

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 120-125 Li Huisong

120
Information and Computer Technologies

Flow-insensitive type qualifier inference on programming
languages allowing type casts

Huisong Li1, 2*
1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China

2University of Chinese Academy of Sciences, Beijing 100049, China

Received 1 January 2014, www.tsi.lv

Abstract

Type qualifiers are lightweight specifications of atomic properties that refine the standard types. Flow-insensitive type qualifier

inference has been used in the CQual framework to improve the quality of C programs. However, type casts will affect the

effectiveness of type qualifier inference, as they can lead to either accepting some flawed programs due to discarding some useful

qualifier information, or rejecting some safe programs when the analysis is conservative. In this paper, we first present a language,

which allows type casts and formalize its flow-insensitive qualifier inference system. We then show some examples to illustrate how

qualifiers are lost because of type casts in CQual and give an idea on solving this problem.

Keywords: Type cast, Type inference, Flow-insensitive type

*
Corresponding author - E-mail:lihs@ios.ac.cn

1 Introduction

Type system is one of the popular formal methods to

express general correctness properties of programs [6].

Type systems can be considered as tools for reasoning

about programs. For example, they can statically check

whether the arguments of primitive arithmetic operations

are always integers. However, type system cannot capture

arbitrary program behaviour. They can only guarantee

that a well-typed program is free from certain kinds of

bad program behaviours. For instance, type systems

cannot check that the second argument of the division

operation is non-zero. Nevertheless, several methods

have been investigated to extend the expressivity of type

systems: generalized algebraic data types [19], dependent

types [20, 21], refinement types [2, 12], type qualifiers [8]

and so on, among which, only type qualifiers are

lightweight.

Type qualifiers are lightweight specifications for

specifying atomic properties that refine standard types.

Generally, qualifiers fall into two classes; value

qualifiers, such as tainted and untainted, and reference

qualifiers, such as const and nonconst. Value qualifiers

pertain only to the value of an expression and reference

qualifiers pertain to the address of an expression [5].

Specifically, tainted and untainted are qualifiers

specified for checking the format-string vulnerabilities of

C programs [16]. Usually, data read from the

environment which could be controlled by untrusted

users, like the network users, should be annotated with

tainted. Printing functions, like printf, require the first

argument to be untainted as the format specifier. It is

safe to interpret untainted data as tainted data, but not

vice versa, which can be represented as

untainted  tainted. Type qualifiers const and nonconst

are used in const inference [10]. Usually, a nonconst cell

can be reassigned, but a const cell cannot be reassigned,

so it is safe to interpret a nonconst cell as a const cell, but

not vice versa, which can be represented as

nonconst  const. In [10], Foster proposed a framework

using type qualifiers to improve the quality of programs.

In his framework, programmers are allowed to specify

qualifiers and add qualifier annotations to the programs.

Type qualifier inference, including flow-insensitive

inference and flow-sensitive inference, will determine the

remaining qualifiers and check the consistency of the

qualifier annotations. In flow-insensitive inference

system, a value's qualified type is the same everywhere,

but always changes with the assignment in a flow-

sensitive inference system. In both systems, however, the

underlying types keep unchanged. Based on this

framework, CQual was developed for C programs and

has been used in a number of different practical

applications [1, 11, 14, 16, 18].

Example 1 Example Program fragment in C:
const int* x;
int* ;
int , ;

(int) ; /*(1)*/
; /*(2)*/

(int*)b; /*(3)*/
y 5; /(4)*/

y
a b

a x
b a
y






However, type casts will affect the effectiveness of

type qualifier inference, thus leading to missing some

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 120-125 Li Huisong

121
Information and Computer Technologies

flaws of programs. For the flow-insensitive inference,

consider the example program fragment in Example 1,

which can be accepted by CQual. In the program, x is a

pointer to const. From the lines (1), (2), (3), x and y have

the same value, which means y should be inferred as a

pointer to const and the assignment should not be

allowed at line (4). However, the type information that x

is a pointer to const cannot be transferred to y by a and b

because their type int cannot “contain” enough qualifier

information as int*, which leads to losing some useful

information during the qualifier inference process.

However, note that at line (1), x is assigned to a after the

type cast, which means the value of a is actually of type

int*. The value of b is also of type int* as b is assigned to

the value of a at line (2). Then, in the qualifier inference

process, we can use int* instead of int for a and b. By

doing so, we get that y is a pointer to const, that is, int* is

more suitable for the qualifier inference process than int

for a and b. Thus, for the qualifier inference process, we

believe that the most suitable type of each expression

may not be the type offered in the program.

The rest of this paper is organized as follows: Section

2 shows our source language and some preliminaries;

Section 3 presents a flow-insensitive qualifier inference

system for the source language; Section 4 show more

examples about losing qualifier information because of

type casts in CQual and a simple idea on how to solve

this problem. Section 5 presents the related work.

2 Preliminaries

In the paper, we present the basic theory using a simple

call-by-value source language. Prior to introducing

expressions, we first present the definitions of types and

qualified types respectively. A type t is a term generated

by the following grammar:

:: int | ref() | t t t t 
 ,

where ref is a pointer type constructor and  is a

function type constructor. Given a set of qualifiers Q, a

qualified type τ is a term generated by:

::
:: int | ref() |

c cq q Q 
   

 
 

.

Definition 1 gives the definition of the expressions of

the simple language, where ()t e is a type cast expression

that casts the type of expression e to type t and

annot(,)ce q is a qualifier annotation expression, which

specifies cq as the outermost qualifier of the qualified

type of e. Generally, a set of qualifiers Q and their

order form a partial order set. For simplicity, the partial

order: (,)={untainted tainted}Q   is used for the

examples of the rest paper.

Example 2 Main Example Program:

 

 

  
 

let ref annot 0, in

let int in

let ref int in

 annot * ,

x

y x

z y

z







tainted

untainted

 Definition 1 Source language with type casts and

qualifier annotations:

1 2

1 2

:: value

 | application

 | let in bind

 | ref reference

 | * def

e v

e e

x e e

e

e





1 2

erence

 | () type cast

 | : assignment

 | annot(,) annotation

:: integer

 |

c

t e

e e

e q

v n

x





 variable

 | : . functionx t e

Example 2 shows a program, which is written in our

simple language and shows type casts between pointer

type ref(int) and int. This program is not safe as *x and *z

refer to the same object, which means we interpret a

tainted object as an untainted object. Therefore, we

expect to find this flaw by the qualifier inference system.

The partial order on type qualifiers can induce the

qualified subtype relation  (In this paper, we use  for

both the order between qualifiers and qualified types.)

among qualified types in Definition 2 [10]. 1 2t t means

it is entirely safe to interpret an object of type 1 as an

object of type 2 . In order to ensure that all aliases of the

same ref cell contain the same qualifiers, the second rule,

 Ref , requires that 1 2  (1 2  and 2 1 )

instead of 1 2  . Otherwise, there will be problems

such as assigning a pointer of type ref(untainted int) to

pointer of type ref(tainted int) where we can write

tainted data to untainted position through the

ref(tainted int) pointer. In the rule,

1 2strip () strip ()q q  , functions are contravariant in

their domain and covariant in their range. In Definition 3,

embedq is a function for mapping standard types to

qualified types with fresh qualifier variables. Qualifier

variables (written as q) stand for unknown qualifiers.

stripq is a function mapping qualified types to their

standard types.

The type casts allowed in our source language are

showed in Definition 4. If the cast from 1t to 2t is

allowed, we say 1t is the castable type of 2t , denoted as

1 2t t , meaning that a value of type 1t can be interpreted

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 120-125 Li Huisong

122
Information and Computer Technologies

as a value of type 2t . (IR) and (RI) show all type

casts between the pointer type and type int are allowed as

an integer can be interpreted as an address and vice versa.

(RR) shows all type casts between pointer types are

allowed as an address of one type can be interpreted as an

address of another type. For simplicity, we forbid all the

other type casts, like type casts between function types.

Based on the castable type relation, we define the

following qualified castable type relation. We first give

the rules of the relation
q

 in Definition 5, in which

1 2
q  means their “corresponding” qualifiers satisfy

the partial order  of (Q, ≤). Rules, (RR)q and

(FF)q , are similar to the rules of the qualified subtype

relation. All the other rules only have the outermost

qualifiers as the “corresponding” qualifiers. Note that the

rules in Definition 5 are general formalizations for value

qualifiers, like tainted and untainted. For the other

qualifier kinds, the rules can be adjusted according to the

properties of qualifiers and our analysis requirements. If

1 2strip () strip ()q q  (the standard type of 1 is the

castable type of the standard type of 2) and 1 2
q  ,

then 1 is the qualified castable type of 2 , meaning that

interpreting a value of type 1 as a value of type 2 is

partially safe. The reason is that 1 is the qualified

castable type of 2 and 2 is the qualified castable type

of 3 does not guarantee that 1 is the qualified castable

type of 3 .

 Definition 2 Qualified subtype relation:

1 2

1 2

1 2 1 2

1 1 2 2

1 2 3 1 2 4

1 1 2 2 3 4

 (Int)
 int int

 (Ref)

 ref() ref()

 (Fun)
 () ()

q q

q q
q q

q q
q q

q q

 

 
   

   




 


  

  

 Definition 3 embedq and stripq :

1 2

1 2

1 2

embed (int) int fresh

embed (ref()) ref(embed ()) fresh

embed ()

 (embed () embed ()) fresh

strip (int)= int

strip (ref())= ref(strip ())

strip (())= s

q

q q

q

q q

q

q q

q

q q

t q t q

t t

q t t q

q

q

q

 
 





 



 1 2trip () strip ()q q 

 Definition 4 Castable-type relation:

1 2

int int (II)

int ref() (IR)
ref() int (RI)
ref() ref() (RR)

t
t
t t

 Definition 5 Qualified castable-type relation:

1 2

1 2

1 2

1 2

1 2

1

 (II)
 int int

 (IR)
 int ref()

 ref(

qq

qq

q q

q q

q q

q q
q q

q











2

1 2

1 2 1 2

1 2

1 1 2 2

 (RI)
) int

 (IF)
 int ()

 (FI)
 () int

qq

qq

qq

q
q q

q q
q q

q q

 

 








1

1 2

1 1 2 2 3

1 2

1 1 2 2 3

1 2 1 2 2

1 1

 (RF)
 ref() ()

 (FR)
 () ref()

 ref()

qq

qq

q q

q

q q

q q
q q

q q

q q

q q

  

  

   












4

2 2

1 2 3 1 2

1 1 2 2 3 4

 (RR)
 ref()

 (FF)

 () ()

q

q q

qq

q q

q q


   

   



 

3 The Qualifier Inference System

For the source language, the standard type checking

system is presented in Definition 6. Judgements of the

form :e t ђ mean that in the type environment 

which maps variables to their types, expression e has type

t. (Cast) computes the type t' of e, checks that t' is the

castable type of t, and then t is the type of the cast

expression. (Annot) ignores the annotation of the

qualifier as standard types do not contain qualifiers. The

type t of e is the type of the Annot expression. The

discussion of the other rules can be found in [10]. Note

that the standard static type checking system cannot

guarantee that programs run without runtime errors

because of type casts, which is a well-known limitation of

type systems.

 The qualifier inference system in Definition 7 is used

to infer qualifiers automatically under the assumption that

the program passes the standard type checking system.

For this system, judgements of the form :q q e  ђ

mean that in qualified type environment q , which maps

variables to their qualified types, expression e has

qualified type  . Whenever we assign a type to a term

constructor, we introduce a fresh qualifier variable to

stand for the unknown qualifier on the term that we need

to solve for (see (Int)q , (Lam)q and (Ref)q). We use

embedq in (Lam)q and (Cast)q to map the given

standard type to a qualified type with fresh qualifier

variables. Rules (App)q and (Assign)q generate the

qualified subtype constraints of the form 1 2  .

(Cast)q generates the qualified castable type constraints

of the form 1 2
q  . (Annot)q computes the qualified

type q  of e and generates the constraints

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 120-125 Li Huisong

123
Information and Computer Technologies

cq q (and)c cq q q q  in order to infer that the

value of q is cq .

 After we perform the qualifier inference system on

the program, we will get a set C containing constraints

of the forms 1 2  , 1 2
q  and a set qC containing

constraints of the form cq q . Then, we reduce all

constraints of C into qC using (, ')R   in Definition 8

which are simply the rules of Definition 5 rewritten left-

to-right.

Formally,

1 2 τ 1 2 τ

q q 1 2 1 2
C C

C C R(,) R(,)
q   

   
    

   .

The algorithm for solving qC to get the value of

qualifier variables can be found in [10]. Note that as we

assume the program is correct with respect to the standard

type checking system, then for any 1 2 C   ,

1 2strip () strip ()q q  (syntactic equality) and for any

1 2
q C   , 1 2strip () strip ()q q  .

Example 3 The inference result of the Example 2:

    

  

 

 

 

2 1 3

5 4

2 1 3

3 5 4

1 4

 , , , ,
:

,

ref int int,
:

in

 ref int int

 ref int

 t ref int

: ,

q

q

q

q

x q q y q
Г

z q q

q q q
C

q q q

C q q



  


  
 



  









tainted untainted

 Then, reducing C into qC will get that

1 4 2 3 3 5, , { },qC q q q q q q    tainted untainted .

Solving qC will get that the value of 1q and 4q are

tainted and untainted respectively. However, as we have

discussed in Example 2, this program is not safe by

interpretting a tainted object as an untainted object. But

this system does not find the flaw because the qualifier

information of 1q cannot be transferred to 4q . That is,

some qualifier information is lost during the inference

process.

 Definition 6 The standard type checking system:

: ()

n : int

 ()
 (Var)

 (Int)

 []
 (Lam)

: '

: . : '

x x

e

x dom

x t t

x t e t t

 











ђ

ђ

ђ

ђ

1 2

1 2

 (App)

 (Ref)

: ' :

: '

:

() : ()

: ()
 (Deref)

* :

e t t e t

e e t

e t

ref e ref t

e ref t

e t

e

 















ђ ђ

ђ

ђ

ђ

ђ

ђ

ђ 1 2

1 2

1 2

1 2

[]
 (Let)

 (Assign)

: : '

let in : '

: () :

: :

: ' '

(
 (Cast)

) :

:

t e t

x e e t

e ref t e t

e e t

e t t t

t e t

x t

e t

an





 

 











ђ

ђ

ђ ђ

ђ

ђ

ђ

ђ

ђ c

(, q

) :

 (Annot)
not e t

4 Examples

Based on the inference of tainted and untainted, we

list some examples in Table 1 to specifically show how

CQual keep track of qualifiers in the presence type casts.

For simplicity, we only show the source qualified types in

the first column, the destination qualified types in the

second column and the generated constraints for

transferring the qualifier information of the source to the

destination in the last column. The second line shows

casting from 1 2 ref(int)q q to 3 intq . The constraint

1 3q q transfers the qualifier information of 1q to 3q .

Nevertheless, the qualifier information of 2q is

discarded. The forth line shows casting between pointers.

From the qualified castable type relation, 2 4q q

(2 4q q and 4 2q q) is necessary. The last two lines

show casting related to function pointers. We believe the

constraints are some conservative, for example in the last

line 2 7q q will transfer the qualifier information of 2q

to 7q .To conclude, we can get that there are always

some qualifier information which may be useful been

discarded. On the other side, some constraints on

qualifiers are some conservative. These will affect the

effectiveness of qualifier inference, thus leading to miss

some flawed programs or produce some false positives.

Consider the second line of Table 1 again, if we

augment 3 intq to 3 4 ref(int)q q in which 4q is a fresh

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 120-125 Li Huisong

124
Information and Computer Technologies

qualifier variable, we can preserve the qualifier

information of 2q to 4q instead of discarding it directly.

Note that the augmentation is only for the qualifier

inference. However, for the type cast in the last line of

Table 1, in order to preserve the qualifier information of

3q and 4q , we have to augment the destination type to

contain a function type. The only way is introducing

union types. We expect the augmentation result is

5 6 7 8 9 ref((ref(int) (int int)))q q q q q  , in which

8q and 9q are fresh qualifier variables. Then we can

preserve the qualifier information of 3q and 4q to 8q

and 9q respectively. We expect to do this in the future

work.

5 Related work and conclusion

Type qualifiers can be seen as a kind of refinement types

[2, 12], which do not change the underlying type

structure and extend the expressivity of type systems. The

type refinement framework in [15] supports a flow-

sensitive, sophisticated type system. The theory of type

qualifiers proposed in [10] describes a framework for

adding type qualifiers to a language and show a flow-

insensitive type qualifier inference system. Flow-

sensitive type qualifier inference systems were proposed

in [9], in which only type qualifiers were modelled flow-

sensitively. In [5], a framework for allowing users to

explicitly write type rules for their new type qualifiers

and to explicitly specify the run-time invariant that the

type qualifiers meant to represent was proposed, but it

was not flexible enough, only supporting certain kinds of

qualifiers. Based on the theory of type qualifiers, CQual

[7] was developed for C programs and has had many

applications, like const qualifiers inference[10], finding

format-string vulnerabilities [16], static analysis of

authorization hook placement [11, 18], finding

user/kernel bugs [10], and deadlocks in Linux kernels [1].

Later, JQual [13] was developed for adding user-defined

type qualifiers to Java.

Program analysis based on type qualifiers is a kind of

static analysis techniques for improving software quality.

However, as C standard allows arbitrary type casts

between pointer types and some other type casts [17], we

will lose some useful qualifier information during the

qualifier inference process. Our work aims to solve this

problem in the flow-insensitive qualifier inference

process. Therefore, it can be seen as an improvement of

flow-insensitive qualifier inference.

In this paper, we formalized a flow-insensitive

qualifier inference system for a source language allowing

type casts, and showed the problem of losing qualifier

information caused by type casts in CQual and proposed

a simple idea to solve this problem.

 Definition 7 Qualifier inference system:

 ()
 (Var)

 fresh
 (Int)

() []

: ()

n : int

: '

: . : (

q

q

q

q

q

q

q q

q

qq

q q

x dom

q

embed t

x x

q

e

x t

x

e q

 



 













ђ

ђ

ђ

ђ

1 1 2 2 3 3 1

1 2 2

')

: () :

:

: fr

 (Lam)

 (App)

 (Ref)

esh

() : ()

:

q

q q

q

q

q

q q

q

q

q

q

q

q

q

e q e

e e

e q

ref e q ref

e q ref

 

    







 











 ђ ђ

ђ

ђ

ђ

ђ

1 2

1 2

1 2

1 2

 (Deref)

 []
 (Let)

 (Assign)

()

* :

: : '

let in : '

: () : ' '

: : '

:

q

q

q q

q

q

q

q

q

q

q q

q

q

q

q

q

q

e

e e

x e e

e q ref e

e e

e

x





 



   











 



 









ђ

ђ ђ

ђ

ђ ђ

ђ

ђ

c

c

' ()
 (Cast)

 (Ann

'

() : '

: q
o

(, q) :
t)

q

q

q

q

q

q

q

q

q

q

t e

e q q

anno

embed

t q

t

e

 

















ђ

ђ

ђ

 Definition 8 Constraint resolution rules:

 

  

  
 

    

1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 1 2 2 1 2

1 2 1 2

1 1 2 2 3 1 2

1 1 2 2 1 2

 { }

(()) { }

 { }

(())

int, int

int,

int, ref

, int

ref , int

ref ,

{ }

 { }

(()) { }

ref , re {f }

R q q q q

R q q q q

R q q q q

R q q q q

R q q q q

R q q q q

R q q q q R

 



 



  

 

 

  

 

  

 

  

      

 

   

1 2 2 1

1 1 2 2 3 1 2

1 1 2 2 3 4 1 2 3 1 2 4

, ,

, r(()) { }

(() ()) { }

ef

, , ,

R

R q q q q

R q q q q R R

   

  

       



  

     

References

[1] Aiken A, Foster J S, Kodumal J, Terauchi T 2003 ACM SIGPLAN

Notices 38(5) 129–40
[2] Bierman G M, Gordon A D, Hriţcu C, Langworthy D 2010 ACM

SIGPLAN Notices 45(9) 105–16
[3] Castagna G, Xu Zhiwu. 2011 ACM SIGPLAN Notices 46(9) 94-106
[4] Chandra S, Reps T 1999 ACM SIGSOFT Software Engineering

Notes 24(5) 66-75

[5] Chin B, Markstrum S, Millstein T 2005 ACM SIGPLAN Notices

40(6) 85-95

[6] Pierce B C 2002 Types and programming languages MIT Press
[7] Foster J S 2001 CQual User’s Guide. Berkeley: University of

California
[8] Foster J S, Fähndrich M, Aiken A 1999 ACM SIGPLAN Notices

34(5) 192-203

[9] Foster J S, Terauchi T, Aiken A 2002 ACM SIGPLAN Notices
37(5) 1-12

[10] Foster J S 2002 Type qualifiers: lightweight specifications to
improve software quality Berkeley: University of California

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 120-125 Li Huisong

125
Information and Computer Technologies

[11] Fraser T, Petroni Jr N L, Arbaugh W A 2006 Applying flow-
sensitive CQUAL to verify MINIX authorization check placement

Proceedings of the workshop on Programming languages and
analysis for security ACM 3-6

[12] Freeman T, Pfenning F 1991 ACM SIGPLAN Notices 26(6) 268–77

[13] Greenfieldboyce D, Foster J S 2007 ACM SIGPLAN Notices 42(10)
321-36

[14] Johnson R, Wagner D 2004 Finding User/Kernel Bugs With Type
Inference Proceedings of the 13th Usenix Security Symposium, San

Diego, CA

[15] Mandelbaum Y, Walker D, Harper R 2003 ACM SIGPLAN Notices
38(9) 213-25

[16] Shankar U, Talwar K, Foster J S, et al 2001 Detecting Format
String Vulnerabilities with Type Qualifiers USENIX Security

Symposium 201-20

[17] Siff M, Chandra S, Ball T, et al. 1999 Coping with type casts in C.
Software Engineering—ESEC/FSE’99. Springer Berlin Heidelberg:

180-98
[18] Zhang Xiaolan, Edwards A, Jaeger T 2002 Using CQUAL for

Static Analysis of Authorization Hook Placement. USENIX Security

Symposium 33-48
[19] Xi Hongwei, Chiyan Chen, Gang Chen 2003 ACM SIGPLAN

Notices 38(1) 224-35
[20] Augustsson L 1999 Cayenne - a language with dependent types

Advanced Functional Programming Berlin-Heidelberg: Springer

240-267
[21] Xi Hongwei, Pfenning F 1999 Dependent types in practical

programming POPL '99 Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages 214-

227

Author

Huisong Li

University studies: master student in University of Chinese Academy of Sciences
Scientific interest: research interests are programming language and static analysis

