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Abstract 

Compressed sensing (CS) theory provides a novel sensing/sampling and processing paradigm that breaks through the limitation of 

Nyquist rate to some applications. However, it is usually happened to the instability and redundancy of the acquired CS 

measurements. In view of this, we propose an efficient method to achieve adaptive minimal measurements with fewer measurements 

and good reconstruction performance by adding the pre-processing block into CS data acquiring and processing paradigm. In the 

proposed method, we firstly obtain the measurements to perfectly reconstruct the signal, and then design the optimization method to 

obtain adaptive minimal measurements by eliminating the redundant measurements. Experimental results show that the proposed 

method can obtain fewer measurements to perfectly reconstruct the signal than that of classical CS and sequential compressed 
sensing frameworks. 
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1 Introduction 

 

In the conventional approach to sampling signal, the 

sampling rate must satisfy the Shannon/Nyquist sample 

theorem to not lose information [1-3]. Then the signal 

must be compressed to transmit or store since the high 

Nyquist rate results in too more redundant samples. 

FIGURE 1 illustrates the procedure for acquiring and 

processing signals in the conventional approach, 

including sampling and compressing the signal, 

transmitting/storing the data, and decompressing from the 

received data. While too high Nyquist rate limits some 

applications [2, 4], such as medical scanners, radar 

imaging and high-speed analogy-to-digital converters 

(AIC). Fortunately, emerging compressed sensing (CS) 

theory [1-7] provides a novel sensing/sampling paradigm 

that breaks through the limitation of the traditional 

approach. The CS theory claims that far fewer samples or 

measurements than the conventional approach can be 

used to perfectly recovery the signals when restricted 

isometry property (RIP) is satisfied and the underlying 

signal is sparse [1-8]. FIGURE 2 demonstrates data 

acquirement by CS method and then data processing, 

including obtaining the measurements at the sender, 

transmitting/storing, and decoding at the receiver. 

However, such classical CS framework cannot ensure 

that the acquired measurements can certainly be used to 

perfectly reconstruct the signal [9]. In addition, the 

measurements transmitted/stored are usually redundant 

[10], which will result in the waste of 

transmission/storage resources. 

 

 
FIGURE 1 The conventional approach to sampling and processing 

signals 
 

 
FIGURE 2 Compressed sensing to sampling and processing signals 

 

To address the above two problems of classical CS 

framework, this paper proposes a new efficient method 

shown in FIGURE 3 to acquire and process the data 

based on CS. In the proposed method, we adds the pre-

processing block B  to ensure that the measurement 

results can be used to perfectly reconstruct the signal and 

obtain adaptive minimal measurements, whose any 

proper subset cannot be used to perfectly reconstructed 

the signal. In the proposed method, we firstly judge 

whether initial measurements are excess or not via 

sequential compressed sensing (SCS) [11]. Then for two 

cases of non-excess and excess initial measurements, we 

design the optimization method to obtain adaptive 

minimal measurements. Experimental results show that 

the measurement of a certain measurement set has indeed 

different important degree to signal reconstruction, and 

the proposed method can obtain fewer measurements to 

perfectly reconstruct the signal than that of classical CS 

and sequential compressed sensing frameworks. 

 
FIGURE 3 The proposed method to sampling and processing signals 
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Before proceeding, we define some denotations. Let 
*

X  be the signal with the length N  and the scarcity level 

k . Let 
1 2[ , , , ]M T

My y yy  represent initial 

measurements, where M  is the number of initial 

measurements. Then *M
y ΦX , where 

1 2[ , , , ]T

M
 is M N  Gaussian measurement 

matrix. The measurements 
1 2[ , , , ]T

Ls s ss  are called 

as SCS or MSCS measurements since it is obtained by 

SCS or MSCS method, and its corresponding 

measurement matrix denoted by .S  Let 

1 2[ , , , ]T

Kb b bb  ( )K L  be adaptive minimal 

measurements to transmit/store, whose corresponding 

measurement matrix denoted by B . Let 
MX  represent 

the reconstruction signal by using initial measurements 
M

y . Let 
iX  represent the reconstruction signal by using 

1 2[ , , , ]i T

iy y yy , where i  is a positive integer. 

 

2 The proposed method for acquiring and processing 

the signal 

 

In this section, we propose an efficient method to acquire 

and process signals based on compressed sensing, recall 

FIGURE 3. In the proposed method, adaptive minimal 

measurements with fewer measurements and good 

reconstruction performance can be achieved by adding 

the pre-processing block. In the block, we firstly achieve 

the measurements, which can be used to perfectly 

reconstruct the signal with probability 1 for the Gaussian 

measurement ensemble. Then the optimization method is 

used to reduce redundant measurements to obtain 

adaptive minimal measurements. 

 

2.1 THE FLOW CHART OF THE PRE-PROCESSING 

BLOCK 

 

To understand easily the function of the block B , we 

give the flow-chart of B  in FIGURE 4. After acquiring 

initial measurements M
y , we firstly judge that M

y  is 

excess or non-excess. If M
y  is non-excess, SCS method 

is used to achieve SCS measurements s . Otherwise, we 

provide MSCS method to obtain MSCS measurements s  

by removing some redundant measurements from M
y . 

So SCS or MSCS measurements can be used to perfectly 

reconstruct the signal. And we find that the signal will 

not can be perfectly reconstructed if the last measurement 

of s  is removed. It demonstrates that the last 

measurement of is important. 

Inspired by the finding that the last measurement of s  

is important, we study each measurement of s  and 

conclude that some measurements are important since the 

signal cannot be perfectly reconstructed if any of them is 

removed from s , and some measurements are 

unimportant since the signal can still be perfectly 

reconstructed if any of them is removed from s . 

Therefore, each measurement of a certain measurement 

set has different important degree to signal 

reconstruction. Based on this, the optimization method is 

used to achieve adaptive minimal measurements. 

 

 
FIGURE 4 The flow-chart of the proposed method 

 

2.2 THE PRE-PROCESSING BLOCK 

 

In the first stage of the processing block B, we need to 

judge whether initial measurements M
y  are excess or 

not. To this aim, MSCS method is given in FIGURE 5 

and Proposition 2 is provided as judgment criterion based 

on Proposition 1. 

 

Step 1: 
MX , 

1MX , and 
1M MX X  are known , and let 

2i M . 

Step 2: iy  is used to reconstruct 
iX . 

Step 3: If 
M iX X , then let 1i i , and repeat step 2. Otherwise 

go to step 4.  

Step 4: 1iy  is MSCS measurements s . 

FIGURE 5 MSCS method 

 

In FIGURE 5, we know 1M MX X  since MSCS 

method deals with the case that initial measurements are 

excess, and let 2i M , see step 1. The first i  

measurements i
y  of initial measurements M

y , whose 

corresponding measurement matrix is 1 1[ , , , ]T

i iΦ Φ Φ , 

is used to reconstruct the signal iX , see step 2. If 

M iX X , then 1iy  is just MSCS measurements. 

Otherwise let 1i i  and repeat steps 2-3, see steps 3-4. 

MSCS measurements 
1

1 1[ , , , ]i T

i iy y yy  are 

rewritten as 1 2[ , , , ]T

Ls s ss , where 1L i . And the 
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corresponding measurement matrix is 

1 1[ , , , ]T

i iS Φ Φ Φ . 

MSCS method is so named because it adopts such a 

procedure in which the measurement is eliminated one-

by-one from initial measurements until the stop condition 

is satisfied, while SCS method increases the measurement 

one-by-one until the agreement rule is satisfied. 

According to the procedure shown in FIGURE 5, we 

know that the signal will not can be perfectly 

reconstructed if the last measurement of MSCS 

measurements is removed. It demonstrates that the last 

measurement of MSCS measurements is also important, 

which is the same as that of SCS method. 

Proposition 1 [11] In the Gaussian (generic 

continuous) measurement ensemble, if 
1M MX X  

holds, then *

MX X  with probability 1. 

Proposition 2 In the Gaussian (generic continuous) 

measurement ensemble, if 
1M MX X , then M

y  is 

excess. Otherwise M
y  is non-excess. 

According to the principles of SCS and MSCS 

methods, the measurements s  can be used to perfectly 

reconstruct the signal with probability 1 for the Gaussian 

measurement ensemble. To reduce the number of the 

measurements to store/transmit, the optimization 

algorithm shown in FIGURE 6 can be used to achieve 

adaptive minimal measurements according to the 

different important degree of the measurement. 

In FIGURE 6, we take SCS or MSCS measurements 

s  as the input of the optimization method, see steps 1-2. 

In steps 3-6, s  are divided into two sets: the key set 
1T  

and the non-key set 
2T . In step 4, the important degree of 

each measurement is illustrated by the reconstruction 

error denoted by 1, /j p p j pE X X X , which can be 

solved since pX  can be regarded as the original signal. If 

2T  is empty or only has a measurement, then 
1T  is just 

adaptive minimal measurements b , see step 7. 

Otherwise, b  should be composed of 
1T  and some 

measurements of 
2T . Since 

2T  is sorted by the 

descending order of jE , we may consider that the 

important degree of the measurement in 
2T  is also 

decreasing. Next we try to remove the measurements as 

many as possible from the back of 
2T  so that the 

remainder of 
2T  together with 

1T  can be used to perfectly 

reconstruct the signal, see step 8. The measurements w  

are updated, then repeat the above procedure until the 

condition in step 7 is satisfied, see step 9. So we obtain 

adaptive minimal measurements b , which is a subset of 

s . And the corresponding measurement matrix B  is a 

submatrix of S . 

 

 

Step 1: Let w s , and w contains p  components. Then p L . 

Step 2: 
pX  is reconstructed by using w . 

Step 3: 
1,p jX is reconstructed by taking 1p  measurements 

obtained by removing the j-th measurement from w  (1 j p ). 

Step 4: Compute reconstruction error 
1, /j p p j pE X X X .  

Step 5:  Sort w  into z according to the descending order of 
jE . 

Step 6: The measurements of z  are divided into two sets 
1T  with 

1m  components and 
2T  with 

2m  components (
1 2m m p   according 

to Theorem 1), where the corresponding 0jE  for each measurement 

of 
2T , and the corresponding 0jE  for each measurement of 

1T . 

Step 7: If 
2T  contains 0 or 1 measurement, then

1T  can be used to 

perfectly reconstruct the signal. So
1T  is just low-redundancy 

measurements b . Otherwise go to step 8. 

Step 8: Let 
2 1l m  .

1T  together with the first l  measurements of 

2T  are taken to reconstruct the signal. If the signal can be perfectly 

reconstructed, then 1l l   and repeat step 8. Otherwise go to step 9. 

Step 9: Update w  with 
1T  and the first 1l   measurements of 

2T , 

and 
1 1p m l   . Repeat the above steps 2-9. 

FIGURE 6 The optimization algorithm to achieve adaptive minimal 

measurements 

 

3 Experimental results 

 

According to the principles of SCS and MSCS methods, 

the measurements s  can be used to perfectly reconstruct 

the signal with probability 1 for the Gaussian 

measurement ensemble. So in this section, we need 

design some experiments to verify the following issues. 

(i) The measurement has different important degree to 

signal reconstruction for the measurements s  and b . (ii) 

The proposed method can obtain fewer measurements 

than that of the classical CS and SCS with good 

reconstruction performance. In the experiments, sparse 

signals are used as test signals, and homotopy method 

[12-14] is selected as the reconstruction algorithm since it 

is suitable to the recovery of sparse signals. 

 

Experiment 1 
In this experiment, a random signal with the length 

200N  and the sparsity level 10k  is generated. And 

initial measurement numbers 30M  are adopted. The 

proposed method firstly obtains SCS measurements s  

with 36L measurements. Then the reconstruction error 

1, /j L L j LE X X X ( LX , 1,L jX  refer FIGURE 6, 

1 j L ) is used to illustrate the important degree of 

each measurement in s , the results are shown in 

FIGURE 7. 
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FIGURE 7 Reconstruction error 

jE  for the measurements obtained by 

removing the j-th measurement from SCS measurements s  

 

From FIGURE 7, we see that the signal cannot be 

perfectly reconstructed when the 12-th or 36-th 

measurement is removed from s , while the signal can 

still be perfectly reconstructed when any other 

measurement is removed from s . Apparently, the 12-th 

and 36-th measurements are more important than other 

measurements in s , i.e., they are key measurements. So 

we can consider that the measurement in s  has the 

different important degree to signal reconstruction. From 

FIGURE 7, it is easy to see 12 36E E , which illustrates 

that the 12-th measurement is more important than the 

36-th measurement. This viewpoint can also be verified 

by the next experiment.  

For SCS measurements above, each key measurement 

is randomly replaced 1000 times to reconstruct the signal, 

respectively. The results show that, among 1000-time 

replacements, for the 12-th measurement, the signal can 

be perfectly reconstructed 19-time and the signal cannot 

be perfectly reconstructed 981-time. For the 36-th 

measurement, the signal can be perfectly reconstructed 

446-time and the signal cannot be perfectly reconstructed 

554-time. So the 12-th measurement is more important 

than the 36-th measurement from the perspective of 

probability. It illustrates that the measurement in s  has 

different important degree. 

For the above SCS measurements s , the optimization 

method in FIGURE 6 is used to achieve adaptive minimal 

measurements b  with 23K  measurements. Each 

measurement of b  is randomly replaced 1000 times to 

reconstruct the signal, respectively. The reconstruction 

probability for each measurement is shown in FIGURE 8. 

From FIGURE 8, we find that the signal can be perfectly 

reconstructed with a small probability ( 0 0.257 ) when 

the i-th measurement of b  is randomly replaced 1000 

times. Different reconstruction probability illustrates that 

each measurement of b  has the different important 

degree to signal reconstruction. Especially for the 1-st 

measurement, the reconstruction probability is 0 among 

1000-time replacements. It demonstrates that the 

measurement in b  has different important degree. 

 
FIGURE 8 Reconstruction probability for the i-th measurement of b  

replaced randomly 1000 times 

 

Experiment 2 

Next experiments are used to verify that the proposed 

method can obtain fewer measurements with good 

reconstruction performance than that of the classical CS 

and SCS. 

A signal with the length 128N  and the sparsity 

level 10k  is generated. We choose uniformly initial 

measurement numbers M  from 10 to 60 with the interval 

10. The experimental results are shown in TABLE 1. 

In TABLE 1, the 1-st column M , the 3-rd column L  

and the 5-th column K  represent the measurement 

numbers of M
y , s , b , respectively. The 2-nd column 

1E , the 4-th column 
2E  and the 6-th column 

3E  give the 

reconstruction errors when M
y , s , b  are used to 

reconstruct the signal, respectively. When the sparsity 

level k  is known, it is well known the fact that 3 5k k  

measurements can be taken to perfectly reconstruct the 

signal with high probability. The results of the first two 

columns in TABLE 1 are consistent with the above 

conclusion. From the 3-rd column, we can see that the 

number of s  lies between 3 4k k  which is a smaller 

range than that of the classical CS framework 3 5k k . 

The 5-th column shows that measurement numbers of b  

lie between 1k 3k , which is fewer than that of s . 

According to CS theory, the minimal measurement 

numbers of this signal are 1 11k  which is obtained 

by solving the NP hard problem of 
0l  model. For 

40M , the number of b  is 14K , which is very near 

to the minimal value 11. Compared to initial 

measurements M
y , b  decrease 26 measurements, but it 

can be used to obtain almost the same reconstruction 

quality as M
y . 
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TABLE 1 Reconstruction errors for different initial measurement 
numbers 

M  1E  L  2E  K  3E  

10 1.1580 39 1.6999e-10 30 3.1438e-10 
20 0.8543 34 1.9212e-10 21 7.8366e-11 

30 0.8125 32 3.7478e-10 27 3.3689e-10 
40 3.5374e-11 38 3.6561e-11 14 1.2733e-10 

50 3.0281e-11 36 1.3316e-10 26 4.5560e-10 

60 2.9799e-11 40 1.3754e-10 28 4.7159e-10 

 

FIGURE 9 is used to intuitively illustrate the 

reconstruction performance of SCS measurements and 

adaptive minimal measurements sequences for 20M  

of TABLE 1. The dashed line shows that the signal can 

be perfectly reconstructed when the initial measurements 

20M is increased adaptively to SCS measurements 

( 34L ). The solid line shows that adaptive minimal 

measurements ( 21K ), which is a subset of SCS 

measurements, can also be used to perfectly reconstructed 

the signal with almost the same reconstruction error, see 

TABLE 1. 

 

 
FIGURE 9 Reconstruction errors of SCS measurements and adaptive 

minimal measurements sequences for 20M  

To verify the generality of the conclusion reflected by 

TABLE 1, we do the following statistical experiment. 

The above signal is still adopted, and 1000 experiments 

are run for 35M . The detailed results are shown in 

FIGURE 10. In this figure, the horizontal-axis represents 

the measurement times, the vertical-axis shows the 

measurement numbers for each measurement task. The 

solid line represents adaptive minimal measurement 

numbers, and the dashed line shows SCS or MSCS 

measurement numbers. From FIGURE 10, all adaptive 

minimal measurement numbers are fewer than that of 

SCS or MSCS measurements in these 1000 random 

measurements, while they can obtain almost the same 

reconstruction performance. Among 1000 random 

measurements, 827 SCS or MSCS measurement numbers 

are not more than 4k , 743 adaptive minimal 

measurement numbers are not more than 3k . 

 
FIGURE 10 Comparisons with SCS or MSCS measurements, and 

adaptive minimal measurements. ( 35M ) 

 

4 Discussions and conclusions 

 

For the instability and redundancy of the acquired CS 

measurements, we propose an efficient method to achieve 

adaptive minimal measurements with fewer 

measurements and good reconstruction performance by 

adding the pre-processing block into CS data processing 

paradigm. In the proposed method, we firstly obtain the 

measurements to perfectly reconstruct the signal, and 

then design the optimization method to obtain adaptive 

minimal measurements by eliminating the redundant 

measurements. Experimental results show that the 

proposed method can obtain fewer measurements to 

perfectly reconstruct the signal than that of classical CS 

and SCS framework. Therefore, the proposed method 

provides the whole clue to sampling, pre-processing, 

storing, transmitting and decompressing, which is helpful 

to improve CS data processing framework. 
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