

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 71-76 Liu Wei, Hu Zhigang, Liu Hongtao

71
Mathematical and Computer Modelling

An automatic approach to detecting and eliminating lazy classes
based on abstract syntax trees

Wei Liu1, Zhigang Hu1, 2*, Hongtao Liu2
1School of Information Science and Engineering, Central South University, Changsha 410083, China

2School of Software, Central South University, Changsha 410075, China

Received 27 September 2013, www.cmnt.lv

Abstract

To detect and eliminate lazy classes in source code, an automatic approach based on abstract syntax trees (ASTs) is proposed. Source

code files transform to ASTs at first, then the relationships between classes are extracted from the ASTs. Three common relationships

are considered, which are generalization, association and dependency. Some definitions are proposed to represent the classes set of

different kinds of relationships. After carrying out several set operations on these sets, the candidate lazy classes set is obtained. By

further manual examination, the true lazy classes are acquired. Finally, a specific lazy class will be removed automatically from the

project. Four projects are tested to detect and eliminate the lazy classes. The experimental results show that the proposed detection

algorithm has high precision rate. In addition, this approach has good efficiency, and its execution time has a linear relationship to the
size of a system.

Keywords: code smells, lazy classes, abstract syntax trees, refactoring, classes set

1 Introduction

Code smells are symptoms or indicators in the source code

that indicate potential problems. The well-known 22 code

smells are described in [1] by Martin Fowler and Kent

Beck. The identifications or detections of code smells are

useful in the sense that they might constitute prescriptive

guidance for performing certain types of refactoring. Some

common code smells emerge frequently in the existing

code, such as Duplicated Code, Long Method, Large

Class, Lazy Class, Switch Statements and so on. Code

smells affect the maintainability of software systems, and

they are important indicators for code refactoring [2, 3].

Recently, code smells detection and automatic

refactoring become hotspots in software engineering

research. Lots of code smell detection approaches have

been proposed. Radu Marinescu [4] presented a metric-

based approach to detecting code smells with detection

strategies and developed a PRODETECTION toolkit that

supported code inspections based on detection strategies.

Naouel Moha et al. [5, 6] proposed a DECOR (DEtection

& CORrection) method that described all the steps

necessary for the specification and detection of code and

design smells. Moreover, they introduced an approach to

automating the generation of detection algorithms from

specifications written using a domain-specific language,

and they specified 10 smells and generated automatically

relevant detection algorithms using templates. Foutse

Khomh et al. [7, 8] presented a Bayesian approach for the

detection of code and design smells, their approach could

handle the inherent uncertainty of the detection process. In

*Corresponding author e-mail: zghu@csu.edu.cn

addition, they presented BDTEX (Bayesian Detection

Expert) and GQM (Goal Question Metric) based approach

to building Bayesian Belief Networks (BBNs) from the

definitions of code smells. Hui Liu et al. [9] proposed a

detection and resolution sequence for different kinds of

bad smells to simplify their detection and resolution, they

highlighted the necessity of managing bad smell resolution

sequences with a motivating example and recommended a

suitable sequence for commonly occurring bad smells. A.

Ananda Rao et al. [10] proposed a quantitative method,

which made use of the concept design change propagation

probability matrix (DCPP matrix) to detect two important

bad smells, which were shotgun surgery and divergent

change. Although there are many code smells detection

approaches, few of them can detect Lazy Class. So, a

special approach to detecting and eliminating lazy classes

is needed. Min Zhang et al. [11] performed a systematic

literature review of 319 papers about code bad smells and

analysed in detail 39 of the most relevant papers, they

found that our knowledge of some code bad smells remains

insufficient and some code bad smells receive little most

research attention, such as the Lazy Class.

In addition, some tools have been developed for

detecting code bad smells automatically and several

research works have been done on them. Francesca Arcelli

Fontana et al. [12, 13] gave reviews about the current

panorama of the tools for automatic code smell detection,

and they assessed many frequently-used tools, such as

CheckStyle, in Fusion, PMD, and so on. Moreover, they

outlined the main differences among these tools and the

different results they obtained. Their research results show

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 71-76 Liu Wei, Hu Zhigang, Liu Hongtao

72
Mathematical and Computer Modelling

that few tools could detect Lazy Class, let alone eliminate

Lazy Class automatically.

2 Lazy class and abstract syntax tree

2.1 LAZY CLASS

Lazy Class is one of the bad smells in code, which

indicates a useless class or a class with few

responsibilities. Each class, which we have created should

cost time and money to maintain and understand. Too

many lazy classes will increase the complexity and scale

of a software system. So, a class that is not doing enough

to pay for itself should be eliminated. But if we face a huge

project with millions of source code lines and thousands of

classes, it is a so hard thing to find all lazy classes by

manual handling. How to detect and eliminate lazy classes

automatically is a meaningful topic in software

engineering, especially in the field of code smells

identifying and refactoring.

In this paper, we propose a novel and systematic

approach to detecting and eliminating lazy classes

automatically.

2.2 ABSTRACT SYNTAX TREE

In order to detect and eliminate lazy classes, we can

analysis UML diagrams such as class diagrams. But a class

diagram only describes high level relationships between

classes, it loses some detail information, such as some

dependency relationships. To get more relationship

information between classes, we have to handle source

code directly. However, source code analysis will raise the

complexity and execution time. It has higher time and

space complexity. In addition, during the stage of source

code analysis, there is a lot of useless information affecting

the execution efficiency.

To balance the complexity and efficiency for detecting

the relationships between classes, we need a trade-off

method. Abstract Syntax Tree (AST) is a proposed way to

represent source code, which contains more information

than class diagram. AST is used as an intermediate

expression. In our approach, we use Java language as a

sample, and the proposed approach can be used for other

object-oriented languages. The Abstract Syntax Tree maps

plain Java source code in a tree form, which is more

convenient and reliable to analyse and modify

programmatically than text-based source [14]. Every Java

source file is entirely represented as tree of AST nodes that

are all subclasses of the ASTNode.

In our approach, Eclipse is used as an IDE (Integrated

Development Environment) to analysis Java source code

and implement refactoring. It provides JDT (Java

Development Tools) and Eclipse AST to handle Java

source code. Eclipse JDT contains a group of APIs to

access and operate source code, it contains two different

ways to access Java source code: Java Model and AST.

Eclipse AST is an important part of Eclipse JDT, which is

defined in the package named org.eclipse.jdt.core.dom. In

Eclipse AST, there are some classes to modify, create,

read, and delete source code. In order to have good

expandability and flexibility, Eclipse AST is designed

based on the Factory Method pattern and the Visitor

pattern [15].

3 Automatic detection and elimination algorithm

After transforming source code to abstract syntax trees by

Eclipse AST, we can detect and extract all relationships

between classes by handling the ASTs. If a class is a lazy

class (redundancy class), it has no relationship to other

classes. In general, there are three kinds of relationships

between classes, including generalization, association and

dependency. If we find that all of the other classes have no

any relationship to a specific class, the class is maybe an

islet. It means that the class is very likely a lazy class. So,

the problem of detection of lazy classes is transformed to

a problem of finding isolated classes.

In order to describe the process for searching isolated

classes and detecting candidate lazy classes, a series of

definitions are proposed as follows.

Definition 1: Project Classes Set (PCS). PCS is a set

that stores all classes’ names in a project.

Definition 2: Super Classes Set (SCS). SCS is a set

that stores all super classes’ names of a specific class. The

super interfaces are also in SCS.

Definition 3: Associate Classes Set (ACS). ACS is a

set that stores all associate classes’ names of a specific

class. Association classes’ instances are attributes of a

specific class.

Definition 4: Dependent Classes Set (DCS). DCS is

a set that stores all dependent classes’ names of a specific

class. Generally, dependent relationships are represented

by three main ways: a class’s instance is one of the

parameters of another class’s method, a class’s instance is

the local variable in a method of another class, and a class

invokes another class’s static methods. If a class has one

of the three aforementioned relationships to a specific

class, it will be added to the specific class’s DCS.

Definition 5: Relevant Classes Set (RCS). RCS of a

class is a union set of the class’s SCS, ACS and DCS. The

formula to calculate RCS of class i as follows:

() () () ()RCS i SCS i ACS i DCS i . (1)

In addition, RCS of a project is a union set of all

classes’ RCS in a software system. The equation to

calculate RCS of a project as follows:

1

(Project) ()
n

i

RCS RCS i

 . (2)

Definition 6: Lazy Classes Candidate Set (LCCS).
LCCS of a project is a set that stores all candidate lazy

classes in a software system. Candidate lazy classes are in

the PCS but not in the RCS. We can obtain the

LCCS(Project) using the following equations:

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 71-76 Liu Wei, Hu Zhigang, Liu Hongtao

73
Mathematical and Computer Modelling

(Project) (Project) (Project)LCCS PCS RCS . (3)

For example, if the RCS(Project) = {A, B, C, E, F} and

the PCS(Project) = {A, B, C, D}, the LCCS(Project) =

PCS(Project) – RCS(Project) = {A, B, C, D} –g {A, B, C,

E, F} = {D}. Here, E and F are in RCS but not in PCS,

which are called library classes, such as the classes in JDK

or other open source libraries. Library classes list in RCS,

but they are not parts of the current system and do not list

in the PCS. D is a candidate lazy class, it is a part of the

system but maybe none of the others needs it Pseudo-code

of automatic detection algorithm for candidate lazy classes

is listed in Table 1.

TABLE 1 Pseudo-code of the automatic detection algorithm

Line Pseudo-code

1
2

3

4
5

6

7
8

9

10
11

12

13
14

15

16
17

18

19
20

21

22
23

24

25
26

27

28
29

30
31

32

33
34

35

36
37

38

39
40

41

Input: The name of the root directory, which contains source code files for detecting.
Output: A set stored all candidate lazy classes’ names.

declare a null Set named projectClassSet
declare a null Set named relevantClassSetofProject

for each source code file in the directory
create an AST for the file

add the class name to projectClassSet

declare a null Set named superClassSet

store all directly super classes of the current class to superClassSet

declare a null Set named associateClassSet

declare a null Set named dependentClassSet

for each FieldDeclaration in the AST
store the field’s type name (not primitive type) to associateClassSet

if there is a ClassInstanceCreation node

store the type name of the instance in ClassInstanceCreation node to dependentClassSet
end if

if there are TypeLiteral nodes

store the type names of classes in TypeLiteral nodes to dependentClassSet
end if

end for

for each MethodDeclaration in the AST

store the parameters’ type names (not primitive type) to dependentClassSet

store the exceptions’ type names to dependentClassSet
 store the type names of instances in all ClassInstanceCreation nodes to dependentClassSet

 store the type names of classes in all static MethodInvocation nodes to dependentClassSet

store the type names of classes in all static fields access nodes (QualifiedName) to dependentClassSet
store the type names of exception in all CatchClause nodes to dependentClassSet

store the type names in all InstanceofExpression nodes to dependentClassSet
store the type names of classes in all TypeLiteral nodes to dependentClassSet

end for

declare a null Set named relevantClassSetofClass

relevantClassSetofClass = superClassSet∪associateClassSet∪dependentClassSet

relevantClassSetofProject = relevantClassSetofProject ∪ relevantClassSetofClass

end for

declare a null Set named lazyClassSet

lazyClassSet = projectClassSet - relevantClassSetofProject

return lazyClassSet

In Table 1, projectClassSet is used to store PCS (Line

1) and relevantClassSetofProject is used to store RCS of a

project (Line 2). For each source code file in the project,

an AST is created firstly, then the relevant class name is

added to projectClassSet (Line 6). In Line 8-9,

superClassSet is used to store SCS, and associateClassSet

is declared to store ACS in Line 11 and dependentClassSet

is declared to store DCS in Line 12. In Line 13-21, for each

field of the class, if the type of field is not a primitive type,

the type name is stored to associateClassSet which is used

to store ACS. ClassInstanceCreation node and TypeLiteral

node are also considered in the FieldDeclaration. If there

is a ClassInstanceCreation node or a TypeLiteral node,

relevant class’s name will be added to DCS. In Line 23-32,

all dependent classes are extracted from each method,

eight situations are considered to detect different kinds of

dependent classes. At last, relevantClassSetofClass is used

to store RCS of current class (Line 34), and

relevantClassSetofClass is the union set of SCS, ACS and

DCS (Line 35). The relevantClassSetofClass is added to

relevantClassSetofProject (Line 36). In Line 39, a set

named lazyClassSet is used to store LCCS, lazyClassSet is

the difference between projectClassSet and

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 71-76 Liu Wei, Hu Zhigang, Liu Hongtao

74
Mathematical and Computer Modelling

relevantClassSetofProject, and the lazyClassSet is

returned finally (Line 40-41).

Obviously, time complexity of the algorithm is T(n) =

n×(m + k), here, n is the number of source code files in the

project, m is the average number of fields in each class and

k is the average number of methods in each class.

Generally, m and k are not too large. If we define a suitable

constant C, we can consider as: 1 ≤ (m + k) ≤ C, and T(n)

= n×(m + k) ≤ C×n = O(n). It means that the execution time

has a linear relationship to the number of source code files,

and the automatic detection algorithm has good efficiency.

After detecting all candidate lazy classes stored in

LCCS, we have to examine the candidates meticulously by

manual. Some candidate lazy classes are not true lazy

classes, for example, the entry class of a system, or a class,

which is located in a configuration file, or a class which is

used in user interface files (e.g. Java Server Pages). If a

real lazy class is confirmed, we should eliminate it

automatically. Pseudo-code of the automatic elimination

algorithm for a lazy class is listed in Table 2.

In Table 2, all source code files in the project are

checked. Several files maybe have more than one class,

and each class transforms to a TypeDeclaration node

respectively. In this approach, we do not save the package

name of a class, so these classes which have a same class

name should be considered. If another class’s name equals

to a specific class’s name, corresponding TypeDeclaration

node is stored into lazyClassNodeList. Finally, if we find

that the size of lazyClassNodeList is greater than 1, it

means that there are at least two classes with the same class

name, we need to select the target class by manual.

Otherwise, the TypeDeclaration node is deleted

automatically. Time complexity of this automatic

elimination algorithm is: T(n) = n×m, here, n is the number

of source code files in the project and m is the average

number of class in each file. Most of the files have only

one class, and a few files have more than one class. For a

large project, we can assume that m trends to a constant.

So, the time complexity is: T(n) = O(n). Algorithm’s

execution time is proportional to the number of source

code files, which can be used to represent the scale of

system.

TABLE 2 Pseudo-code of the automatic elimination algorithm

Line Pseudo-code

1

2

3
4

5

6

7

8

9
10

11

12
13

14

Input: The name of the root directory, which contains source code files before refactoring and the class name of a true lazy class
(lazyClassName).

Output: The source code after modifying.

declare a null List named lazyClassNodeList

for each source code file in the directory

for each TypeDeclaration node in this file
if the class name equals to lazyClassName

 store the TypeDeclaration node into lazyClassNodeList

end if

end for

end for

if the size of lazyClassNodeList is 1

delete the TypeDeclaration node in lazyClassNodeList

else
prompt that some classes have the same name and need to be selected by manual

end if

4 Experiments and Results Analysis

To evaluate accuracy and performance of the detection and

elimination algorithms, four projects are used to detect the

lazy classes and their brief information is listed in Table 3.

Among them, SunnySport is a desktop purchase-sell-stock

management system developed by Java, JHotDraw is a

Java GUI framework for technical and structured graphics,

the "Ice Hockey Manager" is a hockey team management

game running under Linux, MacOS and Windows, and

TinyUML is a free software tool for easy and quick

creation of UML 2 diagrams based on Java.

TABLE 3 Brief information of the four examined projects

Measures
Sunny

Sport
JHotDraw TinyUML

IceHockey

Manager

Version 1.0 5.1 0.13_02 0.3

Line of code 10265 8419 13739 18085

Number of
source code

files

51 144 194 218

Number of

Classes/Inter

faces

105 155 207 222

Number of

attributes
658 331 715 1432

Number of
methods

377 1314 1644 1664

Precision is used to analyse and evaluate the accuracy

of the detection results. We identify the true lazy classes

by manual. And the formula for calculating precision as

follows:

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 71-76 Liu Wei, Hu Zhigang, Liu Hongtao

75
Mathematical and Computer Modelling

Precision
TP

TP FP

, (4)

where, TP (True Positive) represents the number of true

lazy classes in the LCCS. FP (False Positive) represents

the number of false lazy classes in the LCCS. After

examining the candidate lazy classes in LCCS one by one,

TP and FP are obtained. Precision values of the four

examined projects are listed in Table 4.

TABLE 4 Precision of the automatic detection algorithm

Project TP FP TP + FP Precision

SunnySport 2 0 2 100%

JHotDraw 6 0 6 100%
TinyUML 65 1 66 98.48%

IceHockeyManager 2 0 2 100%

In Table 4, three of the four project’s precision values

are 100%. All candidate lazy classes in LCCS of them are

true positive instances. For example, the lazy classes in

JHotDraw are DiamondFigure, NothingApplet,

JavaDrawApplet, PertApplet, PatternPainter and

JavaDrawViewer, to which none of other class has

relationship. In TinyUML, there are 66 candidate lazy

classes, including 64 test classes named XXXTest, a

useless interface and a Main class, which is the entry of the

project. The Main class is not a real lazy class, so it’s a

false positive instance. In general, the proposed approach

has high accuracy for detecting lazy classes.

Moreover, we evaluate and analyse the performance of

the proposed algorithm. The experiment is performed in a

workstation equipped with a 2.67 GHz dual core processor

and 2GB of RAM. For each project and each lazy class, we

perform the detection and elimination program five times

respectively. The average execution time of automatic

detection is listed in Table 5.
TABLE 5 Automatic detection time of four projects

Project

Number of

source

code files

Line of

code

Average

execution time of

detection (ms)

SunnySport 51 10265 1700.2

JHotDraw 144 8419 1903.4

TinyUML 194 13739 2274.4
IceHockeyManager 218 18085 2324.6

In Table 5, the average execution time is increased with

the expansion of system’s scale. We use the number of

source code files as the X-axis and the average execution

time of lazy classes’ detection as the Y-axis. The linear

relationship is shown in Figure 1.

FIGURE 1 The linear relationship between number of source code files

and average detection time.

Figure 1 presents the relationship between number of

source code files and the execution time. In Figure 1, the

thin line is a linear regression trend line. According to the

algorithm analysis in Section 3, time complexity of the

detection algorithm is T(n) = O(n). Execution time is

proportional to the number of source code files which can

be used to represent the scale of system. Experimental

results are in accord with the analysis results, and show

that the automatic detection algorithm has good efficiency.

To evaluate performance of the automatic elimination

algorithm in Table 2. We select some true lazy classes

from the LCCS, and the average execution time is list in

Table 6.

TABLE 6 Automatic elimination time of four projects

Project

Number

of source

code files

Class Name

Average

elimination time

of class (ms)

Average

elimination

time of

project (ms)

SunnySport 51
com.SunnySport.util.StockinTableModel 218.5

218.5
com.SunnySport.util.DButiltow 218.5

JHotDraw 144

CH.ifa.draw.contrib.DiamondFigure 358.5

358.7 CH.ifa.draw.samples.nothing.NothingApplet 358.5
CH.ifa.draw.samples.javadraw.JavaDrawViewer 359

TinyUML 194

test.tinyuml.ui.IconLoaderTest 608.5

608.5 org.tinyuml.model.UmlModelListener 608.5
test.tinyuml.draw.NullElementTest 608.5

IceHockeyManager 218
org.icehockeymanager.ihm.clients.devgui.ihm.scenario.TMScenarioList 686.5

686.5
org.icehockeymanager.ihm.clients.devgui.gui.icons.icons 686.5

In Table 6, the average execution time is also increased

with the expansion of system’s scale. We use the same

method as Figure 1 to draw the relationship diagram

between the number of source code files and the average

execution time. The result is shown in Figure 2.

In Figure 2, the average elimination time also has a

linear relationship to the number of source code files. The

experiment results are in accord with the algorithm’s

complexity analysis. Execution time is in direct proportion

to the system’s scale.

FIGURE 2 The linear relationship between number of source code files

and average elimination time.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 71-76 Liu Wei, Hu Zhigang, Liu Hongtao

76
Mathematical and Computer Modelling

5 Conclusions

In this paper, a novel approach based on abstract syntax

trees to detecting and eliminating lazy classes

automatically is proposed. At the beginning, all source

code files in a project transform to ASTs, then the

relationships between classes are extracted from these

ASTs. We analyse three kinds of classes’ relationships,

which are generalization, association and dependency.

And we present some definitions to represent the classes

set of different kinds of relationships. The candidate lazy

classes set is obtained after a series of operations on these

sets. We examine candidate lazy classes by manual, and

remove true lazy classes finally. In order to verify our

approach’s correctness and evaluate its performance, four

projects are used to perform the experiments for detecting

and eliminating lazy classes. The experimental results

show that the precision of the detection algorithms is very

high. Moreover, our approach has good efficiency and it

can be used for projects of different scales. Its execution

time has a linear relationship to the size of system.

In the future work, we will improve and perfect our

approach. On one hand, we will detect more kinds of files

in a project except for source code files. Some information

on classes’ relationships lies in the configure files or user

interface files, such as the JSP files, XML files. So, we

need to detect these files in the next research work. On the

other hand, we will find the isolated class groups in a

system. Isolated class group is a series of classes, which

have relationships to some other classes in the same group,

but none of the class beyond the group needs them. All

classes in an isolated class group form an islet of a set of

lazy classes, and they need to be detected and eliminated

together.

References

[1] Fowler M 1999 Refactoring: Improving the Design of Existing Code
Addison-Wesley Boston

[2] Sjoberg D I, Yamashita A, Anda B C, Mockus A, and Dyba T 2013

IEEE Transactions on Software Engineering 39(8) 1144-56
[3] Yamashita A, Counsell S 2013 Code smells as system-level

indicators of maintainability: An Empirical Study Journal of Systems
and Software 86(10) 2639-53

[4] Marinescu R 2004 Detection strategies: Metrics-based rules for

detecting design flaws Proceedings 20th IEEE International
Conference on Software Maintenance 350-9

[5] Moha N, Gueheneuc Y G, Duchien L, Le Meur A 2010 DECOR: A

method for the specification and detection of code and design smells
IEEE Transactions on Software Engineering 36(1) 20-36

[6] Moha N, Guéhéneuc Y G, Le Meur A F, Duchien L, Tiberghien A

2010 From a domain analysis to the specification and detection of
code and design smells Formal Aspects of Computing 22(3-4) 345-

61

[7] Khomh F, Vaucher S, Guéhéneuc Y G, Sahraoui H 2009 A bayesian

approach for the detection of code and design smells QSIC'09 9th

International Conference on pp Quality Software 305-14

[8] Khomh F, Vaucher S, Guéhéneuc Y G, Sahraoui H 2011 BDTEX: A
GQM-based Bayesian approach for the detection of antipatterns

Journal of Systems and Software 84(4) 559-72

[9] Liu H, Ma Z, Shao W, Niu Z 2012 IEEE Transactions on Software
Engineering 38(1) 220-35

[10] Rao A A, Reddy K N 2008 Detecting Bad Smells in Object Oriented

Design Using Design Change Propagation Probability Matrix
Proceedings of the International MultiConference of Engineers and

Computer Scientists (IMECS 2008) Hong Kong China, March 2008
International Association of Engineers 1001-7

[11] Zhang M, Hall T, Baddoo N 2011 Code bad smells: a review of

current knowledge Journal of Software Maintenance and Evolution:
research and practice 23(3) 179-202

[12] Fontana F A, Braione P, Zanoni M 2012 Automatic detection of bad

smells in code: An experimental assessment Journal of Object
Technology 11(2) 1-38

[13] Fontana F A, Mariani E, Morniroli A, Sormani R, Tonello A 2011

An experience report on using code smells detection tools 2011 IEEE
Fourth International Conference on Software Testing, Verification

and Validation Workshops (ICSTW) 450-7

[14] Kuhn T, Thomann O 2013 Eclipse Corner Article Abstract Syntax

Tree:

http://www.eclipse.org/articles/Article-

JavaCodeManipulation_AST/index.html/ 1 Sep 2013
[15] Gamma E, Helm R, Johnson R, Vlissides J 1995 Design patterns:

elements of reusable object-oriented software Addison-Wesley:

Boston

Authors

Wei Liu, born in June, 1982, Hunan, China

Current position, grades: PhD Candidate of Computer Application Technology in Central South University, Senior Software Engineer.
University studies: PhD Student in Central South University, China, 2010.
Scientific interest: software engineering and data mining, including design patterns, refactoring, uml, reverse engineering, source code analysis and
optimization, software metrics and parallel computing.
Publications: 10 publications.
Experience: more than 30 software projects.

Zhigang Hu, born in September, 1963, Shanxi, China

Current position, grades: Professor and Doctoral Supervisor at Central South University. Vice dean of the School of Software.
University studies: PhD, Mechanical Design and Theory, Central South University, China, 2003.
Scientific interest: software engineering, operating system, parallel computing, grid computing, cloud computing, embedded systems and high-
performance platform.
Publications: more than 100 publications.
Experience: several research projects of National 863 Plan and the National Natural Science Foundation (NNSF).

Hongtao Liu, born in February, 1991, Hunan, China

Current position, grades: Master Degree student of Software Engineering in Central South University.
University studies: Bachelor of Engineering, Central South University, China, 2013.
Scientific interest: Software engineering, including design patterns, source code analysis, optimization and refactoring.
Publications: 5 publications.

