

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 135-142 Shi Shaobo, Yue Qi, Wang Qin

135
Information and Computer Technologies

FPGA based accelerator for parallel DBSCAN algorithm

Shaobo Shi, Qi Yue, Qin Wang*

School of Computer and communication engineering, University of Science and Technology Beijing

Received 1 January 2014, www.tsi.lv

Abstract

Data mining is playing a vital role in various application fields. One important issue in data mining is clustering, which is a process

of grouping data with high similarity. Density-based clustering is an effective method that can find clusters in arbitrary shapes in

feature space, and DBSCAN (Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise) is a basic

one. With the tremendous increase of data sizes, the processing time taken by clustering algorithms can be several hours or more. In

recent years, FPGA has provided a notable accelerating performance in data mining applications. In this paper, we study parallel

DBSCAN algorithm and map it to FPGA based on the task-level and data-level parallelism architecture. Experimental results show

that this accelerator can provide up to 86x speedup over a software implementation on general-purpose processor and 2.9x over a
software implementation on graphic processor.

Keywords: Data mining, Clustering, Parallel DBSCAN, FPGA, Hardware Accelerator

*
 Corresponding author - E-mail:337816437@qq.com

1 Introduction

Clustering is an effective approach of retrieving useful

patterns from raw data sets. The process of clustering is

to group data into different clusters so that objects in the

same cluster have high similarity. And clustering is an

important data mining tool that has applied in many

areas. DBSCAN is an effective density-based clustering

method, which is proposed by Martin [1]. Compared with

other clustering algorithms, DBSCAN has some obvious

advantages such as requiring minimal domain

knowledge, being able to discover clusters in arbitrary

shapes, being robust in removing noise and outliers, and

having a good efficiency on large databases.

However, performing DBSCAN algorithm in practice

is limited by the fact that the performance of general

processors is improving at slower rate comparing to

rapidly growing data set size. For this reason, a preferable

method of accelerating executing speed is to make an

algorithm parallelized. Some researchers proposed

parallel DBSCAN algorithm and mapped it to distributed

parallel computing platform, and achieve a near-linear

speedup performance [2, 5]. However, this solution is not

energy efficient since distributed parallel computing

platform requires high power consumption.

Field-programmable gate arrays (FPGAs) are used as

user-customized computing engines for accelerating a

wide range of applications. The high-end FPGAs are

characterized with enormous amount of logic gates,

abundant on-chip memory and large capacity external

storage, flexible programmability and lower power

consumption. With these features, users can utilize

multiple operation-levels and high memory access

bandwidth for specific applications. Thus, we take FPGA

as hardware platform and study the mapping from

parallel DBSCAN algorithms to FPGA to get a higher

speedup performance in this paper.

Mapping a parallel DBSCAN algorithm to FPGA

should consider two issues. The first one is how to fully

exploit parallel DBSCAN algorithm with the high

flexibility of FPGA structure. In addition, the second is

how to eliminate data dependencies existing in parallel

algorithm. The contributions of this paper are

summarized as follows:

 We propose a hardware architecture based on task-

level and data-level parallelism, which fully exploit

the bit-level parallelism provided by FPGA.

 We design a data reused pipeline structure to

eliminate the extra memory access caused by the data

dependencies in parallel algorithm.

 Based on previous work, we propose a more robust

parallel algorithm. which can avoid wrong clustering

results in some special conditions.

 To the best of our knowledge, it is the first work of

implementing a parallel DBSCAN algorithm on

reconfigurable hardware. Compared to the sequential

software implementation on Intel general processor,

our accelerator can achieve80x speedup. Besides, we

can get a 2.9x speedup over the similar parallel

implementation on Nvidia graphic processor.

The rest of this paper is organized as follows. In

section2, we review the previous work on parallel

DBSCAN implementations and hardware accelerations

for the data mining applications. We introduce the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 135-142 Shi Shaobo, Yue Qi, Wang Qin

136
Information and Computer Technologies

original DBSCAN algorithm and propose complete

robust parallel DBSCAN algorithm in section3. In section

4, the accelerator hardware architecture and the specific

design are presented. The performance model and

experimental result are discussed in section 5. Section 6

is conclusion.

2 Related Work

Parallel DBSCAN implementation: Several works for

parallelizing DBSCAN algorithm are proposed.

PDBSCAN [2], whose parallel partitions are based on

regionalism, is an implementation on the master-slave

mode computer cluster [3] maps the sequential kernel of

DBSCAN to a higher level parallel programming

environment [4] is another implementation focus on

parallelization of DBSCAN through simple distance

function. In [5], author presented an improved work to [1]

that mapped parallel algorithm to the MapReduce

framework. All of these researches are based on the

region partitions, and use shared-nothing architecture to

run parallel algorithm. Meanwhile, the parallelism of

these methods is too low, so they are not suitable for

being implemented on FPGA.

CUDA-DClust is implemented with GPU [6], which

is a fine-grained parallel DBSCAN algorithm and it is

different from the above mentioned works. Moreover,

this work can avoid the boundary processing and load

unbalance issues caused by region partitions. Due to

these advantages, CUDA-DClust is a good reference and

comparable object for our work. However, due to the

long communication delay between different Streaming

Multiprocessors in GPU, the data dependency in parallel

DBSCAN algorithm will increase the memory access

times and thus influence the performance when it mapped

on the GPU. The experiments in [7, 8] point out a fact

that implementation of a customized data path in FPGA

can provide a superior performance over GPU in the

presence of data dependency. Therefore, the optimized

and customized hardware architecture for parallel

DBSCAN appears very necessary. Compared with the

software implementation of DBSCAN in parallel

computers system and GPU, our approach is far better

than these methods in both performance and power

consumption.

Hardware accelerator for data mining applications:

There have been many prior researches on hardware

implementation of data mining algorithms. In [9], K-

means clustering is implemented as a reconfigurable

accelerator, which simplified the distance calculation.

However, K-means is essentially different from

DBSCAN since it is a partitioned algorithm. In [10], the

kernel of HOP algorithm is implemented on FPGA

platform. Although HOP is a kind of density-based

clustering algorithm, the final goal of this algorithm is to

find the nearest densest neighbours rather than the

transitive closure computation in DBSCAN. In addition,

those works did not work on the parallelism from the

view point of algorithm. In [11], hardware architecture

for Decision Tree Classification (DTC) algorithm is

described.

Other hardware implemented clustering algorithms

are summarized as follows. The Apriori algorithm, a

popular association rule mining algorithm, is accelerated

by systolic array architecture in [12]. And its improved

work with bitmapped CAM is proposed in [13]. The

HAPPI architecture is proposed in [14] with the pipeline

and hashing methodology to resolve the bottleneck of

Apriori. In [15] the FP-Growth algorithm is firstly

mapped to a systolic tree structure by mimicking the

internal memory layout of software algorithm.

3 Sequential DBSCAN algorithm and Parallel model

3.1 SEQUENTIAL DBSCAN ALGORITHM

The original DBSCAN algorithm is a sequential

clustering algorithm [1]. The key idea of DBSCAN is that

the data density within a small area in the feature space

must exceed a given threshold, i.e., the neighbourhood of

each point in a cluster must contain a minimum number

of points. To make a clear presentation of the proposed

method in this paper, we introduce some basic definitions

of DBSCAN as follows:

1. () :{ | (,) }EpsN p is a set q D dist p q Eps 

() ()

2. :

()Eps q Eps q

Directly density reachable A point p is directly
density reachable from a point q in the set of

point D if p N and Numb N MinPts




 

1 1

1

3. :

,..., , ,n n i

i i

Density reachable A point p is density reachable
from a point q in the set of point D if there is a chain
of point s p p p q p p such that p D and
p is directly density reachable from p

 

  


4. :

. .

Density connected A point p is density connected
to a point q o D such that both p and q are density

reachable from o w r t Eps and MinPts in D

 
 

5. : :
:

, : .
:

, : .

p

Cluster A cluster C is a non empty subset of D iff
Maximality

p q D if p C and q D then also q C
Connectivity

p q C p is density connected to q in D



    

  

()6. : .Eps oCore point o is a Core point if N MinPts

()7. :

.
Eps pBorder point p is a Border point if N MinPts

and p is Directly density reachable from a Core point





()8. :

.

Eps pNosie point p is a Nosie point if N MinPts
and p is not Directly density reachable from any
Core point




With these definitions, we show the simple sequential

proceeds of algorithm as follows:

S1: For arbitrary unclassified point PD,

S2: Retrieve(P), If P is core point, mark with

 ClusterID;

S3:For the unclassified or noise point Q ()EPSN P ,

 store them into SeedStack, mark with ClusterID;

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 135-142 Shi Shaobo, Yue Qi, Wang Qin

137
Information and Computer Technologies

S4: While SeedStack not empty, for the top element

 P _top of SeedStack

S5: Repeat S2-S4

S6: If D have unclassified point, goto S2

The main task of DBSCAN is retrieve function (step

S2) for find the neighbourhood of each point and finds

the transitive closure relationship. The complexity of

DBSCAN is O(N2) without index structure, and is

O(Nlog(N)) if with a multidimensional index structure.

We run the sequential non-index algorithm in Intel Vtune

Performance Analyzer Tool, the result shows that CPI

rate is 0.761 and the Data Reference per instruction

retired (Load/Store) is 0.742, according to the

MineBench in [16]; DBSCAN is compute-intensive and

memory-intensive. Our hardware architecture is designed

for non-index DBSCAN, but it can be transplanted to fit

the DBSCAN with index structure easily.

3.2 PARALLEL MODEL BASED ON THE

TempCluster

From sequential algorithm, DBSCAN can start at an

arbitrary point, which is unclassified to find the other

points that fulfil the maximum density connectivity.

Intuitively, we can unroll this loop so that DBSCAN can

start at multiple unclassified points. This is the basic

parallel concept that different clusters with respective

ClsterIDs can be clustered simultaneously. These clusters

are identical with the concept of ‘Chain’ proposed in [6].

Compared to the definition of cluster, a chain is a set of

data object belong to a common density-based cluster that

do not have to meet maximalist. In other words, a chain

can be considered as a tentative cluster with a tentative

clusterID. Different chains may have collisions that mean

these chains belong to the same cluster, so the collision

check mechanism is necessary.

Our hardware parallel model is based on chain, but

we have a robust collision check mechanism that is

described later. In order to distinguish ‘Chain’ from each

other, we call it as TempCluster (TC). The definition of

TempCluster is:

TempCluster is a subset C D, if and only if :
p,q C : p is Density - connected from q each other.


 

1 2 3

1 2 3

{ },
{ }

n

i i i i in

Clusters D : C C C C
C D : TC TC TC TC




Thus, the clustering results of D are composed of one

or several iC and each iC is made up of one or several

ijTC . Therefore, we can devise the customized data path

for the parallel generation of multiple ijTC with different

start points.

In [6], the valid condition of collision is the point in

an arbitrary TC should be marked already has a different

TempClusterID (TCID). This means that this collision

point has been marked by other TCs (step S2), so this

point should not be store into SeedStack of local TC (step

S3). However, the collision check criteria proposed in [6]

may generate wrong clustering results under special

condition. As shown in Figure1(a), the black point is this

special collision point. This point is not a core point for

its neighbour points are less than Minpts. TC1 and TC2

should not be merged into one cluster, because they

cannot satisfy the density connected condition according

to definition4, and. If the TC1 and TC2 are merged into

one cluster, the clustering effectiveness of DBSCAN will

be impacted seriously. We propose a robust collision

check criterion as follows:

1 2
1 2

, 1 2,
1, 1,

2;
2, 2 ,

Let TempCluster and TempCluster be
found in D, TempCluster TempCluster
belong to same cluster if and only if :
o D o TC TC and o
o is border point in TC and o is core point
in TC
o is border point in TC and o is core p



   

1;
3, TC1 2.

oint
in TC
o is core point in both and TC

This check method utilizes the concept of border

property and core property, and can exclude the special

situation that two clusters just share with a border point.

As shown in fiugre1(b), the black point is a valid

collision point. Therefore, our collision check criteria can

avoid occurrence of special phenomenon described

above. In our later implementation, the collision check

procedure must check the border value and core value in

each point data. A detailed description of our check

method is presented in alogrithm2 of Section4.

TC1

Collision Point

TC2

Non-Collision Point

TC1

TC2

FIGURE 1 a) Invalid Collision, b) Valid Collision

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 135-142 Shi Shaobo, Yue Qi, Wang Qin

138
Information and Computer Technologies

4 Hardware architecture

As Figure 2 show, DBSCAN algorithm accelerator

consists of FPGA chip(XC6VLX240T) and external

memory which includes DDR3 SDRAM. The accelerator

loads data from host PC to SDRAM through PCIe in

DMA mode, and user can read the clustered data when

the algorithm done from accelerator in the same way. We

mapped parallel hardware architecture to FPGA. Some

key module such as Processing Elements Array (PE

Array) is responsible for perform the parallel

TempCluster expansion. PE Array control unit is used as

manages the control signal, and update the candidate data

in PE Array.

And other modules such as memory interface (PCI-I

interface, DDR3 SDRAM interface) and I/O FIFO are

responsible for memory access and data buffer.

Input FIFO

PE
Array

BRAM Group

PE Array Control Unit

Candidate Data Mem

Output FIFO

D
at

a/
C

o
n

tr
o

l
B

u
s

FPGA

D
D

R
3

 S
D

R
A

M
 S

O
D

IM
M

D
D

R
3

 M
em

 In
te

rf
ac

e

PCI-E Interface

PC Interface

FIGURE 2 Architecture of Parallel DBSCAN accelerator

The raw data store in the SDRAM we call it Spatial

Data (SPData), for example, one 2-dimision data occupy

64bits and is composed of several properties data. The

format of this data is shown in the figure 3. The ID data

has 20 bits that can support the representation of 610 data

amount. Core point and neighbour point properties use 1

bit respectively, and ClusterID use 9 bits. The stack

property also use 1 bit. We also call the high-order 32bits

data as data property. Each coordinate value is a 16 bit

fixed point data. For the high dimension data, we only

need expend the data property.

ID
Cluster

Property
X Y

20 bit 12 bit 16 bit 16 bit

Neigh ClusterIDCore

1 bit 1 bit 9 bit

Stack

1 bit

FIGURE 3 Data format in SDRAM

4.1 OPTIMIZED PE ARRAY DESIGN STRATEGY

FOR COLLISION CHECK

We adopt multiple PEs to perform multiple

TempCluster calculation in parallel pattern, and single PE

is just responsible for one TempCluster. In GPU

architecture, it is a similar processing method for parallel

algorithm. However, data dependencies caused by

collision check can decrease the performance when

parallel DBSCAN executes on GPU. Left part of figure 4

demonstrates how data dependency affects GPU parallel

implementation. In GPU, all of SMPs

(StreamingMultiProcessors) share data through the

Global Memory (GDDR SDRAM), and the SPData are

stored in the Global Memory. Each SMP is responsible

for a TC. For a simple example, SPData2 is read by

SMP1, and meet the ClusterID marking condition

through calculation. Thus the SPData2 should return its

latest ID property to SMP1 in order to check whether it

has been marked by other SMPs. And in this procedure is

performed by an atomic operation provided by GPU

software, other SMPs cannot access SPData2 before read

operation of SMP1complete. Since the situation that all

SMPs have a large latency to Global Memory and

memory access conflicts caused by data dependency,

parallel DBSCAN algorithm is not so efficient when

mapped to GPU architecture.

Aimed at this problem, a solution in hardware design

that minimizes the overhead of data dependency is to

make collision check between PEs in local memory and

avoid memory access conflicts. And the abundant register

resource and design flexibility of FPGA make this

solution possible. As right part of Figure4 shows, the

latest ID property SPData0 can be transmitted from PE1

to PE2 directly through the buffer. If SPData0 in PE2

should be checked, we can obtain its latest state from

buffer without reading SDRAM. And this buffer can only

be written by PE1 and read by PE2, so we can avoid

memory access conflicts. The more detailed operation-

level design will be described later.

...

...

...

Collision Check flow Comparison
between GPU and FPGA Arch

Memory

...

SMP1

SMP2

SPData0

SPData1

SPData2

SPData4

SPDataN

...

...

...

GDDR3
SDRAM

Colliison Check

PE1SPData0

SPData1

SPData2

SPData4

SPDataN

...

Colliison Check

...

...

......

GPU FPGA

DDR3
SDRAM

W/R

W/R

PE2

Buffer

FIGURE 4 Difference between GPU and FPGA in Memory allocation

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 135-142 Shi Shaobo, Yue Qi, Wang Qin

139
Information and Computer Technologies

4.2 PE ARRAY DESIGN BASED ON DATA REUSES

AND TASK-LEVEL PARALLELISM

We propose a pipeline PE array based on the data reuse,

to eliminate the extra memory access caused by collision

check. As the Figure 5 show, This PE array can work in a

fully task-level parallel mode. In the seed expansion, PE

will calculate distance with every SPData in Dataset

(with the index structure, is the all of the region data that

fulfil the query condition). Thus, this is make the data

reuse possible. We design register files in each PE, called

SpatiData Reg. And the SPData from SDRAM will the

transfer to every PE cycle by cycle in the form of data

streaming. PE#1 is responsible for the load data from

SDRAM, other PEs load data from previous PE’s

SpatiData Reg. Lastly, PE#N will write clustered data

back to SDRAM.

PE#1 PE#2 PE#N

St
re

am
 R

eg

St
re

am
 R

eg

Sp
at

iD
at

a
B

uf

Sp
at

iD
at

a
B

uf

Sp
at

iD
at

a
B

uf

Controller

OutputFIFO

InputFIFO

PE#3

Sp
at

iD
at

a
B

uf
Merge

Unit
Merge

Unit

St
re

am
 R

eg

...

...

...

Merge
Unit

...

...Collision Table Collision Table Collision Table

FIGURE 5 Architecture of PE array

The output of PE is the property data which has been

compared with Eps, and its high-order 32-bits in SPData.

We insert register files between each PE to buffer these

output data, called Stream Reg. For the fact that PE#i+1

always fall behind PE#i one cycle, so buffering output

one cycle can play an synchronous role when each PE

perform collision check. The LableCheck Unit of PE#i+1

can get the output of PE#i simultaneously, and make

collision check according to the criteria mentioned

before. The algorithm executed on the PE Array showed

in Algorithm 1.

Algorithm1. Parallel Algorithm for PE Array

Parallel DBSCAN Algorithm for PE array in one Candidate corepoint Calc:

Input: SpatialDataset D,ε,Minpts

Output: Clusterd SpatialDataSet ,CollisionSignal

Initi: Generate Seed

 

[N], TCID[N]

Dirtribute Dataset to PE#i one by one

For i=1:N PE#i Parallelly Do:

 ExpandTempCluster(Seed[i],TCID[i],ε,Minpts,Dataset,ClusterDataset);

 receive clusterd Dataset from Pre StreamReg;

 send clusterd Dataset to Next StreamReg;

 If PE#i return false

 Generate new seed to PEi;

 mark candidate point as Nosie;

 Else PE#i has Collision PE# X

 send TCID[i] and TCID[X] to Controller unit

 Update Collision Matrix;

 End IF

End For
This collision check method make PE obtained the

latest data, and should generate collision signal without

pipeline break off. From this figure we can see that the

PE2 to PE N are likely to generate the collision signal,

and the generation is simultaneous. And the i-th PE has a

potential collision signal with anyone among the first PE

and (i-1)-th PE. Therefore, each PE must have a structure

to record the collision signal. Due to the different amount

of potential collision signal in each PE and the small

storage amount, we adopt the register file to implement

the function of collision signal record, we called it

Collision Table. Besides the collision signal record unit,

we also need a unit to process these collision signals, and

it is called Merge Unit. The function of Merge Unit is to
update the cluster property of every point with the new

ClusterID according to the collision table.

4.3 PE DESIGN BASED ON DATA-LEVEL

PARALLELISM

Since the high bandwidth of SDRAM, each PE can obtain

several SPData in one clock, and PE can perform data-

level computation. For the data which arrive at successive

clock have no data dependency, so we can map sequential

process procedure in pipeline. The DCU Array performs

parallel Euclidean distance calculation between seed data

and SPData, the distance formula is:

2

1

)(
j

K

j

ji
SDCDD 



, where CD=CandiData,

SD=SPData, K – dimension.

The Figure 6 shows the PE structure. The parallelism

degree depends on the data width and the SDRAM
bandwidth. DCU array are composed with k subtractions

(adder logic), k multipliers and one adder to get a

distance.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 135-142 Shi Shaobo, Yue Qi, Wang Qin

140
Information and Computer Technologies

Candi
Buf

DCU Array
Eps

CMP
Acc
Unit

Candi Stack

ID/CID
Buf

Control
Unit

Min
CMP

Joint
Unit

Label&Check
Unit

Neigh FIFO

SpatiData
Buf Pre SReg

MergeUnit

Next Candi Data

Notfull Signal

Input Data

Temp Labeled
Data

Pre PE

Next PE

Distance

Output Data

Empty Signal Collision Table

FIGURE 6 Architecture of PE

This is a three stages pipeline structure that can

produce distance every cycle, and the multiplier is used

IP core provided by Xilinx. For other module, Eps comp

module, Acc Unit, MinComp, LabelCheck Unit are

respectively complete the function of S22 to S23 in

Algorithm 2.

Algorithm2. PE Array Expand Algorithm in each PE

Parallel ExpandChain in each PE:
Input: Seed ,PointSet ,ε ,Minpts
Output: Clusterd PointSet ,CollisionSignal

ExpandKernel(Seed,PointSet,TCID)
Initi phase:
S1:P=PointSet[][];NeighborCount =0;
Calc phase:
S2:For i=0 to sizeof(PointSet) step DCUArraySize Do:
 S21:DCUArray parallelly Do:
 Q=PointSet[i];
 d=Distance[seed][Q];
 S22:EpsCMP and AccUnit parallelly Do:
 if d ε then
 h=atomicAcc(NeighborCount);
 end if
 S23:if h Minpts then
 if(Stac




k not full)

 store the ID of Q to CandiStack;
 else
 mark the stackbit of point with 1;
 end if
 CheckandMark(Q,TCID);
 else
 store the ID of Q to NeighborStack;
 end if
 end for
 S24:if h Minpts then
 mark seed as CorePoint;
 else



 mark seed as Noise;
S3:while(CandiStack not empty) do:
 newseed = pop(CandiStack);
 send newseed to controllel unit;
 repeat S1-S2;
 end while

ID/CID Buf is to buffer the property data before put

them into LabelCheck Unit in pipeline. Candi Stack store

the effective point, but limited to the capacity of BRAM

on FPGA, the stack bit in overflow data must be marked

as 1 to indicate this point is belong to these PE, and will

be write to the DDR3 SDRAM. The detail executed

process of PE is shown in Algorithm 2.

5 Experiment and Evaluation

5.1 PERFORMANCE MODEL

The total run time is composed of data transfer between

host pc and accelerator, clustering time on FPGA and the

time of merging TC into complete cluster through

collision signal. And run time of clustering on FPGA is

the most consuming time part.

Performance Model:

Number of PE:

Frequency of FPGA: MHz

Data amount: points

Data width per each point: Byte

Input Bandwidth for each PE:

p

f

M

w

bandwi

_

Byte/s

Pipeline Depth of PE:D

2* 1
 =(() (+D+2*P))actual comp

dth

M m w
t floor

p bandwidth f


 

This is an ideal model, P is the number of PE, and M

is the amount of SPData. Data width for each SPData is

w, and B is input bandwidth of PE#1. And f is frequency

of FPGA. D is the depth in single PE. The DBSCAN

hardware architecture was implemented on a Xilinx

ML605 board, which includes a Virtex-6 LX240T FPGA,

a 512MB DDR3 SDRAM. The peak bandwidth of

SDRAM can achieve 6.4GB/s.

5.2 COMPARISON WITH PC

In order to evaluate the DBSCAN accelerator

performance, we run sequential DBSCAN algorithm on

Intel Corei7 920 quad-core CPU, 2.7GHz and 4GB

RAM. The test data set is from SpatialDataGenerator[17].

We generate 10 groups 2 dimension data set from 100k to

1000k points, each data set contains 10 clusters, Minpts is

4, Eps is 0.02. The software implementation is written in

C. For the simple control of SDRAM access, frequency

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 135-142 Shi Shaobo, Yue Qi, Wang Qin

141
Information and Computer Technologies

of FPGA is set to 200MHz (maxim speed shows in

Table1).

TABLE 1 Resource utilization

Data

Dim

Number

of PE
Slices BRAM Frequency

2 40 32445(85%) 14400Kb(96%) 260.586MHz

8 20 30300(80%) 14400Kb(96%) 197.570MHz

Thus, PE#1 can receive 256bits in one cycle since

single 2-dimension SPData is 64bits. LX240T can

support 40 PEs for 2-dimension SPData as Table1 show.

Runtime comparison as Figure7 show and the average

speed up over CoreI7 is 86x to 72x with 40 PEs by our

accelerator.

5.3 COMPARISON WITH GPU

Although the bandwidth of GDDR3 is ten times of

DDR3, and the frequency of GPU is higher than FPGA,

we also compared the parallel DBSCAN performance

between GPU and FPGA. The test data set is provided by

the author of [6], which is 8-dimension data and single

SPData is 256 bits. Frequency of FPGA is set to 100MHz

in order to get 2 SPData from SDRAM in one cycle.

Runtime is shown in Figure 8, the average speed up over

GPU is 2.9x to 1.5x with 20 PEs. Meanwhile, the power

consumption of GTX280 is 236w, and the Xilinx ML605

FPGA board is 15w. So our accelerator has a far better

performance per Watt.

1 2 3 4 5 6 7 8 9 10

x 10
5

10
0

10
1

10
2

10
3

10
4

10
5

Number of Points

R
u

n
 t

im
e
 o

n
 P

C
 a

n
d

 F
P

G
A

CoreI7

LX240T

FIGURE 7 Runtime Comparison with Corel7

0 2 4 6 8 10 12

x 10
5

10
-1

10
0

10
1

10
2

10
3

10
4

Number of Points

R
u

n
 t

im
e

 o
n

 G
P

U
 a

n
d

 F
P

G
A

GTX280

LX240T

FIGURE 8 Runtime comparison with GTX280

6 Conclusions

In this paper, we have designed the hardware architecture

for accelerating DBSCAN, which is a commonly used

data mining algorithm. According to the deficiency of

previous work, we propose a more robust collision check

mechanism in parallel DBSCAN algorithm. Hardware

architecture we designed is based on the task-level and

data-level parallelism. We have mapped this architecture

to a FPGA-based accelerator. When compared with the

PC and GPU implementation, experiment results show

that our architecture can yield up to 86x and 2.9x speedup

respectively.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(2) 135-142 Shi Shaobo, Yue Qi, Wang Qin

142
Information and Computer Technologies

References

[1] Ester M, Kriegel H P, Sander J, Xu X 1996 A densitybased

algorithm for discovering clusters in large spatial databases

Knowledge Discovery and Data Mining (KDD-96)

http://dns2.icar.cnr.it/manco/Teaching/2005/datamining/articoli/K
DD-96.final.frame.pdf

Xu X, Jager J, Kriegel H P 2002A fast parallel clustering
algorithm for large spatial databases High Performance Data

Mining 263-290 http://dl.acm.org/citation.cfm?id=383194

[2] Arlia D, Coppola M 2001 Experiments in parallel clustering with
dbscan Proceedings of the 7th International Euro-Par Conference

Manchester on Parallel Processing, ser. Euro-Par ’01. London
UK: Springer-Verlag 326–31

[3] Brecheisen S, Kriegel H-P, Pfeifle M 2006 Parallel Density-Based

Clustering of Complex Objects Advances in Knowledge Discovery
and Data Mining, Lecture Notes in Computer Science 3918 179-

188

[4] He Y, Tan H, Luo W, Mao H, Ma D, Feng S, Fan J 2011 MR-

DBSCAN: An Efficient Parallel Density-Based Clustering

Algorithm Using MapReduce The 17th IEEE International
Conference on Parallel and Distributed Systems (ICPADS) 473-80

[5] Bohm C, Noll R, Plant C, Wackersreuther B 2009 Density-based

Clustering using Graphics Processors Proceedings of the 18th
ACM conference on Information and knowledge management 661-

70
[6] Cope Band Cheung P Y K, Luk W, Howes L 2010 IEEE

Transactions on Computers 59(4) 433-48

[7] Asano S, Maruyama T, Yamaguchi Y 2009 Performance
comparison of FPGA, GPU and CPU in image processing IEEE

International Conference on Field Programmable Logic and
Applications 2009 (FPL’2009) 126-31

[8] Estlick M, Leeser M, Szymanski J, Theiler J 2001 Algorithmic

Transformations in the Implementation of K-means Clustering on
Reconfigurable Hardware Proceedings of the Ninth Annual IEEE

Symposium on Field Programmable Custom Computing Machines

2001 (FCCM ’01)
[9] Choudhary P, Choudhary A 2005 Design of a hardware

accelerator for density based clustering applications. Proceedings
of the International Conference on Application-specific Systems,

Architectures and Processors (ASAP), July 2005

[10] Narayanan R, Honbo D, Zambreno J, Memik G, and Choudhary A
2007 An FPGA Implementation of Decision Tree Classification

Proceedings of the IEEE International Conference on Design,
Automation and Test in Europe (DATE), April 2007

[11] Baker Z K, Prasanna V K Efficient 2005 Hardware Data Mining

with the Apriori Algorithm on FPGAs Proceedings of the
Thirteenth Annual IEEE Symposium on Field Programmable

Custom Computing Machines 2005 (FCCM ’05), 2005
[12] Baker Z, Prasanna V 2006 An architecture for efficient hardware

data mining using reconfigurable computing system The 14th

Annual IEEE Symposium on Field Programmable Custom
Computing Machines 2006 (FCCM’06) 2006

[13] Wen Y-H, Huang J-W, Chen M-S 2008IEEE Trans. Knowledge
and Data Eng. 20(6) 784-95

[14] Sun S, Zambreno J 2011 IEEE Transactions on Parallel and

Distributed Systems 22(9) 1497-505
[15] Choudhary A N, Honbo D, Kumar P, Ozisikyilmaz B, Misra S,

Memik G 2011 Accelerating data mining workloads: current
approaches and future challenges in system architecture design.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery 1(1) 41-54
[16] http://www.rtreeportal.org/ Oct 2013

Authors

Shaobo Shi , 08 1985, Beijing, China

Current position, grades: Ph.D
University studies: University of Science and Technology Beijing
Scientific interest: Micro architecture, VLSI design, Data mining, FPGA accelerator design
Publications: Shaobo Shi, Yue Qi, Qin Wang. Accelerating Intersection Computation in Frequent Itemset Mining with FPGA. The 15th IEEE
International Conference on High Performance Computing and Communications, 2013.

Yue Qi, 11 1975, Beijing, China

Current position, grades: Ph.D, Lecturer
University studies: University of Science and Technology Beijing
Scientific interest: Micro architecture, VLSI design, Wireless Sensor Networks

Qin Wang, 01 1961, Beijing, China

Current position, grades: Ph.D, Professor
University studies: University of Science and Technology Beijing
Scientific interest: Micro architecture, VLSI design, Wireless Sensor Networks

http://link.springer.com/book/10.1007/11731139
http://link.springer.com/book/10.1007/11731139
http://link.springer.com/bookseries/558
http://www.rtreeportal.org/

