

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 116-121 Wu Xian, Huang Yan

116
Computer and Information Technologies

Real-Time and interactive browsing of massive mesh models

Xian Wu, Yan Huang*

School of Computer Science and Technology, Shandong University, Jinan, China

Received 1 March 2014, www.tsi.lv

Abstract

We present an efficient method for out-of-core construction and real-time interaction of massive mesh models. Our method uses face

clustering on an octree grid to simplify and build a Level-of-Detail (LOD) tree for the model. Each octree node leads to a local LOD

tree. All the top layers of the local LOD trees are combined together to make the basis of the global LOD tree. At runtime, the LOD

tree is traversed top down to choose appropriate local LOD trees given the current viewpoint parameters. The system performance

can be dramatically improved by using hierarchical culling techniques such as view-frustum culling and back-face culling. The

efficiency and scalability of the approach is demonstrated with extensive experiments of massive models on current personal

computer platforms.

Keywords: massive mesh model, out-of-core, level-of-detail, mesh simplification, culling

* Corresponding author e-mail: yan.h@sdu.edu.cn

1 Introduction

3D mesh models are dominant in computer graphics.

Applications employing meshes include movies, games,

computer aided design, simulation, art and history etc.

Today with the fast development of 3D acquisition,

modelling and simulation technologies, we have much

more complex and accurate mesh models. For instance,

mesh models of gigabytes size are not uncommon

nowadays.

In the last several decades, the performance of CPU

and GPU has improved tremendously. However, the

memory bandwidth especially disk bandwidth grows

much slower. Therefore the bottleneck lies on the fact

that our processor has to wait for the data stored on disk.

There is a wide range of simplification methods and

multiresolution models have been proposed to solve this

problem, but most of them fail to perform either scalable

simplification or efficient viewpoint dependent

visualization of massive models.

Our contribution of this work is to find a solution for

real-time and interactive browsing of massive models on

personal computer platforms. In human visual system, the

sensitivity to details is inversely proportional to the

distance between the view point and the observed point.

Thus we can construct a hierarchy of multiple resolution

representations of the original model. At run-time, we

dynamically and adaptively select the needed level-of-

detail (LOD). We build LOD trees through hierarchical

face clustering. Our algorithm reveals an out-of-core

nature, since we use an octree data structure to partition

the model and build the local LOD tree for each octree

node. Then we combine all the top layer of the local LOD

trees and take it to build the global LOD tree. When in

real-time browsing, we mainly interact with the global

LOD tree and use it as an entry point to access the

corresponding local LOD trees. Frustum culling and

backface culling were used to accelerate the interaction

speed. By combining a large set of technologies, our

system shows good performance, better visual results,

and a highly scalable architecture.

2 Related work

The research on interactive processing of complex

models has over 30 years’ history [1, 2]. The traditional

approaches focus on how to reduce data complexity,

manage data organization and utilize the new hardware

technology [3]. In recent years, due to the widespread use

of massive data sets, no single method could provide

satisfying solution. A number of state-of-the-art systems

utilizing different sets of technologies have been

proposed to tackle this issue.

LOD based mesh visualization. LOD is useful

because it is able to adjust the appropriate approximation

given some viewing parameters [4]. For example, the

Quick-VDR system [5, 6] represents the model as a

clustered hierarchy of progressive meshes (CHPM) [7]. It

uses the cluster hierarchy for coarse-grained selective

refinement and progressive meshes for fine-grained local

refinement. The Adaptive TetraPuzzles (ATP) system [8]

uses a regular conformal hierarchy of tetrahedra to

spatially partition the model. Each tetrahedral cell

contains a precomputed simplified version of the original

model, which is constructed off-line during a fine-to-

coarse parallel out-of-core simplification of the surface

contained in diamonds.

Real-time ray tracing. Some other systems diverge

from the normal rasterization approach by incorporating a

real-time ray tracing algorithm. By using spatial

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 116-121 Wu Xian, Huang Yan

117
Computer and Information Technologies

indexing, ray queries can be determined in logarithmic

time. The OpenRT real-time ray tracer [9, 10] uses a two-

level kd-tree hierarchy as spatial index. It also

incorporates a custom memory management subsystem to

deal with scenes larger than physical memory.

The volumetric approach. All the above systems

assume that the multiresolution models are triangle-based

or point-based. But the Far Voxels [11] system adopts a

volumetric approach which uses small volume clusters to

represent local datasets. By using a coarser granularity in

the LOD structure, the cost of data management, traversal

and occlusion culling can be reduced dramatically. Tian

proposes Adaptive Voxels system [12] based on the Far

Voxels system to make use of a novel adaptive sampling

method to generate LOD models.

3 Mesh simplification

Mesh simplification is the cornerstone of LOD tree

construction. The decimation methods can be classified

into two major categories: clustering and incremental

decimation. Vertex clustering and face clustering are two

major clustering methods. The incremental decimation

can have operators such as vertex removal, edge collapse,

half-edge collapse etc. We choose face clustering to do

mesh simplification for several reasons. First, it is much

more efficient to use a clustering algorithm than an

incremental decimation one. Second, face clustering

provides better visual results than vertex clustering.

Third, it is natural to pick face region as the unit not only

in LOD tree construction but also in the real-time and

interactive browsing of the model.

Suppose the initial mesh model contains N triangles.

The overall framework of our algorithm is as follows:

FIGURE 1 Face clustering algorithm

We use a k-means based clustering to do the region

growing process. When the K clusters are settled, we

merge all the triangles inside one cluster into one super

face. We call it super face because it is bounded by the

boundary edges and is usually not flat. The effect of face

clustering on an example mesh is demonstrated in Figure

2. The original mesh, the clustering result and the face

merging result are shown in Figure 2. Looking at Figure

2c carefully, we find that two adjacent super faces

normally shares more than one edge. This is a subtle

aspect which can affect the overall performance of the

whole system. Not significantly in this picture, but

imagine if we have a model of millions of triangles and

clusters it into thousands of super faces. Then we’ll see

large super faces with lots of small edges jagged together.

FIGURE 2 Face clustering example

The way to solve this is to do edge merging. We

merge those edges that are shared by two adjacent super

faces to ensure that only on edge exists between two

adjacent upper faces. The process is described as follows:

After merging all the triangles, we mark each vertex

which is shared by three or more than three super faces as

an anchor vertex. Since we need at least three vertices to

determine a face region, we require every super face to

have at least three anchor vertices. If a super face does

not meet this requirement, we just randomly pick a

certain number of non-anchor vertices to be anchor

vertices. Finally, the boundary edges of super faces are

determined by those anchor vertices. Sequentially

connecting those anchor vertices will lead to “boundary-

straightened” super faces (see Figure 3).

FIGURE 3 Edge merging

4 Multiresolution model

In this paper, we build a Level-of-Detail tree based

interactive browsing system of the massive mesh model.

We propose a novel approach to LOD tree construction

We use an octree structure to partition the original

model to support out-of-core processing. Each local LOD

tree corresponds to an octree partition region. We control

the octree depth to make the memory usage of each local

LOD tree construction under a predefined upper limit.

We combine all the top layer of local LOD trees and take

it as the bottom layer to construct the global LOD tree.

We control the height of all the local LOD trees so that

the construction of the global LOD tree can fit in

memory. The overall structure of the LOD hierarchy is

shown in Figure 4.

By organizing our data in this way, we sort of make a

distinction between model’s overall look and model’s

local region display. We can use the global LOD tree to

support interactive display of the whole model. When the

user is interested in some particular area, the

corresponding local LOD trees can be loaded into

memory to explicitly show the focused region. The global

LOD tree serves as an entry point to find and load the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 116-121 Wu Xian, Huang Yan

118
Computer and Information Technologies

local LOD trees. Thus the global LOD tree plays a central

role in the whole interaction period. During the loading

and recycling of the local LOD trees, we can use

scheduling policies based on user viewpoint to optimize

the overall performance.

FIGURE 4 The structure of Local and Global LOD trees

5 Construction and serialization of LOD trees

5.1 OCTREE PARTITIONING

We use an octree data structure to partition the original

model. We distribute the vertices and triangles of the

model according to the following rules:

1) To vertex: we distribute it to its corresponding

octree cell.

2) To triangle: since each triangle has three vertices,

there are generally three cases:

- If three vertices all fall into the same cell, then the

corresponding cell is the one contains this triangle.

- If two of them fall into the same cell, then the

corresponding cell is the one contains this triangle.

- If the three vertices belong to three different cells,

we use the first vertex’s containing cell to have the

triangle.

Figure 5 shows an example for the 2D analogy of

octree partition. The red number gives each vertex it’s

appearing order in the triangle, and the blue number

inside each triangle represents the number of the cell

containing this triangle. During the partitioning process,

we also compute each triangle’s area, barycenter, normal

and store them in disk files for later use.

FIGURE 5 Example of 2D analogy for Octree partition

5.2 LOCAL LOD TREE CONSTRUCTION

Once we have done octree partitioning, we construct a

local LOD tree for each octree node. Taking all the

triangles of one octree node as input, we use K-means

based face clustering algorithm to obtain a new simplified

representation made up of K super faces to approximate

the original one. Then we take those super faces as input

and use face clustering again to get an even more

simplified model. By continuingly doing so, we will get a

hierarchy of multiresolution models. Each super face is

derived by merging the sub faces it contains. We include

this inheritance relationship to build a Level-of-Detail

tree structure.

5.3 GLOBAL LOD TREE CONSTRUCTION

For each local LOD tree, we only keep the top layer in

memory. The top layer is the simplified representation of

the original model in the corresponding spacial region.

After constructing local LOD trees for all the octree

nodes, we combine all the top layers of those local LOD

trees to form a complete simplified representation for the

whole model. And we use this layer as the bottom layer

to construct the global LOD tree.

There exists some freedom in choosing the octree

depth and the height of the local LOD tree. But each

octree node must contain at most some maximum number

of triangles to make sure that the memory is sufficient in

local LOD tree construction. Also, the height of the local

LOD tree must be high enough so that when all the local

LOD trees’ top layers were combined together, there

remains sufficient memory to build the global LOD tree.

5.4 SERIALIZATION OF LOD TREES

We need to design a format to represent a LOD tree, such

that it can be stored in disk, loaded to memory and

interpreted efficiently for real-time viewing. This is

achieved through serialization. It is the process of

converting an object into a writable format that can be

persisted or transported. The complement of serialization

is deserialization, which restores an object from a stream.

In real-time browsing, we need to load the local LOD

trees frequently, so finding an efficient way to do

serialization/deserialization is critical.

We use a DFS-based approach for its simplicity to

storing the tree structure and it only requires one scan and

a small extra stack to do deserialization.

6 View-dependent rendering

We will use the constructed LOD trees to support real-

time and interactive browsing of the massive mesh

model. The browsing system first loads the global LOD

tree. Each level of the global LOD tree represents a

certain degree of approximation to the whole model.

Given the current viewpoint, we use the model’s

projected screen space area to choose the suitable level to

render. Because the Global LOD tree is resident in

memory, we can efficiently doing the traversal and

rendering. When the user moves its viewpoint to some

particular region of the model, the node of the Global

LOD tree cannot provide sufficient accuracy. We have to

load the corresponding local LOD tree which represents

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 116-121 Wu Xian, Huang Yan

119
Computer and Information Technologies

the viewer’s interested region and select certain level

according to the projected screen space area.

Due to the limited size of field-of-view, when we are

focused on some particular part of the model, the other

parts of the model either are out of the sight or are far

enough. In practice, we only need to load several Local

LOD trees at the same time. So we can allocate a buffer

to contain the currently loaded Local LOD trees. If the

viewpoint moves and the buffer is full, we can remove

old Local LOD trees and load new Local LOD trees.

Because viewers always move their sight in a continuous

way, we can optimally remove the Local LOD tree that is

furthest to our current viewpoint.

FIGURE 6 Data access framework

Figure 6 shows the whole system’s data access

framework. The global LOD tree is always in memory

and acts as the entry point for accessing the local LOD

trees. We have a buffer of size n to contain the currently

loaded local LOD trees. A scheduler loads local LOD

trees from the disk and removes local LOD trees from the

memory if the buffer is full

6.1 VISIBILITY CULLING

Determining the visible parts of the scene is an important

graphics problem. It is both inefficient and incorrect to

render objects that are unseen. We have to remove those

surfaces that are hidden from the viewer. Visibility

culling [13] is the process of computing the visible subset

of a scene. There are typically three culling techniques:

view-frustum culling, back-face culling and occlusion

culling. Occlusion culling is mainly used in scenes that

contain many models. Because our focus here is on single

massive mesh model, we only use view-frustum culling

and back-face culling to accelerate our algorithm.

6.2 VIEW-FRUSTUM CULLING

Figure 7 shows a typical camera setup. Models or parts of

models outside the frustum cannot be seen by the viewer.

Because our LOD tree node represents a super face, we

need to test whether this super face is outside the frustum.

FIGURE 7 View-frustum

In practice, we use the bounding box approach. When

we build the LOD tree hierarchically, we also compute

the combined bounding box for each node from its

children bounding box. This process is quite efficient and

visibility test of box against frustum is also easy.

6.3 BACK-FACE CULLING

For a solid opaque object, the back of it is hidden from

the viewing ray. Culling primitives that lie on the backs

of objects can almost reduce half of the scene geometry

to be rendered. Here, we use a clustered backface culling

algorithm based on the normal cone [14]. The normal

cone is represented by a central cone normal and a cone

angle.

Like in Figure 8, we compute the normal cone for

each tree node. To every current viewpoint, we also have

a viewing normal cone. By comparing these two normal

cones we can determine whether the node is back facing

or not as show in Figure 9. To find an exact normal cone

for a surface patch is a computational geometry problem

and is rather slow. Instead, we use a bounding box

approach which is fast and approximates well to the exact

normal cone. The idea is that a bounding box of all the

normal Ni is constructed. The cone normal is defined to

be the vector from the origin to the centre of the

bounding box. The direction from the origin to the eight

corners of the bounding box will have eight angles with

the cone normal. We take the largest one as the cone

angle.

FIGURE 8 The left subfigure shows one node containing 4 triangles, the

right subfigure shows the corresponding normal cone

FIGURE 9 The left subfigure shows the viewing normal cone, the right

subfigure shows its relation with one node’s normal cone

7 Experimental results

7.1 PREPROCESSING

All the experiments were done on a Lenovo PC with

2.83GHz Intel Core 2 Quad CPU Q9500 processors, 4.0

GB of RAM. We have tested a number of massive

models. The Figure 10 shows the four models we used

for testing our system

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 116-121 Wu Xian, Huang Yan

120
Computer and Information Technologies

Lucy

Sphere

Armadillo

Venus

FIGURE 10 Four test models

From Table 1 and Table 2, we can see that our tested

models contain tens of millions of and even hundreds of

millions of triangles. The model venus has size of over

11GB. The octree partitioning process takes four and a

half hours. The construction of LOD takes about six

hours. The time used for pre-processing is acceptable

since we only have to do it once. Once these LOD trees

are built, we simple use these structures in later real-time

browsing.

Our algorithm uses face clustering to do mesh

simplification. Below, we show some simplified

representations of several models in their global LOD

tree layers in Figure 11.

From Figure 11, we can see that the simplification

algorithm is effective even we simplify the model to only

several hundreds of nodes. We compare our algorithm

with the Adaptive Voxels system proposed by Tian [12].

Because our algorithm mainly deals with manifold

surfaces, we test our system using different models. But

we can still compare the two algorithms when the

models’ sizes were at the same size level.

1126 nodes

1919 nodes

2709 nodes

861 nodes

FIGURE 11 Some simplified representations of test models

Table 3 gives the numerical comparisons of our

method and the Adaptive Voxels method. Our tested

model venus is roughly 77% of the size of the Boeing

777 model. The pre-processing time used in our method

is about 25% of the Adaptive Voxels method. The disk

space usage is also much smaller in our method. Further,

our algorithm is quite scalable and can be easily made

parallel. The octree partitioning process and the local

LOD tree construction can use parallel computing to

largely accelerate the processing. But the Adaptive

Voxels method uses BSP tree to construct the scene

graph. The structure is intensely correlated, so it is not

suitable for parallel computing.

TABLE 1 Numeric results of pre-processing

Model #Vertices #Triangles Size (GB) Maximum Memory (MB)

Lucy 14,027,872 28,055,742 1.05 900

Sphere 31,457,282 62,914,560 2.55 180

Armadillo 44,280,834 88,561,664 3.48 700
Venus 135,430,146 270,860,288 11.49 400

TABLE 2 Numeric results of pre-processing

Model
Octree LocalLOD GlobalLOD

Time(min) depth layers Time(min) layers Time(s)

Lucy 27.82 2 3 43.63 4 0.35
Sphere 61.96 3 3 84.93 4 7.19

Armadillo 85.59 3 4 121.81 4 2.16

Venus 273.24 4 5 370.40 4 1.01

TABLE 3 Numerical comparisons

 Model
Faces

(Million)

Pre-processing

Time (min)
Size (GB)

Adaptive
Voxels

Boeing
777

350 2,729 49.4

Our
Method

Venus 270 643 28.2

7.2 REAL-TIME AND INTERACTIVE BROWSING

We devised a set of inspection paths to verify the real-

time performance of our system. We include the typical

tasks such as rotation, translation and scale. We also

consider rapid changes from overall scenes to some

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 116-121 Wu Xian, Huang Yan

121
Computer and Information Technologies

specific model regions. The window size is 1024×1024,

the pixel tolerance for each projected node size is 1 pixel.

The numeric results are shown in Table 4. The column 4

gives the system setup time. And the last two columns

give the average frame per second without and with

culling techniques.

From Table 4 we can see that all the average numbers

of FPS with culling are above 18. In reality, humans take

actions normally three to five times per second. Our

system satisfies the real-time interaction rates. The last

two columns of Table 4 shows that, by using hierarchical

culling techniques, the system can save almost two fifth

of the time. The average FPS of the Adaptive Voxels

system is 8. Our system shows a significant improvement

in the real-time performance. Another advantage is that

our system is particularly efficient at viewing the local

regions of the model since we use an optimal scheduling

policy to load and recycle the local LOD trees thus

minimizing the data access time.

TABLE 4 Numeric results for real-time rendering

Model Resolution Pixel Error Setup Time Avg FPS (No Culling) Avg FPS (With Culling)

Lucy 1024×1024 1 1.57 16 24

Sphere 1024×1024 1 2.57 13 22
Armadillo 1024×1024 1 3.12 13 21

Venus 1024×1024 1 4.86 12 18

8 Conclusions and future work

In this paper, we build an LOD tree based real-time and

interactive browsing system for massive mesh models.

By using octree partition and face clustering, we

construct the local LOD trees and the global LOD tree to

provide an efficient out-of-core data access framework.

We have tested on a set of massive mesh models and

obtained good experimental results.

In the future, improvements could be made to our

system. For instance, our current system has not exploited

the parallelism inherent in components of the algorithm,

such as octree partitioning and local LOD tree

construction. We can also use data compression

techniques to further reduce the data to be stored in disk

and to be loaded to memory.

Acknowledgement

This work is supported by the National Natural Science

Foundation of China (Grant No. 61303083), NSFC Joint

Fund with Guangdong under Key Project (Grant No.

U1201258) and the Scientific Research Foundation for

the Excellent Middle-Aged and Youth Scientists of

Shandong Province of China (Grant No. BS2011DX017).

References

[1] Kasik D J, Manocha D, Slusallek P 2007 IEEE Computer Graphics

and Applications 27(6) 17-19

[2] Gobbetti E, Kasik D, Yoon S 2008 Technical strategies for massive
model visualization Proceedings of the 2008 ACM symposium on

Solid and physical modeling ACM 405-15
[3] Dietrich A, Gobbetti E, Yoon S-E 2007 IEEE Computer Graphics

and Applications 27(6) 20-34

[4] Luebke D P 2003 Level of detail for 3D graphics Morgan-
Kaufmann

[5] Yoon S E, Salomon B, Gayle R, Manocha D 2004 IEEE Computer
Society 67(14) 131-8

[6] Yoon S E, Salomon B, Gayle R, Manocha D 2005 IEEE

Transactions on Visualization and Computer Graphics 11(4) 369-
82

[7] Hoppe H. 1996 Progressive meshes Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques ACM

99-108
[8] Cignoni P, Ganovelli F, Gobbetti E 2004 ACM Transactions on

Graphics (TOG) 23(3) 796-803

[9] Wald I, Purcell T J, Schmittler J, Benthin C, Slusallek P 2003

Realtime Ray Tracing and its use for Interactive Global

Illumination In Eurographics State of the Art Reports
[10] Wald I, Dietrich A, Slusallek P 2004 An Interactive Out-of-Core

Rendering Framework for Visualizing Massively Complex Models
Rendering Techniques (Proceedings of the Eurographics

Symposium on Rendering) 81–92

[11] Gobbetti E, Marton F 2005 ACM Transactions on Graphics (TOG)
24(3) 878-85

[12] Fenglin T, Hua W, Dong Z, Bao H. 2010 Adaptive voxels:
interactive rendering of massive 3D models The Visual Computer

26(6-8) 409-19

[13] Akenine-Möller T, Haines E, Hoffman N. 2011 Real-time
rendering [3rd], CRC Press 14 660-70

[14] Shirmun L A, Abi‐ Ezzi S S 1993 The cone of normals technique
for fast processing of curved patches Computer Graphics Forum

Blackwell Science Ltd 12(3) 261-72

Authors

Xian Wu, born in 1988, Huainan, Anhui, China

University studies: master student, school of computer science and technology, Shandong University.

Scientific interest: computer graphics.

Huang Yan, born in 1974, Tongling, Anhui, China

Current position, grades: associate professor in the school of computer science and technology, Shandong University.
Scientific interest: mainly in large scale 3D data visualization, intelligent multimedia data analysis.

http://www.researchgate.net/researcher/8939817_Wei_Hua
http://www.researchgate.net/researcher/33266765_Zilong_Dong
http://www.researchgate.net/researcher/7880243_Hujun_Bao

