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Abstract 

Data mining is playing a vital role in various application fields. One important issue in data mining is clustering, which is a process 

of grouping data with high similarity. Density-based clustering is an effective method that can find clusters in arbitrary shapes in 

feature space, and DBSCAN (Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise) is a basic 

one. With the tremendous increase of data sizes, the processing time taken by clustering algorithms can be several hours or more. In 

recent years, FPGA has provided a notable accelerating performance in data mining applications. In this paper, we study parallel 

DBSCAN algorithm and map it to FPGA based on the task-level and data-level parallelism architecture. Experimental results show 

that this accelerator can provide up to 86x speedup over a software implementation on general-purpose processor and 2.9x over a 
software implementation on graphic processor. 
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1 Introduction 

 
Clustering is an effective approach of retrieving useful 

patterns from raw data sets. The process of clustering is 

to group data into different clusters so that objects in the 

same cluster have high similarity. And clustering is an 

important data mining tool that has applied in many 

areas. DBSCAN is an effective density-based clustering 

method, which is proposed by Martin [1]. Compared with 

other clustering algorithms, DBSCAN has some obvious 

advantages such as requiring minimal domain 

knowledge, being able to discover clusters in arbitrary 

shapes, being robust in removing noise and outliers, and 

having a good efficiency on large databases.  

However, performing DBSCAN algorithm in practice 

is limited by the fact that the performance of general 

processors is improving at slower rate comparing to 

rapidly growing data set size. For this reason, a preferable 

method of accelerating executing speed is to make an 

algorithm parallelized. Some researchers proposed 

parallel DBSCAN algorithm and mapped it to distributed 

parallel computing platform, and achieve a near-linear 

speedup performance [2, 5]. However, this solution is not 

energy efficient since distributed parallel computing 

platform requires high power consumption. 

Field-programmable gate arrays (FPGAs) are used as 

user-customized computing engines for accelerating a 

wide range of applications. The high-end FPGAs are 

characterized with enormous amount of logic gates, 

abundant on-chip memory and large capacity external 

storage, flexible programmability and lower power 

consumption. With these features, users can utilize 

multiple operation-levels and high memory access 

bandwidth for specific applications. Thus, we take FPGA 

as hardware platform and study the mapping from 

parallel DBSCAN algorithms to FPGA to get a higher 

speedup performance in this paper. 

Mapping a parallel DBSCAN algorithm to FPGA 

should consider two issues. The first one is how to fully 

exploit parallel DBSCAN algorithm with the high 

flexibility of FPGA structure. In addition, the second is 

how to eliminate data dependencies existing in parallel 

algorithm. The contributions of this paper are 

summarized as follows: 

 We propose a hardware architecture based on task-

level and data-level parallelism, which fully exploit 

the bit-level parallelism provided by FPGA. 

 We design a data reused pipeline structure to 

eliminate the extra memory access caused by the data 

dependencies in parallel algorithm. 

 Based on previous work, we propose a more robust 

parallel algorithm. which can avoid wrong clustering 

results in some special conditions. 

 To the best of our knowledge, it is the first work of 

implementing a parallel DBSCAN algorithm on 

reconfigurable hardware. Compared to the sequential 

software implementation on Intel general processor, 

our accelerator can achieve80x speedup. Besides, we 

can get a 2.9x speedup over the similar parallel 

implementation on Nvidia graphic processor.  

The rest of this paper is organized as follows. In 

section2, we review the previous work on parallel 

DBSCAN implementations and hardware accelerations 

for the data mining applications. We introduce the 
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original DBSCAN algorithm and propose complete 

robust parallel DBSCAN algorithm in section3. In section 

4, the accelerator hardware architecture and the specific 

design are presented. The performance model and 

experimental result are discussed in section 5. Section 6 

is conclusion. 

 

2 Related Work 

 

Parallel DBSCAN implementation: Several works for 

parallelizing DBSCAN algorithm are proposed. 

PDBSCAN [2], whose parallel partitions are based on 

regionalism, is an implementation on the master-slave 

mode computer cluster [3] maps the sequential kernel of 

DBSCAN to a higher level parallel programming 

environment [4] is another implementation focus on 

parallelization of DBSCAN through simple distance 

function. In [5], author presented an improved work to [1] 

that mapped parallel algorithm to the MapReduce 

framework. All of these researches are based on the 

region partitions, and use shared-nothing architecture to 

run parallel algorithm. Meanwhile, the parallelism of 

these methods is too low, so they are not suitable for 

being implemented on FPGA. 

CUDA-DClust is implemented with GPU [6], which 

is a fine-grained parallel DBSCAN algorithm and it is 

different from the above mentioned works. Moreover, 

this work can avoid the boundary processing and load 

unbalance issues caused by region partitions. Due to 

these advantages, CUDA-DClust is a good reference and 

comparable object for our work. However, due to the 

long communication delay between different Streaming 

Multiprocessors in GPU, the data dependency in parallel 

DBSCAN algorithm will increase the memory access 

times and thus influence the performance when it mapped 

on the GPU. The experiments in [7, 8] point out a fact 

that implementation of a customized data path in FPGA 

can provide a superior performance over GPU in the 

presence of data dependency. Therefore, the optimized 

and customized hardware architecture for parallel 

DBSCAN appears very necessary. Compared with the 

software implementation of DBSCAN in parallel 

computers system and GPU, our approach is far better 

than these methods in both performance and power 

consumption. 

Hardware accelerator for data mining applications: 

There have been many prior researches on hardware 

implementation of data mining algorithms. In [9], K-

means clustering is implemented as a reconfigurable 

accelerator, which simplified the distance calculation. 

However, K-means is essentially different from 

DBSCAN since it is a partitioned algorithm. In [10], the 

kernel of HOP algorithm is implemented on FPGA 

platform. Although HOP is a kind of density-based 

clustering algorithm, the final goal of this algorithm is to 

find the nearest densest neighbours rather than the 

transitive closure computation in DBSCAN. In addition, 

those works did not work on the parallelism from the 

view point of algorithm. In [11], hardware architecture 

for Decision Tree Classification (DTC) algorithm is 

described.  

Other hardware implemented clustering algorithms 

are summarized as follows. The Apriori algorithm, a 

popular association rule mining algorithm, is accelerated 

by systolic array architecture in [12]. And its improved 

work with bitmapped CAM is proposed in [13]. The 

HAPPI architecture is proposed in [14] with the pipeline 

and hashing methodology to resolve the bottleneck of 

Apriori. In [15] the FP-Growth algorithm is firstly 

mapped to a systolic tree structure by mimicking the 

internal memory layout of software algorithm.  

 

3 Sequential DBSCAN algorithm and Parallel model 

 

3.1 SEQUENTIAL DBSCAN ALGORITHM  

 

The original DBSCAN algorithm is a sequential 

clustering algorithm [1]. The key idea of DBSCAN is that 

the data density within a small area in the feature space 

must exceed a given threshold, i.e., the neighbourhood of 

each point in a cluster must contain a minimum number 

of points. To make a clear presentation of the proposed 

method in this paper, we introduce some basic definitions 

of DBSCAN as follows: 

1. ( ) :{ | ( , ) }EpsN p is a set q D dist p q Eps   

( ) ( )

2. :

( )Eps q Eps q

Directly density reachable A point p is directly
density reachable from a point q in the set of

point D if p N and Numb N MinPts




 

1 1

1

3. :

,..., , ,n n i

i i

Density reachable A point p is density reachable
from a point q in the set of point D if there is a chain
of point s p p p q p p such that p D and
p is directly density reachable from p

 

  


4. :

. .

Density connected A point p is density connected
to a point q o D such that both p and q are density

reachable from o w r t Eps and MinPts in D

 
 

5. : :
:

, : .
:

, : .

p

Cluster A cluster C is a non empty subset of D iff
Maximality

p q D if p C and q D then also q C
Connectivity

p q C p is density connected to q in D



    

  

( )6. : .Eps oCore point o is a Core point if N MinPts

( )7. :

.
Eps pBorder point p is a Border point if N MinPts

and p is Directly density reachable from a Core point





( )8. :

.

Eps pNosie point p is a Nosie point if N MinPts
and p is not Directly density reachable from any
Core point


  

With these definitions, we show the simple sequential 

proceeds of algorithm as follows: 

S1: For arbitrary unclassified point PD,  

S2: Retrieve(P), If P is core point, mark with  

      ClusterID;  

S3:For the unclassified or noise point Q ( )EPSN P ,  

     store them into SeedStack, mark with ClusterID; 
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S4: While SeedStack not empty, for the top element  

      P _top of SeedStack 

S5: Repeat S2-S4 

S6: If D have unclassified point, goto S2 

 

The main task of DBSCAN is retrieve function (step 

S2) for find the neighbourhood of each point and finds 

the transitive closure relationship. The complexity of 

DBSCAN is O(N2) without index structure, and is 

O(Nlog(N)) if with a multidimensional index structure. 

We run the sequential non-index algorithm in Intel Vtune 

Performance Analyzer Tool, the result shows that CPI 

rate is 0.761 and the Data Reference per instruction 

retired (Load/Store) is 0.742, according to the 

MineBench in [16]; DBSCAN is compute-intensive and 

memory-intensive. Our hardware architecture is designed 

for non-index DBSCAN, but it can be transplanted to fit 

the DBSCAN with index structure easily. 

 

3.2 PARALLEL MODEL BASED ON THE 

TempCluster 

 

From sequential algorithm, DBSCAN can start at an 

arbitrary point, which is unclassified to find the other 

points that fulfil the maximum density connectivity. 

Intuitively, we can unroll this loop so that DBSCAN can 

start at multiple unclassified points. This is the basic 

parallel concept that different clusters with respective 

ClsterIDs can be clustered simultaneously. These clusters 

are identical with the concept of ‘Chain’ proposed in [6]. 

Compared to the definition of cluster, a chain is a set of 

data object belong to a common density-based cluster that 

do not have to meet maximalist. In other words, a chain 

can be considered as a tentative cluster with a tentative 

clusterID. Different chains may have collisions that mean 

these chains belong to the same cluster, so the collision 

check mechanism is necessary.  

Our hardware parallel model is based on chain, but 

we have a robust collision check mechanism that is 

described later. In order to distinguish ‘Chain’ from each 

other, we call it as TempCluster (TC). The definition of 

TempCluster is: 

 

TempCluster is a subset C D, if  and only if : 
p,q C : p is Density - connected from q each other.


   

1 2 3

1 2 3

{ ...... },
{ ...... }

n

i i i i in

Clusters D : C C C C
C D : TC TC TC TC




 
 

Thus, the clustering results of D are composed of one 

or several iC and each iC is made up of one or several 

ijTC . Therefore, we can devise the customized data path 

for the parallel generation of multiple ijTC  with different 

start points. 

In [6], the valid condition of collision is the point in 

an arbitrary TC should be marked already has a different 

TempClusterID (TCID). This means that this collision 

point has been marked by other TCs (step S2), so this 

point should not be store into SeedStack of local TC (step 

S3). However, the collision check criteria proposed in [6] 

may generate wrong clustering results under special 

condition. As shown in Figure1(a), the black point is this 

special collision point. This point is not a core point for 

its neighbour points are less than Minpts. TC1 and TC2 

should not be merged into one cluster, because they 

cannot satisfy the density connected condition according 

to definition4, and. If the TC1 and TC2 are merged into 

one cluster, the clustering effectiveness of DBSCAN will 

be impacted seriously. We propose a robust collision 

check criterion as follows: 

 

1 2
1 2

, 1 2,
1, 1,

2;
2, 2 ,

Let TempCluster  and TempCluster be
found in D, TempCluster  TempCluster
belong to same cluster if  and only if :
o D o TC TC and o
o is border point in TC and o is core point
in TC
o is border point in TC and o is core p



   

1;
3, TC1 2.

oint
in TC
o is core point in both and TC

 

 

This check method utilizes the concept of border 

property and core property, and can exclude the special 

situation that two clusters just share with a border point. 

As shown in fiugre1(b), the black point is a valid 

collision point. Therefore, our collision check criteria can 

avoid occurrence of special phenomenon described 

above. In our later implementation, the collision check 

procedure must check the border value and core value in 

each point data. A detailed description of our check 

method is presented in alogrithm2 of Section4. 

TC1

Collision Point

TC2

 

Non-Collision Point

TC1

TC2

 
FIGURE 1 a) Invalid Collision, b) Valid Collision 
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4 Hardware architecture 

 

As Figure 2 show, DBSCAN algorithm accelerator 

consists of FPGA chip(XC6VLX240T) and external 

memory which includes DDR3 SDRAM. The accelerator 

loads data from host PC to SDRAM through PCIe in 

DMA mode, and user can read the clustered data when 

the algorithm done from accelerator in the same way. We 

mapped parallel hardware architecture to FPGA. Some 

key module such as Processing Elements Array (PE 

Array) is responsible for perform the parallel 

TempCluster expansion. PE Array control unit is used as 

manages the control signal, and update the candidate data 

in PE Array. 

And other modules such as memory interface (PCI-I 

interface, DDR3 SDRAM interface) and I/O FIFO are 

responsible for memory access and data buffer. 
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FIGURE 2 Architecture of Parallel DBSCAN accelerator 

 

The raw data store in the SDRAM we call it Spatial 

Data (SPData), for example, one 2-dimision data occupy 

64bits and is composed of several properties data. The 

format of this data is shown in the figure 3. The ID data 

has 20 bits that can support the representation of 610  data 

amount. Core point and neighbour point properties use 1 

bit respectively, and ClusterID use 9 bits. The stack 

property also use 1 bit.  We also call the high-order 32bits 

data as data property. Each coordinate value is a 16 bit 

fixed point data. For the high dimension data, we only 

need expend the data property. 

ID
Cluster

Property
X Y

20 bit 12 bit 16 bit 16 bit

Neigh ClusterIDCore

1 bit 1 bit 9 bit

Stack

1 bit

 
FIGURE 3 Data format in SDRAM 

 

 

4.1 OPTIMIZED PE ARRAY DESIGN STRATEGY 

FOR COLLISION CHECK 

 

We adopt multiple PEs to perform multiple 

TempCluster calculation in parallel pattern, and single PE 

is just responsible for one TempCluster. In GPU 

architecture, it is a similar processing method for parallel 

algorithm. However, data dependencies caused by 

collision check can decrease the performance when 

parallel DBSCAN executes on GPU. Left part of figure 4 

demonstrates how data dependency affects GPU parallel 

implementation. In GPU, all of SMPs 

(StreamingMultiProcessors) share data through the 

Global Memory (GDDR SDRAM), and the SPData are 

stored in the Global Memory. Each SMP is responsible 

for a TC. For a simple example, SPData2 is read by 

SMP1, and meet the ClusterID marking condition 

through calculation. Thus the SPData2 should return its 

latest ID property to SMP1 in order to check whether it 

has been marked by other SMPs. And in this procedure is 

performed by an atomic operation provided by GPU 

software, other SMPs cannot access SPData2 before read 

operation of SMP1complete. Since the situation that all 

SMPs have a large latency to Global Memory and 

memory access conflicts caused by data dependency, 

parallel DBSCAN algorithm is not so efficient when 

mapped to GPU architecture.  

Aimed at this problem, a solution in hardware design 

that minimizes the overhead of data dependency is to 

make collision check between PEs in local memory and 

avoid memory access conflicts. And the abundant register 

resource and design flexibility of FPGA make this 

solution possible. As right part of Figure4 shows, the 

latest ID property SPData0 can be transmitted from PE1 

to PE2 directly through the buffer. If SPData0 in PE2 

should be checked, we can obtain its latest state from 

buffer without reading SDRAM. And this buffer can only 

be written by PE1 and read by PE2, so we can avoid 

memory access conflicts. The more detailed operation-

level design will be described later. 
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FIGURE 4 Difference between GPU and FPGA in Memory allocation 
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4.2 PE ARRAY DESIGN BASED ON DATA REUSES 

AND TASK-LEVEL PARALLELISM 

 

We propose a pipeline PE array based on the data reuse, 

to eliminate the extra memory access caused by collision 

check. As the Figure 5 show, This PE array can work in a 

fully task-level parallel mode. In the seed expansion, PE 

will calculate distance with every SPData in Dataset 

(with the index structure, is the all of the region data that 

fulfil the query condition). Thus, this is make the data 

reuse possible. We design register files in each PE, called 

SpatiData Reg. And the SPData from SDRAM will the 

transfer to every PE cycle by cycle in the form of data 

streaming. PE#1 is responsible for the load data from 

SDRAM, other PEs load data from previous PE’s 

SpatiData Reg. Lastly, PE#N will write clustered data 

back to SDRAM. 
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FIGURE 5 Architecture of PE array 

 

The output of PE is the property data which has been 

compared with Eps, and its high-order 32-bits in SPData. 

We insert register files between each PE to buffer these 

output data, called Stream Reg. For the fact that PE#i+1 

always fall behind PE#i one cycle, so buffering output 

one cycle can play an synchronous role when each PE 

perform collision check. The LableCheck Unit of PE#i+1 

can get the output of PE#i simultaneously, and make 

collision check according to the criteria mentioned 

before. The algorithm executed on the PE Array showed 

in Algorithm 1. 

 
Algorithm1. Parallel Algorithm for PE Array 

 
Parallel DBSCAN Algorithm for PE array in one Candidate corepoint Calc:

Input: SpatialDataset D,ε,Minpts

Output: Clusterd SpatialDataSet  ,CollisionSignal

Initi: Generate Seed

                           

[N], TCID[N]

Dirtribute Dataset to PE#i one by one

For i=1:N PE#i Parallelly Do:

   ExpandTempCluster(Seed[i],TCID[i],ε,Minpts,Dataset,ClusterDataset); 

   receive clusterd Dataset from Pre StreamReg;

   send clusterd Dataset to Next StreamReg; 

   If PE#i return false 

       Generate new seed to PEi;

       mark candidate point as Nosie; 

   Else PE#i has Collision PE# X

       send TCID[i]  and TCID[X] to Controller unit

      Update Collision Matrix;

   End IF 

End For  
This collision check method make PE obtained the 

latest data, and should generate collision signal without 

pipeline break off. From this figure we can see that the 

PE2 to PE N are likely to generate the collision signal, 

and the generation is simultaneous. And the i-th PE has a 

potential collision signal with anyone among the first PE 

and (i-1)-th PE. Therefore, each PE must have a structure 

to record the collision signal. Due to the different amount 

of potential collision signal in each PE and the small 

storage amount, we adopt the register file to implement 

the function of collision signal record, we called it 

Collision Table. Besides the collision signal record unit, 

we also need a unit to process these collision signals, and 

it is called Merge Unit. The function of Merge Unit is to 
update the cluster property of every point with the new 

ClusterID according to the collision table.  

 

4.3 PE DESIGN BASED ON DATA-LEVEL 

PARALLELISM 
 

Since the high bandwidth of SDRAM, each PE can obtain 

several SPData in one clock, and PE can perform data-

level computation. For the data which arrive at successive 

clock have no data dependency, so we can map sequential 

process procedure in pipeline. The DCU Array performs 

parallel Euclidean distance calculation between seed data 

and SPData, the distance formula is: 

2

1

)(
j

K

j

ji
SDCDD 



, where CD=CandiData, 

SD=SPData, K – dimension. 

 

The Figure 6 shows the PE structure. The parallelism 

degree depends on the data width and the SDRAM 
bandwidth. DCU array are composed with k subtractions 

(adder logic), k multipliers and one adder to get a 

distance.  
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FIGURE 6 Architecture of PE 

 

This is a three stages pipeline structure that can 

produce distance every cycle, and the multiplier is used 

IP core provided by Xilinx. For other module, Eps comp 

module, Acc Unit, MinComp, LabelCheck Unit are 

respectively complete the function of S22 to S23 in 

Algorithm 2.  
 

Algorithm2. PE Array Expand Algorithm in each PE  

Parallel ExpandChain in each PE:
Input: Seed ,PointSet ,ε ,Minpts
Output: Clusterd PointSet ,CollisionSignal
---------------------------------------------------------
ExpandKernel(Seed,PointSet,TCID)
Initi phase:  
S1:P=PointSet[][];NeighborCount =0;
Calc phase: 
S2:For i=0 to sizeof(PointSet)  step DCUArraySize Do:
      S21:DCUArray  parallelly Do:
                Q=PointSet[i];
                d=Distance[seed][Q];
      S22:EpsCMP and AccUnit parallelly Do:
                if d ε then
                    h=atomicAcc(NeighborCount);
                end if
      S23:if h Minpts then
                   if(Stac




k not full)

                       store the ID of Q to CandiStack;         
                   else
                        mark the stackbit of point with 1;
                   end if
                    CheckandMark(Q,TCID);
             else
                    store the ID of Q to NeighborStack;
      end if
    end for
    S24:if h Minpts then 
               mark seed as  CorePoint;
            else
   



            mark seed as Noise;
S3:while(CandiStack not empty) do:
               newseed = pop(CandiStack);
               send newseed to controllel unit;
               repeat S1-S2;
      end while     

 

ID/CID Buf is to buffer the property data before put 

them into LabelCheck Unit in pipeline. Candi Stack store 

the effective point, but limited to the capacity of BRAM 

on FPGA, the stack bit in overflow data must be marked 

as 1 to indicate this point is belong to these PE, and will 

be write to the DDR3 SDRAM. The detail executed 

process of PE is shown in Algorithm 2. 
 
 

5 Experiment and Evaluation 

 

5.1 PERFORMANCE MODEL 

 

The total run time is composed of data transfer between 

host pc and accelerator, clustering time on FPGA and the 

time of merging TC into complete cluster through 

collision signal. And run time of clustering on FPGA is 

the most consuming time part. 

Performance Model: 

-----------------------------------------------------

Number of PE: 

Frequency of FPGA:  MHz

Data amount:  points

Data width per each point:  Byte

Input Bandwidth for each PE: 

p

f

M

w

bandwi

_

Byte/s

Pipeline Depth of PE:D

2* 1
  =( ( ) ( +D+2*P))actual comp

dth

M m w
t floor

p bandwidth f


 

 

 

This is an ideal model, P is the number of PE, and M 

is the amount of SPData. Data width for each SPData is 

w, and B is input bandwidth of PE#1. And f is frequency 

of FPGA. D is the depth in single PE. The DBSCAN 

hardware architecture was implemented on a Xilinx 

ML605 board, which includes a Virtex-6 LX240T FPGA, 

a 512MB DDR3 SDRAM. The peak bandwidth of 

SDRAM can achieve 6.4GB/s. 

 

5.2 COMPARISON WITH PC 

 

In order to evaluate the DBSCAN accelerator 

performance, we run sequential DBSCAN algorithm on 

Intel Corei7 920 quad-core CPU, 2.7GHz and 4GB 

RAM. The test data set is from SpatialDataGenerator[17]. 

We generate 10 groups 2 dimension data set from 100k to 

1000k points, each data set contains 10 clusters, Minpts is 

4, Eps is 0.02. The software implementation is written in 

C. For the simple control of SDRAM access, frequency 
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of FPGA is set to 200MHz (maxim speed shows in 

Table1).  
 
TABLE 1 Resource utilization 

Data 

Dim 

Number 

of PE 
Slices BRAM Frequency 

2 40 32445(85%) 14400Kb(96%) 260.586MHz 

8 20 30300(80%) 14400Kb(96%) 197.570MHz 

 

Thus, PE#1 can receive 256bits in one cycle since 

single 2-dimension SPData is 64bits. LX240T can 

support 40 PEs for 2-dimension SPData as Table1 show. 

Runtime comparison as Figure7 show and the average 

speed up over CoreI7 is 86x to 72x with 40 PEs by our 

accelerator.  

 

5.3 COMPARISON WITH GPU 

 

Although the bandwidth of GDDR3 is ten times of 

DDR3, and the frequency of GPU is higher than FPGA, 

we also compared the parallel DBSCAN performance 

between GPU and FPGA. The test data set is provided by 

the author of [6], which is 8-dimension data and single 

SPData is 256 bits. Frequency of FPGA is set to 100MHz 

in order to get 2 SPData from SDRAM in one cycle. 

Runtime is shown in Figure 8, the average speed up over 

GPU is 2.9x to 1.5x with 20 PEs. Meanwhile, the power 

consumption of GTX280 is 236w, and the Xilinx ML605 

FPGA board is 15w. So our accelerator has a far better 

performance per Watt. 
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FIGURE 7 Runtime Comparison with Corel7 
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FIGURE 8 Runtime comparison with GTX280 

 

6 Conclusions 

 

In this paper, we have designed the hardware architecture 

for accelerating DBSCAN, which is a commonly used 

data mining algorithm. According to the deficiency of 

previous work, we propose a more robust collision check 

mechanism in parallel DBSCAN algorithm. Hardware 

architecture we designed is based on the task-level and 

data-level parallelism. We have mapped this architecture 

to a FPGA-based accelerator. When compared with the 

PC and GPU implementation, experiment results show 

that our architecture can yield up to 86x and 2.9x speedup 

respectively. 
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