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Abstract 

Aiming at the deficiency of supervise information in the process of sparse reconstruction in Sparsity Preserving Projections (SPP), a 

semi-supervised dimensionality reduction method named Constraint-based Sparsity Preserving Projections (CSPP) is proposed. 

CSPP attempts to make use of supervision information of must-link constraints and cannot-link constraints to adjust the sparse 

reconstructive matrix in the process of SPP. On one hand, CSPP obtains the high discriminative ability from supervised pairwise 

constraint information. On the other hand, CSPP has the strong robustness performance, which is inherited from the sparse 

representation of data. Experimental results on UMIST, YALE and AR face datasets show, in contrast to unsupervised SPP and 

existing semi-supervised dimensionality reduction method on sparse representation, our algorithm achieves increase in recognition 
accuracy based on the nearest neighbour classifier and promotes the performance of dimensionality reduction classification. 

Keywords: semi-supervised dimensionality reduction, pairwise constraint, sparse representation, sparse reconstruction, sparsity preserving 

projections, face recognition 
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1 Introduction 

 
Principal Component Analysis (PCA) [1] and Linear 

Discriminant Analysis (LDA) [2] fail to explore the 

essential structure of the data with non-linear distribution 

and how to select kernel and optimal kernel parameter in 

kernel version of them is still difficult. Representative 

Manifold learning algorithms [3-6] have been developed. 

Unfortunately, all of these algorithms are plagued by the 

out-of-sample problem. The solution for this problem is 

to apply a linearization procedure to construct explicit 

maps over new measurements. For example, Local 

Preserving Projections (LPP) [7] is a linearization version 

of LE; Neighbourhood Preserving Embedding (NPE) [8] 

is a linearization version of LLE; Isometric Projection 

(IsoProjection) [9] can be seen as a linearized Isomap; 

and Linear Local Tangent Spacen Alignment (LLTSA) 

[10] is a linearization of LTSA. But these algorithms fail 

to explore instinct geometry structure. 

In recent years the study of sparse representation (SR) 

of signals has attracted many attentions. The purpose of 

the sparse representation is to optimize the most compact 

representation of a signal with linear combination of 

atoms in an over complete dictionary. SR has been 

successfully applied in many practical problems [11–15]. 

Researches [11] showed that classifier based on SR is 

exceptionally effective and achieves by far the best 

recognition rate on some face databases. Nowadays 

researches on dimensionality reduction based on SR have 

attached more and more attentions. Sparsity Preserving 

Projections (SPP) [16] is a representative algorithm. SPP 

firstly constructs an adjacent weight matrix of the data set 

based on SR and then evaluate the low-dimensional 

embedding of the data to best preserve such weight 

matrix. SPP is proved to outperform PCA, LPP and NPE, 

and avoids the difficulty of parameter selection as in LPP 

and NPE. Although SPP is effective, SPP is sensitive to 

large variations in whole-pattern based feature extractors. 

On the base of SPP, researchers combine other 

dimensionality reduction algorithm to overcome the 

defect of SPP under semi-supervised dimensionality 

reduction frameworks. [17] proposed a sparse 

representation-based classifier (SRC) [11] oriented 

unsupervised dimensionality reduction algorithm which 

combines SRC and PCA in its objective function. [18] 

proposed discriminant sparse neighbourhood preserving 

embedding (DSNPE) by adding the discriminant 

information into sparse neighbourhood preserving 

embedding. DSNPE not only preserves the sparse 

reconstructive relationship of SNPE, but also sufficiently 

utilizes the global discriminant structures. Discriminative 

Sparsity Preserving Projection (DSPP) [19] attempts to 

maintain the prior low-dimensional representation 

constructed by the data points and the known class labels 

and, meanwhile, considers the complexity of f in the 

ambient space and the smoothness of f in preserving the 

sparse representation of data. However, there is a 

common defect in above semi-supervised dimensionality 

reduction algorithms based on SR, namely, these 

algorithms ignore making use of supervised information 

to guide sparsity reconstruction of samples. In general, 

there are different forms of supervision information or 
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prior knowledge, such as class label, pairwise constraint, 

and others. Class label may be strong information from 

the users and cost us many efforts. In contrast, it is more 

natural to specify which pairs of data points are similar or 

dissimilar [20]. As a kind of side information, pairwise 

constraint contain must-links where the pair of data 

points must be in a same class and cannot-links where the 

pair of data points must be in two different classes [21]. 

The utility of pairwise constraints has been demonstrated 

in many applications [20-30]. 

Inspired by SPP and pairwise constraints, Constraints-

based Sparsity Preserving Projections (CSPP) is proposed 

in the paper. Different from above semi-supervised 

dimensionality reduction algorithms based on SPP, CSPP 

makes use of supervised pairwise constraint information 

guide and adjust sparse reconstructive weights with 

penalty item. Experimental results on Yale, UMIST and 

AR show, in contrast to DSNPE and DSPP, our algorithm 

is more efficient. 

The rest of the paper is organized as follows: Section 

2 reviews sparse representation, sparse reconstruction and 

SPP. Our CSPP is introduced in Section 3. In Section 4, 

CSPP is compared with some related works. The 

experimental results are presented and made analyses. 

Finally, some concluding remarks and future work are 

provided in Section 5. 

 

2 Related Background 

 

2.1 SPARSE REPRESENTATION 

 

Given a set of training samples 

1 2 3{ , , ,..., } d n
nX x x x x R   , sparse representation 

seeks a sparse reconstructive weight vector is  for each 

ix through the following minimization problem: 

0min || ||

. .

si
i

i i

s

s t x Xs
, (1) 

where ijS  denotes the contribution of each jx  to 

reconstructing ix . 0
|| ||is  is the pseudo-

0
 norm which is 

equal to the number of non-zero components in S . 

However, Equation (1) is NP-hard. The solution of 
0

 

minimization problem is equal to the solution of 
1

 

minimization problem as follows: 

1min || ||

. .

i

i i

si
s

s t x Xs
. (2) 

 

 

 

 

2.2 SPARSE RECONSTRUCTION  

 

Sparse reconstruction seeks a sparse reconstructive 

weight vector 
is  for each 

ix  through the following 

modified 
1

 minimization problem: 

1min || ||

. .

1 1

i
i

s

i i

T
i

s

Xs

s

s t x 



, (3) 

where 
1is  denotes the 

1
 normal of ,is

1 1 1[ ],..., ,0, ,..., T n

i ini ii iis s Rs s s    is a vector in which 

ijS denotes the contribution of each jx  to reconstructing 

ix , and 1 nR  is a vector of all ones. 

1 1 1 1 1 1... ... ni ini ii i ii ix x x x xs s s s          . (4) 

The sparse reconstruction matrix  1 2, , ...,= T

nS s s s  is 

attained through calculating iS . 

 

2.3 SPARSITY PRESERVING PROJECTIONS (SPP) 

 

SPP aims to preserve sparse reconstruction relation of 

high-dimensional data space to low-dimensional data 

space. Given the projection matrix T, i

TT Xs  is the 

projection point of ix in high-dimensional data space. The 

objective function of SPP is as follows: 

i

2

1

-

. .

min T T

i

T T

n

i
T

T x T Xs

s t T XX T I






. (5) 

Equation (5) can be further transformed to 

 +

. .

max T T T T

T T

T
T X S S S S X T

s t T XX T I

 
 



. (6) 

 

3 Constraints-based Sparsity Preserving Projections 

(CSPP) 

 

3.1 BASIC IDEA 

 

As described in section 1, in order to illustrate the 

problem existed in SPP, experiments of SPP on a two-

dimensional dataset and the changed dataset are shown in 

Figure 1. 
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(a) SPP on a two-dimensional dataset 

 
(b) SPP on the changed dataset 

FIGURE 1 Experiments of SPP on a two-dimensional dataset and the 
changed dataset 

Figure 1 depicts 2-dimensional 2-class examples. The 

circles and triangles denote the samples in positive and 

negative classes. The solid and dashed lines denote the 1-

dimensional embedding spaces of SPP on the dataset. In 

contrast to the dataset in (a), the vertical scaling of the 

data is doubled in (b), which lead to change in the whole 

structure of the dataset. This change of scales affects SPP 

solutions, which illustrates a possible weakness of SPP 

arising from its unsupervised nature.  

 

3.2 OBJECTIVE FUNCTION 

 

According above analyses, it is important to introduce 

supervised information to guide sparse reconstruction in 

order to overcome the weakness of SPP. Given training 

samples 1 2 3{ , , , ..., } d n

nX x x x x R   , containing a 

must-link (ML) set and a cannot-link (CL) set. According 

to Equation (3) and Equation (4), the sparse 

reconstructive weight  matrix  ij n n
sS


  of samples is 

adjusted [13] proposed to make use of pairwise constraint 

supervised information to refine adjacency relations of 

samples with the weighted parameter way. Inspired by 

[13], the paper adjust the sparse reconstructive weight 

vector is  of ix X  on the base of is . The adjustment 

of the adjusted sparse reconstructive coefficient ijs  of 
jx  

to ix  is described as follows:  

( , )
( )

( , )
( )

M
ij i j

M C

C

ij ij i j

M C

ij

n
s if x x ML

n n

n
s s if x x CL

n n

s other






  


 

  






, (7) 

where Mn  denotes this size of ML and 
Cn  denotes this 

size of CL. ijs  denotes the adjusted sparse reconstructive 

coefficient of 
jx  to ix .  and   denote adjustment 

parameters. 

Equation (7) may be understood in such two 

sentences: if two samples are in the same class, the 

greater sparse reconstructive coefficient strengthens their 

relation as much as possible. If two samples are in two 

different classes, the less sparse reconstructive coefficient 

alienates their relation as much as possible. 

According to Equation (6), with  ij
n n

S s


  

replacing S, the objective function is gotten as follows: 

T T

T

T T

T

( + )
max

T

T X X T

T XX T

S S S S
. (8) 

 

3.3 ALGORITHM STEPS 

 

Input: face training sample 1{ | }d n
i i iX x x R   . 

Output: projection matrix ( )d l l dT R   . 

Steps: 

1) construct the sparse reconstructive matrix S  using 

of Equation (3). 

2) get the adjusted sparse reconstructive matrix S  

with pairwise constraint supervised information using 

Equation (7). 

3) transform Equation (8) into the generalized matrix 

problem 
T T

T T ,1( + ) i i iS S S S t t i lX X XX    and 

get the projection matrix 
1 2, ,...[ ]lT t t t . 

 

3.4 COMPUTATIONAL COMPLEXITY ANALYSES 

 

Given samples 1 2 3{ }, , ,..., n

d nX x x x x R   . CSPP 

contains main steps for solving S and the eigen-

decomposition using Equation (8). According to Equation 

(7), solving S  is the key part of solving the sparse 

reconstructive weight matrix S .The computational 

complexity of sparse learning is nearly that of solution of`

1l norm minimization problems which is  3d  [31]. 

Therefore the computational complexity of solving S  is 

 3d . The eigen problem on a symmetric matrix can be 

efficiently computed by the singular value decomposition 
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(SVD), which is  3d . Hence, the computational 

complexity of CSPP is  3d . 

 

4 Results and Analysis 

 

4.1 EXPERIMENTAL DATASETS 

 

Some following face datasets are selected in the 

experiment: 

1) UMIST: This set contains 564 images of 20 

individuals. Each face image is resized to 112 ×  92 

pixels with 256 gray levels. The images are covering a 

range of poses from profile to frontal views. A group of 

faces in UMIST are shown in Figure 2. 

 
FIGURE 2 A group of faces in UMIST 

2) Yale: this database contains 165 face images of 15 

individuals. There are 11 images per subject, and these 11 

images are, respectively, under the following different 

facial expression or configuration: center-light, wearing 

glasses, happy, left-light, wearing no glasses, normal, 

right-light, sad, sleepy, surprised and wink. A group of 

faces in Yale are shown in Figure 3. 

 
FIGURE 3 A group of faces in Yale 

3) AR: this database consists of over 4000 face 

images of 126 individuals. For each individual, 26 

pictures were taken in two sessions (separated by two 

weeks) and each section contains 13 images. These 

images include front view of faces with different 

expressions, illuminations and occlusions. A group of 

faces in AR are shown in Figure 4. 

 
FIGURE 4 A group of faces in AR 

 

4.2. EXPERIMENTAL SETTINGS 

 

L images are selected randomly from a group face and 

remains for test samples. Besides, pairwise constraints set 

with the size PC are created randomly from training 

samples. In order to eliminate the singular problem, 

training samples are projected into the PCA [1] subspace. 

The performance of the proposed algorithm is evaluated 

and compared with that of several methods using the 

Nearest Neighbour Classifier (NNC). As a baseline, the 

classification results of NNC directly used the raw data 

without dimensionality reduction is given. SPP, DSNPE 

and DSPP are also introduced for comparing with our 

algorithm. Parameters of various algorithms are set in 

Table 1. 

TABLE 1 Parameter settings of various algorithms 

Algorithms name Parameter settings 

Baseline no 

SPP no 

DSNPE 0.5   

DSPP 0.001
A

  , 1
I
   

CSPP 10  , 30   

 

4.3 EXPERIMENTAL RESULTS 

 

In order to verify efficiently the performance of our 

proposed algorithm, experiments and analyses are made 

under different reduced dimensions and pairwise 

constraints sets with the different size. All experiments 

are repeated twenty times and average recognition 

accuracy rates are gotten. 

 

4.3.1 Effect of reduced dimension on the performance 

 

Reduced dimensions are selected with the certain 

increment and corresponding average recognition 

accuracy are calculated. Concrete experimental results are 

shown in Figures 5–7.  

 
(a)L=4 and PC=800 

 
(b) L=8 and PC=1600 

FIGURE 5 Recognition accuracy (%) VS. Reduced dimension on 

UMIST with L and PC 
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(a) L=3 and PC=200 

 
(b) L=6 and PC=400 

FIGURE 6 Recognition accuracy (%) VS. Reduced dimension on Yale 

with L and PC 

 
(a) L=5 and PC=2000 

 
(b) L=10 and PC=4000 

FIGURE 7 Recognition accuracy (%) VS. Reduced dimension on AR 
with L and PC 

From Figures 5–7, the following conclusions are 

drawn:  

1) With increase on reduced dimensions, the 

recognition accuracy of SPP and CSPP promote. CSPP is 

superior to SPP in face datasets with different character, 

which illustrates that the adjustment way on the sparse 

reconstructive weight matrix in Equation (7) is efficient. 

2) Although DSNPE combines sparsity criterion and 

maximum margin criterion (MMC) together to project the 

input high-dimensional image into a low-dimensional 

feature vector, integrating both the robustness advantage 

of sparse representation and distinctiveness advantage of 

MMC, the recognition accuracy of CSPP still is higher 

than DSNPE. This show that, in contrast to the way of 

infusing sparse reconstruction information of SR and 

discriminative  information of MMC, the way of making 

use of supervised pairwise constraints information to 

guide the adjustment on sparse reconstructive weight 

matrix is more efficient.  

3) Owing to providing s an explicit feature mapping 

by fitting the prior low-dimensional representations 

which are generated randomly by using the labels of the 

labelled data points, DSPP has a high discriminative 

ability which is inherited from the sparse representation 

of data. However, the CSPP outperform DSPP, which is 

caused by the reason that DSPP pay attention to set the 

smoothness regularization term to measure the loss of the 

mapping in preserving the sparse structure of data and 

ignore the defect of sparse reconstruction in SR. 

 

4.3.2 Effect of the size of pairwise constraints sets on the 

performance 

 

Under different L on different face datasets, pairwise 

constraints sets are created with the different size PC and 

calculated the corresponding maximum recognition 

accuracy. Concrete experimental results are shown in 

Tables 2–4. 
 

TABLE 2 Experimental results on UMIST 

L PC Recognition accuracy (%) 

4 

400 81.50 
800 85.43 

1200 86.25 

1600 86.50 

8 

500 85.07 
1000 87.35 

1500 89.23 

2000 90.73 

 
TABLE 3 Experimental results on Yale 

L PC Recognition accuracy (%) 

3 

100 73.87 
200 74.87 

300 75.87 

400 76.16 

6 

200 81.06 
400 82.13 

600 83.73 

800 84.80 
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TABLE 4 Experimental results on AR 

L PC Recognition accuracy(%) 

5 
1000 82.87 
2000 83.19 

3000 84.15 

4000 85.65 

10 
2000 97.08 
4000 97.19 

8000 98.27 

10000 98.85 

 

From Tables 2–4, some conclusions are drawn as 

follows: 

1) With increase in the size of pairwise constraints 

sets, the recognition accuracy become more higher, which 

illustrate that more supervised pairwise constraints 

information is effective for adjustments of sparse 

reconstructive weight matrix in Equation 6. 

2) Although there are less increment of the pairwise 

constraints set on UMIST and Yale than AR, the 

performance of CSPP is more sensitive to the increment 

on UMIST and Yale. It is reason for the problem that the 

performance of CSPP is influenced by the ratio of the 

increment of the pairwise constraints set to the size of the 

training sample instead of the absolute increment of the 

pairwise constraints set. 

 

5 Conclusion 

 

Constraints-based Sparsity Preserving Projections (CSPP) 

is proposed for dimensionality reduction in the paper. On 

the base of SPP, CSPP adjust the sparse reconstructive 

weight matrix through the penalty way with supervise 

pairwise constraints information. Experimental results on 

UMIST、YALE and AR demonstrate the effectiveness 

of our proposed algorithm. However, for CSPP, the 

certain size of the pairwise constraints set is needed. 

Although attaining pairwise constraints information is 

simpler than class label information, the work cost us 

much effort. Therefore, how to introduce new supervised 

information guide sparse reconstruction is our next work. 
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