Schur complement lemma 

2

ˆ ˆ

0

T T T T T

T T

A W P PWA C Q QC D P

PD R P PR I PWW P

    

    
 

If Equation (7) holds, one can derive that ( ( )) 0V e t  . 

Furthermore, ( )e t  converges towards 0 while t converges 

towards ∞. The proof is completed. 
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4 Fault-tolerant control and H∞ control 

 

Consider the Equation (1) and the fault diagnosis observer 

Equation (6). One can construct the state -feedback fault 

tolerant controller as follows: 

   u t Kx t , (9) 

Where ( ) nx t   denotes the observed state vector in (6). 

In this section, one will discuss how to design the state-

feedback gain K . 

Appling (9) to the Equation (1), the closed-loop system 

can be written as follows: 

1

2

( ) ( ) ( ) ( )

( , ) ( )

( ) ( )+ ( )

f

Ex t Ax t BKx t D w t

g t x BKe t

y t Cx t D w t

    







. (10) 

Now, one will present the following result. 

Theorem 2 For the closed-loop Equation (10) and the 

given scalar 1  , the closed-loop Equation (10) is 

solvable, impulse free, asymptotical stable and 

   2|| || || ||y t w t   if there exist a non-singular matrix 

nH   and a controller gain m nK   such that the 

following inequalities holds 

0T TE H H E  , (11) 

   
2 2

2 2 1 1 0

T T T

T T T T

A BK H H A BK I C C

D D H D D H H H 

     

  
. (12) 

Proof: Choosing a Lyapunov function:  

   

   

( ( )) ( ) ( )

( ) ( )

T
T

T T

V x t Ex t H Ex t

Ex t H Ex t

 
, 

where 0T TE H H E   and H  is nonsingular.  

The derivative of ( ( ))V x t  along Equation (10) can be 

obtained as follows: 

1 2 2

( ( )) ( ) (( ) ( )+

) ( ) 2 ( ) ( )

2 ( ) ( ) 2 ( ) ( )        

T T T

T T T T T

f

T T

V x t x t A BK H H A BK I

C C H H x t x t H BKe t

x t H D w t x t D D w t

    

    



. 

Letting 

    2T T T TA BK H H A BK I C C H H       , 

so 

 

1 2 2

( ) ( ) ( ) 2 ( ) ( )

2 ( )( ) ( )

T T T

f

T T T

V x t x t x t x t H BKe t

x t H D D D w t

   


. (13) 

From Equation (2), it is easily derived that 

  2 2

1 2 3( ) || ( ) || || ( ) |||| ( ) || || ( ) ||f fV x t x t e t x t e t      , 

where 
1 min ( )   ,

2 2 || |||| ||H BK  ,

2

3 1 22 H D D   . 

Letting 1 2

1

min , ,
2 2

 




 
  

 
 one has 

 ( ) 0
f

x
V x t

e
    . 

By the Schur complement lemma, it is clear that (12) 

implies 

    2 0
T T T TA BK H H A BK I C C H H         

and further indicates 

    0
T TA BK H H A BK    . (14) 

Moreover, Equations (11) and (14) and ( ( )) 0V x t   

indicate that the Equation (10) is solvable, impulse free, 

asymptotically stable. 

Next, one will discuss the H
 performance of the 

Equation (10). 

Defining 2( ) ( ( )) T TZ t V x t y y w w   , using the Equation 

(10) and inequality (13), one has  

        2

1 3|| |||| || || ||f fZ t x x x t e t e t     , 

where 1 2

2

1 2

,    

T T T
T

T T

T

C C H D D
x x w

D H D I

  
        

. 

Applying the Schur complement lemma to inequality 

(12), it is clear that 0  . 

Letting 
4 min ( )   , it is true that 

       2 2

4 1 3|| || || |||| || || ||f fZ t x x t e t e t       and 

2 234

4 3 || ( ) |||| ( ) || || ( ) || || ( ) ||
2 2

f fx t e t x t e t


    , so one 

could select   such that 2

1 4   , where 

 3min ,  .  
 Furthermore, 

     2 24 || || || ||
2 2

fZ t x t e t
 

   . 

Under zero initial conditions (0) 0x   and the above 

discussion, it is known that: 

2

0 0

( ( ) ( ) ( ) ( )) 0T Ty t y t w t w t d Hd  
 

    , 

is true, that is 2|| ( ) || || ( ) ||y t w t   the proof is 

completed. 
Remark: Equation (12) with respect to matrices ,H K  

is a nonlinear matrix inequality. One thus has a continuous 

interest to transform Equation (12) into the LMI form. 
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Theorem 3. For the closed-loop Equation (10) and the 

given scalar 1  , the closed-loop Equation (10) is 

solvable, impulse free, asymptotical stable and 

   2|| || || ||y t w t   if there exist a non-singular matrix

nW  and a matrix m nT   such that 

0T TE W W E  , (15) 

11 1 2 2

2

2

* 0 0 0

0* * 0 0

* * * 0

* * * *

T T T TW W C W D D D

I

I

I

I





 
 

 
  
 

 
  

, (16) 

where 2

11 ( ) ( )T TAW AW BT BT I      .  

Moreover, if there exists a feasible solution ( , )T W  for 

the above Equations (15) and (16), the state feedback 

controller gain matrix K  can be signed as 1K TW  . 

Obviously, Equations (15) and (16) are LMIs with respect 

to matrices ,T W . 

Proof: Pre-multiplying and post-multiplying inequality 

(12) by { , , , }Tdiag H I I I  respectively, and letting

1H W  , 1KH T  , then using the Schur complement 

lemma, Equations (15) and (16) can be obtained 

immediately. This completes the proof. 

Now, one will describe the procedure of the fault 

diagnosis and H∞ fault-tolerant control for a class of the 

Equation (1). 

Input: the Equation (1) and the H∞ performance index 

1  .  

Output: the state feedback controller gain K . 

Step 1 Choosing scalars ,  , and d  such that 

Equation (4) is satisfied. 

Step 2 Choosing suitable matrix 
DL  such that 

DE L C  is non-singular, then solving the Equation (7) by 

Matlab LMI control toolbox. If there is a feasible solution 

( , )P Q  to the Equation (7), then one can compute 

(1 1 1 1= )P DL P W Q P E L C Q     . 

If there is no feasible solution to the Equation (7), thus 

the step 2 will be repeated and another matrix 
DL  is 

choose until there is a feasible solution to the Equation (7). 

Step 3 Solving the Equations (15) and (16) by Matlab 

LMI control toolbox, if there is a feasible solution , )T W(  

of the Equations (15) and (16) then one can compute the 

state feedback controller gain 1K TW  . 

5 Numerical example 

 

Consider a nonlinear singular system in the form of 

Equation (1), where  

1 0 0 0.9 3.1 1.5 0.28 1.23 0.02

1 1 0 , 0 0.5 0.6 , 0 0.01 0.56 ,

0 0 0 0 0 1 0.22 1.21 0.36

E A B

     
       
     
          

 

1

0.05 0 1.29 4 0.6 0.4 0.4 1.6

0.01 0.87 0 , 1.3 1.5 0.3 , 4.2 0.2

0.03 0.12 0.5 0.5 0.6 0.7 1.6 9.2

C D F

     
     

  
     
          

 

The nonlinear function of Equation (1) is assumed to be 

 
1 2

3

0.3sin( )
0.2 0.1 0.4

, 0.1 , .
0.6 0 0.7

0.5cos

x x

g t x G

x

 
  

    
   

 

The Lipschitz constants are 
0 0.7   and 0.8  . It 

is clear that the assumption 1 and the assumption 2 are 

easily satisfied. The parameter matrices of fault diagnosis 

observer Equation (6) are selected as follows: 

1

2

0.2 2.1 0.5 0.4 0.8 0.1 0.7 0.2 0.7

ˆ ˆ ˆ0 0.1 0.4 , 0.1 0 0.7 , 0.2 0.8 0.6 ,

0 0 1 0.1 0.5 0.9 1.1 0.4 0.7

0.01 0 0.03 0.5 1.1

ˆ ˆ0.04 1 0.01 , 0.2 1.2

0.07 0.06 0.41 0.7 3.1

A B D

D F

     
     

  
     
          

   
   

 
   
      

 

The system faults have the following forms: 

 

 

   

 

2

1

0,                                    t 0,  2.5

0.002 0.3 2,          t 2.5,  6
 

2sin 0.3 0.3,            t 6, 10      

0.1 0.12,                     t 10, 

f

t t
u

t

t

 


  
 

 


  

 

 

 

 

 

2

0,                                    t 0, 3

cos 0.02,                    t 3, 7

 sin 2 0.3,                     t 7, 11      

0.2 1.3,                        t 11, 14

4.1                                

f

t

u t

t



 

  

 

   t 14, 








  

 

Using Matlab LMI Control Toolbox to solve Equations 

(7), (11) and (12), the following results could be obtained: 

a) fault diagnosis observer design. 

Letting 
0 3 1

0 2 0

T

DL
 

  
 

, 0.35,   0.5d    and 

0.2   , one can acquire 

1 0 0

0.0196 1.3514 2.2837

0.0218 0 0.4376

W

 
 

  
 
  
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84.08 62.45 448.98

71.85 104.07 669.16

49.51 40.82 236.10

PL

  
 

  
 
  

. 

The trajectories of the faults and their estimates are 

given in Figure 1 and Figure 2. One can see that the 

tracking performance is desired. In Figure 1, no fault 

occurs when 0 2t s  , there is no failure false alarm for 

the designed fault detect observer, The fault 1f  occurs 

when 2 3.2s t s  . Similar result can be seen from the 

Figure 2. The results can be summarized as follows: the 

method presented in this paper may cope with well the 

constant value faults, but there is some lag for the fluctuant 

value faults. 

 
FIGURE 1 The value of fault f1 and its estimate 

 
FIGURE 2 The value of fault f2 and its estimate 

b) State-feedback controller design. Letting 0.5  , 

the controller gain K  is solved: 

1.1178 1.6750 0.3748

0.8438 1.3940 0.7596

3.7636 5.4994 1.6743

K

 
 

 
 
   

 

The fault-tolerant dynamic output responses are 

characterized by Figure 3, which show that the closed-loop 

system is ensured to be stable although the open-loop 

system is subject to impulsive modes and bounded faults. 

 
FIGURE 3 Output responses of the system via a fault-tolerant controller 

From the above simulation results, it is proven that the 

fault diagnosis scheme is effective in estimating the states 

and faults of system, and the designed controller can 

guarantee the stability and H∞ performance of the close-

loop system when the failures occur. 

 

6 Conclusion 

 

This paper proposed a novel observer-based H∞ and fault-

tolerant control approach for Lipschitz singular systems 

with bounded perturbations and actuator faults. In terms of 

Lyapunov theory and linear matrix inequality (LMI) 

technique, a sufficient condition for the existence of the 

parameters of fault diagnosis observer was presented. 

Under assumptions 1–2, a kind of robust full-order 

observer was developed, which provided the information 

of both states and faults information. An H∞ fault-tolerant 

controller via state feedback was designed. Under this 

controller, the Lipschitz singular systems could be 

solvable, impulse free and asymptotically stable, and 

possess the prescribed H∞ performance. Moreover, the 

result obtained in this study is reliable in computation and 

preferable in application. Furthermore, a numerical 

example was provided to illustrate the effectiveness of the 

proposed approach. Future work will focus on the problem 

of designing the fault detection, the fault diagnosis and 

fault-tolerant control in an integrated manner for on-line 

application. 
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