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Abstract 

Type qualifiers are lightweight specifications of atomic properties that refine the standard types. Flow-insensitive type qualifier 

inference has been used in the CQual framework to improve the quality of C programs. However, type casts will affect the 

effectiveness of type qualifier inference, as they can lead to either accepting some flawed programs due to discarding some useful 

qualifier information, or rejecting some safe programs when the analysis is conservative. In this paper, we first present a language, 

which allows type casts and formalize its flow-insensitive qualifier inference system. We then show some examples to illustrate how 

qualifiers are lost because of type casts in CQual and give an idea on solving this problem. 
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1 Introduction 

 

Type system is one of the popular formal methods to 

express general correctness properties of programs [6]. 

Type systems can be considered as tools for reasoning 

about programs. For example, they can statically check 

whether the arguments of primitive arithmetic operations 

are always integers. However, type system cannot capture 

arbitrary program behaviour. They can only guarantee 

that a well-typed program is free from certain kinds of 

bad program behaviours. For instance, type systems 

cannot check that the second argument of the division 

operation is non-zero. Nevertheless, several methods 

have been investigated to extend the expressivity of type 

systems: generalized algebraic data types [19], dependent 

types [20, 21], refinement types [2, 12], type qualifiers [8] 

and so on, among which, only type qualifiers are 

lightweight. 

Type qualifiers are lightweight specifications for 

specifying atomic properties that refine standard types. 

Generally, qualifiers fall into two classes; value 

qualifiers, such as tainted and untainted, and reference 

qualifiers, such as const and nonconst. Value qualifiers 

pertain only to the value of an expression and reference 

qualifiers pertain to the address of an expression [5]. 

Specifically, tainted and untainted are qualifiers 

specified for checking the format-string vulnerabilities of 

C programs [16]. Usually, data read from the 

environment which could be controlled by untrusted 

users, like the network users, should be annotated with 

tainted. Printing functions, like printf, require the first 

argument to be untainted as the format specifier. It is 

safe to interpret untainted data as tainted data, but not 

vice versa, which can be represented as 

untainted  tainted. Type qualifiers const and nonconst 

are used in const inference [10]. Usually, a nonconst cell 

can be reassigned, but a const cell cannot be reassigned, 

so it is safe to interpret a nonconst cell as a const cell, but 

not vice versa, which can be represented as 

nonconst  const. In [10], Foster proposed a framework 

using type qualifiers to improve the quality of programs. 

In his framework, programmers are allowed to specify 

qualifiers and add qualifier annotations to the programs. 

Type qualifier inference, including flow-insensitive 

inference and flow-sensitive inference, will determine the 

remaining qualifiers and check the consistency of the 

qualifier annotations. In flow-insensitive inference 

system, a value's qualified type is the same everywhere, 

but always changes with the assignment in a flow-

sensitive inference system. In both systems, however, the 

underlying types keep unchanged. Based on this 

framework, CQual was developed for C programs and 

has been used in a number of different practical 

applications [1, 11, 14, 16, 18]. 

 

Example 1 Example Program fragment in C: 
const int*  x;
int* ;
int , ;

(int) ;                      /*(1)*/
;                             /*(2)*/

(int*)b;                  /*(3)*/
*y 5;                          /*(4)*/

y
a b

a x
b a
y






 

However, type casts will affect the effectiveness of 

type qualifier inference, thus leading to missing some 
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flaws of programs. For the flow-insensitive inference, 

consider the example program fragment in Example 1, 

which can be accepted by CQual. In the program, x is a 

pointer to const. From the lines (1), (2), (3), x and y have 

the same value, which means y should be inferred as a 

pointer to const and the assignment should not be 

allowed at line (4). However, the type information that x 

is a pointer to const cannot be transferred to y by a and b 

because their type int cannot “contain” enough qualifier 

information as int*, which leads to losing some useful 

information during the qualifier inference process. 

However, note that at line (1), x is assigned to a after the 

type cast, which means the value of a is actually of type 

int*. The value of b is also of type int* as b is assigned to 

the value of a at line (2). Then, in the qualifier inference 

process, we can use int* instead of int for a and b. By 

doing so, we get that y is a pointer to const, that is, int* is 

more suitable for the qualifier inference process than int 

for a and b. Thus, for the qualifier inference process, we 

believe that the most suitable type of each expression 

may not be the type offered in the program. 

The rest of this paper is organized as follows: Section 

2 shows our source language and some preliminaries; 

Section 3 presents a flow-insensitive qualifier inference 

system for the source language; Section 4 show more 

examples about losing qualifier information because of 

type casts in CQual and a simple idea on how to solve 

this problem. Section 5 presents the related work. 

 

2 Preliminaries 

 

In the paper, we present the basic theory using a simple 

call-by-value source language. Prior to introducing 

expressions, we first present the definitions of types and 

qualified types respectively. A type t is a term generated 

by the following grammar: 

:: int | ref( ) | t t t t 
 , 

where ref is a pointer type constructor and   is a 

function type constructor. Given a set of qualifiers Q, a 

qualified type τ is a term generated by: 

::      
:: int | ref( ) | 

c cq q Q 
   

 
 

 
. 

Definition 1 gives the definition of the expressions of 

the simple language, where ( )t e  is a type cast expression 

that casts the type of expression e to type t and 

annot( ,  )ce q  is a qualifier annotation expression, which 

specifies cq  as the outermost qualifier of the qualified 

type of e. Generally, a set of qualifiers Q and their 

order form a partial order set. For simplicity, the partial 

order: ( ,  )={untainted tainted}Q   is used for the 

examples of the rest paper. 

 

Example 2 Main Example Program: 

 

 

  
 

let   ref annot 0,  in

let   int  in

let   ref int  in

             annot * ,

x

y x

z y

z







tainted

untainted
 

 Definition 1 Source language with type casts and 

qualifier annotations: 

1 2

1 2

::                             value

     |                         application

    |   let in       bind

     |   ref                      reference   

     |  *                          def

e v

e e

x e e

e

e





1 2

erence  

     | ( )                         type cast

     | :                   assignment         

     | annot( ,  )          annotation

::                            integer

      |            

c

t e

e e

e q

v n

x





                variable

      |  : .                  functionx t e

 

 

Example 2 shows a program, which is written in our 

simple language and shows type casts between pointer 

type ref(int) and int. This program is not safe as *x and *z 

refer to the same object, which means we interpret a 

tainted object as an untainted object. Therefore, we 

expect to find this flaw by the qualifier inference system. 

The partial order on type qualifiers can induce the 

qualified subtype relation   (In this paper, we use   for 

both the order between qualifiers and qualified types.) 

among qualified types in Definition 2 [10]. 1 2t t  means 

it is entirely safe to interpret an object of type 1 as an 

object of type 2 . In order to ensure that all aliases of the 

same ref cell contain the same qualifiers, the second rule, 

 Ref , requires that 1 2   ( 1 2   and 2 1  ) 

instead of 1 2  . Otherwise, there will be problems 

such as assigning a pointer of type ref(untainted int) to 

pointer of type ref(tainted int) where we can write 

tainted data to untainted position through the 

ref(tainted int) pointer. In the rule, 

1 2strip ( ) strip ( )q q  , functions are contravariant in 

their domain and covariant in their range. In Definition 3, 

embedq  is a function for mapping standard types to 

qualified types with fresh qualifier variables. Qualifier 

variables (written as q) stand for unknown qualifiers. 

stripq  is a function mapping qualified types to their 

standard types. 

The type casts allowed in our source language are 

showed in Definition 4. If the cast from 1t  to 2t  is 

allowed, we say 1t  is the castable type of 2t , denoted as 

1 2t t , meaning that a value of type 1t  can be interpreted 
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as a value of type 2t . (IR )  and (RI )  show all type 

casts between the pointer type and type int are allowed as 

an integer can be interpreted as an address and vice versa. 

(RR )  shows all type casts between pointer types are 

allowed as an address of one type can be interpreted as an 

address of another type. For simplicity, we forbid all the 

other type casts, like type casts between function types. 

Based on the castable type relation, we define the 

following qualified castable type relation. We first give 

the rules of the relation 
q

 in Definition 5, in which 

1 2
q   means their “corresponding” qualifiers satisfy 

the partial order   of (Q, ≤). Rules, (RR )q  and 

(FF )q , are similar to the rules of the qualified subtype 

relation. All the other rules only have the outermost 

qualifiers as the “corresponding” qualifiers. Note that the 

rules in Definition 5 are general formalizations for value 

qualifiers, like tainted and untainted. For the other 

qualifier kinds, the rules can be adjusted according to the 

properties of qualifiers and our analysis requirements. If 

1 2strip ( ) strip ( )q q  (the standard type of 1  is the 

castable type of the standard type of 2 ) and 1 2
q  , 

then 1  is the qualified castable type of 2 , meaning that 

interpreting a value of type 1  as a value of type 2  is 

partially safe. The reason is that 1  is the qualified 

castable type of 2  and 2  is the qualified castable type 

of 3  does not guarantee that 1  is the qualified castable 

type of 3 . 

 Definition 2 Qualified subtype relation: 

1 2

1 2

1 2 1 2

1 1 2 2

1 2 3 1 2 4

1 1 2 2 3 4

                        (Int )
   int  int  

  
          (Ref )

    ref( )  ref( )   
        

    (Fun )
   ( )  ( )  

q q

q q
q q

q q
q q

q q

 

 
   

   




 


  

  

 

 Definition 3 embedq and stripq : 

1 2

1 2

1 2

embed (int)  int        fresh

embed (ref( ))  ref(embed ( ))      fresh

embed ( )

 (embed ( ) embed ( ))        fresh

strip (  int)=  int

strip (  ref( ))=  ref(strip ( ))

strip (  ( ))=  s

q

q q

q

q q

q

q q

q

q q

t q t q

t t

q t t q

q

q

q

 
 





 



 1 2trip ( ) strip ( )q q 

 

 Definition 4 Castable-type relation: 

1 2

int int                   (II )       

int ref( )              (IR )
ref( ) int               (RI )   
ref( ) ref( )       (RR )

t
t
t t

 

 

 

 Definition 5 Qualified castable-type relation: 

1 2

1 2

1 2

1 2

1 2

1

                                            (II )                 
   int  int  

                                        (IR )                 
  int  ref( )  

     
   ref(

qq

qq

q q

q q

q q

q q
q q

q











2

1 2

1 2 1 2

1 2

1 1 2 2

                                 (RI )               
)  int   

                                 (IF )
   int  ( )  

                                (FI ) 
   ( )  int   

qq

qq

qq

q
q q

q q
q q

q q

 

 








1

1 2

1 1 2 2 3

1 2

1 1 2 2 3

1 2 1 2 2

1 1

               

                          (RF )
   ref( )  ( )  

                          (FR )             
   ( )  ref( )  

         
  

    ref( )

qq

qq

q q

q

q q

q q
q q

q q

q q

q q

  

  

   












4

2 2

1 2 3 1 2

1 1 2 2 3 4

                        (RR )               
 ref( )   

     
                    (FF ) 

    ( )  ( )   

q

q q

qq

q q

q q


   

   



   

 

3 The Qualifier Inference System 

 

For the source language, the standard type checking 

system is presented in Definition 6. Judgements of the 

form :e t ђ  mean that in the type environment   

which maps variables to their types, expression e has type 

t. (Cast) computes the type t' of e, checks that t' is the 

castable type of t, and then t is the type of the cast 

expression. (Annot) ignores the annotation of the 

qualifier as standard types do not contain qualifiers. The 

type t of e is the type of the Annot expression. The 

discussion of the other rules can be found in [10]. Note 

that the standard static type checking system cannot 

guarantee that programs run without runtime errors 

because of type casts, which is a well-known limitation of 

type systems. 

 The qualifier inference system in Definition 7 is used 

to infer qualifiers automatically under the assumption that 

the program passes the standard type checking system. 

For this system, judgements of the form :q q e  ђ  

mean that in qualified type environment q , which maps 

variables to their qualified types, expression e has 

qualified type  . Whenever we assign a type to a term 

constructor, we introduce a fresh qualifier variable to 

stand for the unknown qualifier on the term that we need 

to solve for (see (Int )q , (Lam )q and (Ref )q ). We use 

embedq  in (Lam )q and (Cast )q to map the given 

standard type to a qualified type with fresh qualifier 

variables. Rules (App )q  and (Assign )q  generate the 

qualified subtype constraints of the form 1 2  . 

(Cast )q  generates the qualified castable type constraints 

of the form 1 2
q  . (Annot )q  computes the qualified 

type  q   of e and generates the constraints 
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cq q (  and )c cq q q q   in order to infer that the 

value of q is cq . 

 After we perform the qualifier inference system on 

the program, we will get a set C containing constraints 

of the forms 1 2  , 1 2
q  and a set qC containing 

constraints of the form cq q . Then, we reduce all 

constraints of C into qC using ( ,  ')R    in Definition 8 

which are simply the rules of Definition 5 rewritten left-

to-right.  

Formally, 

1 2 τ 1 2 τ

q q 1 2 1 2
C C

C C R( ,  ) R( ,  )
q   

   
    

   . 

The algorithm for solving qC to get the value of 

qualifier variables can be found in [10]. Note that as we 

assume the program is correct with respect to the standard 

type checking system, then for any 1 2 C   , 

1 2strip ( ) strip ( )q q  (syntactic equality) and for any 

1 2
q C   , 1 2strip ( ) strip ( )q q  . 

Example 3 The inference result of the Example 2: 

    

  

 

 

 

2 1 3

5 4

2 1 3

3 5 4

1 4

 ,  ,    ,  ,  
:  

,   

ref int int,  
:   

in

 ref  int  int

 ref  int

  

  t ref int

:  , 

 

 

q

q

q

q

x q q y q
Г

z q q

q q q
C

q q q

C q q



  


  
 



  









tainted untainted

 

 

 Then, reducing C into qC will get that 

1 4 2 3 3 5,  ,  {  },qC q q q q q q    tainted untainted . 

Solving qC  will get that the value of 1q and 4q are 

tainted and untainted respectively. However, as we have 

discussed in Example 2, this program is not safe by 

interpretting a tainted object as an untainted object. But 

this system does not find the flaw because the qualifier 

information of 1q cannot be transferred to 4q . That is, 

some qualifier information is lost during the inference 

process. 

 

 Definition 6 The standard type checking system: 

 

: ( )

n : int   

   ( )  
                                    (Var)              

                                       (Int)
   

   [ ]
                         (Lam)     

  

: '   

: . : '   

x x

e

x dom

x t t

x t e t t

 











ђ

ђ

ђ

ђ

1 2

1 2

   

                     (App)

   
                        (Ref)          

   

    
                             

: '  :  

: '

:    

( ) : ( )   

: ( )  
 (Deref)

 

   
   

  

* :  

  

e t t e t

e e t

e t

ref e ref t

e ref t

e t

e

 















ђ ђ

ђ

ђ

ђ

ђ

ђ

ђ 1 2

1 2

1 2

1 2

[ ]
      (Let)       

   
              (Assign)

   
       

:   : '   

let  in : '  

: ( )  :    

: :

: '   '     

(
                    (Cast)        

    

) :

 

:
  

  

t e t

x e e t

e ref t e t

e e t

e t t t

t e t

x t

e t

an





 

 











ђ

ђ

ђ ђ

ђ

ђ

ђ

ђ

ђ c

        
( ,  q

  
) :    

    (Annot)
not e t

 

 

4 Examples 

 

Based on the inference of tainted and untainted, we 

list some examples in Table 1 to specifically show how 

CQual keep track of qualifiers in the presence type casts. 

For simplicity, we only show the source qualified types in 

the first column, the destination qualified types in the 

second column and the generated constraints for 

transferring the qualifier information of the source to the 

destination in the last column. The second line shows 

casting from 1 2 ref(  int)q q  to 3  intq . The constraint 

1 3q q  transfers the qualifier information of 1q  to 3q . 

Nevertheless, the qualifier information of 2q  is 

discarded. The forth line shows casting between pointers. 

From the qualified castable type relation, 2 4q q  

( 2 4q q  and 4 2q q ) is necessary. The last two lines 

show casting related to function pointers. We believe the  

constraints are some conservative, for example in the last 

line 2 7q q  will transfer the qualifier information of 2q  

to 7q  .To conclude, we can get that there are always 

some qualifier information which may be useful been 

discarded. On the other side, some constraints on 

qualifiers are some conservative. These will affect the 

effectiveness of qualifier inference, thus leading to miss 

some flawed programs or produce some false positives. 

Consider the second line of Table 1 again, if we 

augment 3  intq  to 3 4 ref(  int)q q  in which 4q  is a fresh 
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qualifier variable, we can preserve the qualifier 

information of 2q  to 4q  instead of discarding it directly. 

Note that the augmentation is only for the qualifier 

inference. However, for the type cast in the last line of 

Table 1, in order to preserve the qualifier information of 

3q  and 4q , we have to augment the destination type to 

contain a function type. The only way is introducing 

union types. We expect the augmentation result is 

5 6 7 8 9 ref(  (ref(  int) (  int  int)))q q q q q  , in which 

8q  and 9q are fresh qualifier variables. Then we can 

preserve the qualifier information of 3q  and 4q  to 8q  

and 9q  respectively. We expect to do this in the future 

work. 

 

5 Related work and conclusion 

 

Type qualifiers can be seen as a kind of refinement types 

[2, 12], which do not change the underlying type 

structure and extend the expressivity of type systems. The 

type refinement framework in [15] supports a flow-

sensitive, sophisticated type system. The theory of type 

qualifiers proposed in [10] describes a framework for 

adding type qualifiers to a language and show a flow-

insensitive type qualifier inference system. Flow-

sensitive type qualifier inference systems were proposed 

in [9], in which only type qualifiers were modelled flow-

sensitively. In [5], a framework for allowing users to 

explicitly write type rules for their new type qualifiers 

and to explicitly specify the run-time invariant that the 

type qualifiers meant to represent was proposed, but it 

was not flexible enough, only supporting certain kinds of 

qualifiers. Based on the theory of type qualifiers, CQual 

[7] was developed for  C programs and has had many 

applications, like const qualifiers inference[10], finding 

format-string vulnerabilities [16], static analysis of 

authorization hook placement [11, 18], finding 

user/kernel bugs [10], and deadlocks in Linux kernels [1]. 

Later, JQual [13] was developed for adding user-defined 

type qualifiers to Java.  

Program analysis based on type qualifiers is a kind of 

static analysis techniques for improving software quality. 

However, as C standard allows arbitrary type casts 

between pointer types and some other type casts [17], we 

will lose some useful qualifier information during the 

qualifier inference process. Our work aims to solve this 

problem in the flow-insensitive qualifier inference 

process. Therefore, it can be seen as an improvement of 

flow-insensitive qualifier inference. 

In this paper, we formalized a flow-insensitive 

qualifier inference system for a source language allowing 

type casts, and showed the problem of losing qualifier 

information caused by type casts in CQual and proposed 

a simple idea to solve this problem. 

 

 

 

 Definition 7 Qualifier inference system: 

   ( )  
                                       (Var )    

  

  fresh
                                        (Int )  

   

( )    [ ]
    

 

: ( )   

n :  int   

: '   

: . :  (

q

q

q

q

q

q

q q

q

qq

q q

x dom

q

embed t

x x

q

e

x t

x

e q

 



 













ђ

ђ

ђ

ђ

1 1 2 2 3 3 1 

1 2 2

')  

:  ( )   :  

:

:    fr

       (Lam )

 (App )

  
                            (Ref )             

   

     
         

esh   

( ) :  ( )  

   
:  

    

 

q

q q

q

q

q

q q

q

q

q

q

q

q

q

e q e

e e

e q

ref e q ref

e q ref

 

    







 











 ђ ђ

ђ

ђ

ђ

ђ

1 2

1 2

1 2

1 2

                (Deref )
 

 [ ]
                    (Let )      

 
      (Assign )

 
   

( )    

* :  

:   : '

let  in : '  

:  ( )  : '   '  

: : '

:
     

  

q

q

q q

q

q

q

q

q

q

q q

q

q

q

q

q

q

e

e e

x e e

e q ref e

e e

e

x





 



   











 



 









ђ

ђ ђ

ђ

ђ ђ

ђ

ђ

c

c

' ( )   
    (Cast )   

                        (Ann

'
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 Definition 8 Constraint resolution rules: 
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