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Abstract 

In this paper, we investigated the end-to-end performance of a dual-hop variable gain relaying system over mixed fading environment. 

In such environment, the wireless links of relaying system undergo different fading conditions, where one link is subject to the 

Nakagami-m fading, the other link is subject to the composite Nakagami-lognormal fading which is approximated by using mixture 

gamma fading model. Based on the cumulative distribution function of the end-to-end signal-to-noise ratio (SNR), some novel closed-

form expressions of the average end-to-end SNR, the outage probability, the symbol error rate and the ergodic capacity for the dual-

hop variable gain system are derived, respectively. Then, some approximate analysis and the diversity order are found based on the 

above new expressions in high SNR region. Finally, numerical and simulation results are shown to verify the accuracy of the theoretical 
analysis. 

Keywords: dual-hop relaying, mixed fading channels, mixture Gamma distribution, performance analysis 

 

1 Introduction 

 
Cooperative relaying transmission has emerged as a 

promising technique for extending coverage, enhancing 

connectivity, and saving transmitter power in wireless 

communications networks. In a cooperative relaying 

network, a source communicates with the destination via 

one or several intermediate terminals called relays. In the 

past few years, a great deal of attention has been devoted 

to study the performance analysis of cooperative relaying 

systems in term of outage probability (OP), average 

bit/symbol error rate (ABER/ASER) and ergodic capacity 

over different fading environments, such as Rayleigh, 

Nakagami-m, Rician, Weibull, Lognormal, Generalized 

Gamma and so on, e.g., [1-5] and the references therein. 

The common characteristic of these works is that they 

consider only multipath or shadowing fading channels. 

In a practical scenario, relaying nodes (R) are usually 

located in different geographical locations and at different 

distances with respect to the source node (S) and the 

destination node (D). The signal in one link may be in line 

of sight (LOS) situation and other links may be in NLOS 

situation, even in shadowing or composite 

multipath/shadowing situation. In the published literature, 

such scenario has been regarded as asymmetric or mixed 

fading models [6, 7]. On the contrary, the channel situation 

in [1-5] is regarded as symmetric fading models in which 

all the single-hop links experience the same fading 

conditions. So far, most previous works have considered 

the latter, only a few works have evaluated the former [5-

16]. Recently, there is an increasing research interest on 

the former. 
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In [8], we studied the performance of two-hop and 

multihop relaying links in random (i.e., mixed Rayleigh/ 

Nakagami-m) fading channels. The authors in [6] and [7] 

first studied the end-to-end performance of dual-hop AF 

relaying with both channel state information (CSI) based 

and fixed gain over mixed Rayleigh and Rician fading 

channels, respectively. After that, more cooperative 

relaying models are studied in mixed Rayleigh and Rician 

fading channels, for example, the dual-hop decode-and-

forward (DF) cooperative model in [9], the dual-hop AF 

cooperative model in [10], the repetition-based and 

opportunistic amplify-and-forward (AF) model in [11], the 

two-hop AF networks with beamforming in [12], and so 

on. In [13], the authors analysed the performance of dual-

hop AF relaying in mixed Nakagami-m and Rician fading 

channels. In [14,15], the authors studied the performance 

of a dual-hop DF system and an AF cooperative system 

under mixed Rayleigh and generalized Gamma fading 

channels, respectively. 

Despite these recent studies related to the analysis of 

AF or DF relaying over asymmetric fading channels, their 

fading condition is limited to the mixture of various 

multipath fading, i.e., Rayleigh/Rician, Rician/Nakagami-

m and Rayleigh/generalized Gamma fading. The 

performance of the cooperative networks has not as yet 

been widely studied under mixed multipath/shadowing 

fading conditions except [16, 17]. The authors in [16,17] 

investigated the performance of the dual-hop fixed gain 

relaying system over Nakagami/Generalized-K (KG) 

fading channels. Nevertheless, since the probability 

density function (PDF) of average signal-to-noise ratio 

(SNR) over KG fading channel includes modified Bessel 

functions, the outage probability and average SER in [16] 
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include Meijer’s G functions and some infinite-series 

representations. The end-to-end Moment generating 

function (MGF) in [17] includes Lommel function. Some 

expressions still keep complicated and intractable. 

Recently, the authors in [18] developed an alternative 

approach to approximate the Nakagami-lognormal (NL) 

distribution by using the mixture gamma (MG) 

distribution. This distribution avoids the above-mentioned 

problems, and some exact results obtained are possible by 

adjusting some parameters. To the best of our knowledge, 

there are few papers in performance analysis of 

cooperative system over mixed fading channels by using 

MG fading model. 

In this paper, we consider an asymmetric scenario of a 

dual-hop AF relaying system in a wireless propagation 

environment where multipath fading, shadowing and the 

propagation path loss occur simultaneously. The S−R 

(first-hop) and the R−D (second-hop) links experience 

Nakagami-m or NL fading, where the NL fading model is 

approximated by using MG fading model. The primary 

contributions of this paper are as follows: Firstly, some 

exact closed-form expressions of the average end-to-end 

SNR, the OP, the ASER and the ergodic capacity for the 

dual-hop system over mixed Nakagami/MG fading 

channels are derived, respectively. And then, some 

approximate analysis of the above performance is 

discussed and the diversity order is obtained in high SNR 

region. Finally, the numerical and simulation results are 

given to show the accuracy of the theoretical analysis. 

 

2 System and channel model 

 

We consider a classical wireless dual-hop variable gain 

relaying system consisting of S, D and R. The whole 

transmission is divided into two phase. In the first phase, 

S only transmits its signals to R, and in the second phase, 

R amplifies the received signal by a gain factor β and then 

forwards their amplified versions to D. Thus, the 

instantaneous end-to-end SNR, γSRD, at the destination can 

be expressed as in [1, 2]: 

2 2

1 1 0 2 2 0

2 2

2 2 0 0

( )( )

[( ) (1 )]
SRD

P h N P h N

P h N N






, (1) 

where P1 and P2 are the transmitted power at S and R 

respectively, |hi| is the fading amplitude of the ith-hop link, 

i∈{1,2}, N0 is the power of the additive white Gaussian 

noise component. If β is selected according to the 

instantaneous CSI assisted relay gain, then γSRD in 

Equation (1) can be re-expressed as in [1]: 

1 2

1 2( )
SRD

c

 


 


 
, (2) 

where γi =ρi|hi|2 is the instantaneous SNR of the ith-hop 

link, ρi=Pi/N0 denotes the un-faded SNR. In addition, exact 

γSRD is given by substituting c=1 when β2= 1/(P1|h1|2+N0), 

and well approximated at medium and high SNR by 

substituting c=0 when β2=1/(P1|h1|2). 

Note that due to the symmetry of γSRD in Equation (2) 

with respect to γ1 and γ2, the statistics of γSRD will be 

identical despite that the ith-hop link is subject to 

Nakagami-m or NL fading. In a practical scenario, it is 

possible that a mobile station at the edge of the cell 

communicates with the base station via one or more 

mobile/fixed relaying stations over mixed 

multipath/shadowing situation. 

If the ith-hop link experiences Nakagami-m fading, γi is 

a Gamma distributed variable with the PDF given in [19]: 

1
( ) ( ) exp[ ] ( )i i

i

m m

i i i i if m m m     
   , (3) 

where 
2

[ ]i i i i ih    E  is the average SNR of the ith-

hop link, mi is Nakagami-m fading parameter, E(∗) 

denotes the statistical expectation, Γ(∗) is the standard 

Gamma function. Due to capture the path-loss effect, we 

use the local mean power 0( )i id d   , d0 denotes the 

distance between S and D, di is the distance of the ith-hop 

link, and ε is the path-loss exponent. 

The cumulative distribution function (CDF) of γi, 

defined as 
0

( ) ( )F f x dx


     in [19], can be obtained as 

( ) 1 ( , ) ( )
i i i i iF m m m      , (4) 

where ( ; )    is the upper incomplete gamma function 

defined in [20]. 

When the ith-hop link experiences NL fading, γi is a 

composite Gamma-lognormal distribution variable with 

the PDF given by [19]: 

2

1

0

2

2

exp( ) 1
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( )( ) 2

(ln )
exp ,

2

i i

i

m m

i i i

m

i i i
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m m y
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m y y

y
dy



  


 






 




 
 
 


 (5) 

where μi and λi are the mean and the standard deviation of 

lognormal shadowing, respectively, λi=(ln10/10)σ, μi= 

lnΩi, σ denotes the standard deviation in dB. 

Since a closed-form expression of Equation (5) is not 

available in the published literature, the performance 

metrics of digital communication systems over composite 

NL distribution is intractable or difficult, some simple 

forms or approximations of Equation (5) have been given 

great attention recently, such as, KG distribution and MG 

distribution. Due to that KG distribution includes modified 

Bessel functions, some expressions of the performance 

metrics still keep mathematical complications, and further 

approximations have to be adopted. In order to avoid the 

above problems, we use MG distribution proposed by [18] 

to approximate the composite NL distribution in this 

paper. Thus, the PDF of γi can be expressed as: 
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1

1
( ) ( 2 ) exp( )i i

i

N m m

j i j ij
f Ca b     


  , (6) 

where 2 exp[ ( 2 )] ( ) ,im

j i j i i j i ia m w m t m       

exp[ ( 2 )]j i i j ib m t    , C is the normalization factor, 

defined as 
1

N

jj
C w


  , wj and tj are abscissas and 

weight factors for Gaussian-Hermite integration. wj and tj 

for different N values are available in [21, table (25.10)]. 

Based on the definition of the CDF, The CDF of γi over 

MG fading can be obtained as: 

1
( ) 1 ( 2 ) ( , )i

i

N m

j j i j ij
F Ca b m b   


   . (7) 

 

3 Performance analysis 

 

In this section, first we find the closed-form CDF of the 

end-to-end SNR for the dual-hop system, then derived the  

closed-form expressions of the average end-to-end SNR, 

the OP, the ASER and the ergodic capacity over mixed 

Nakagami-m/MG fading channels, respectively. Finally, 

some approximate analysis of the OP and the ASER is 

discussed and the diversity order is obtained in high SNR 

region. 

 

3.1 CDF OF END-TO-END SNR 

 

For the dual-hop system, assuming that the first-hop link 

is subject to Nakagami-m fading and the second-hop link 

is subject to NL fading, by using Equation (2), the CDF of 

γSRD can be expressed as in [6]: 

1 2 1 2( ) Pr( ) Pr[ ( ) ]
SRD SRDF x x c x           , (8) 

After applying some algebraic manipulations, 

Equation (8) can be rewritten as: 

1 2

2

0
( ) 1 [ ( ) ] ( )

SRD
F x F x x cx y f x y dy  



     , (9) 

where 
1
( )F   is the complementary CDF of γ1, which is 

defined as 
1 1
( ) 1 ( )F F     . According to Nakagami-m 

fading of the first-hop link, 
1
( )F   can be expressed by 

using Equation (4) as: 

1

2

1 1( ) [ , ( ( ) )] ( )F x m M x x cx y m      , (10) 

where 
1 1M m  . 

By substituting Equations (6) and (10) into Equation (9), 

and with the help of the series expression of ( ; )    

defined in [20, eq. (8.352.2)] when mi is an integer, and the 

binomial expansion defined in [20, eq. (1.111)], we can 

obtain the CDF of γSRD as: 

 

1 2

2

2

1 1
( ) 2

1 0 0 0

( ) 2 2

( ) 1 ( , , , )

( ) exp ( ) ( ) ,

SRD

m mN k
k m s j

i k s j

m s j

v

F x i k s j x

x c i x K i x cx



 
  

   

 

   

    
 


 (11) 

where ( ) ii M M   , ( ) 2 ii MM  , 
2i iM b  ,

2m s j    ,
 

2

2

2

1

( ) 22

2

( , , , )
!

s j k v

m k i

m s jv

i

C C Ca M
i k s j

b k





 
  , 

! [( )! !]i

jC j j i i   is the binomial coefficients, ( )K   is 

the second kind modified Bessel function of order α 

defined in [20, eq.(8.407.1)]. 

 

3.2 OUTAGE PROBABILITY 

 

The OP is an important performance measure that is 

commonly used to characterize a wireless communication 

system. It is defined as the probability that the 

instantaneous end-to-end SNR falls below a given 

threshold (γth), this is 
0

( )
th

outP f d


    , where ( )f

  is 

the PDF of the instantaneous SNR. Using (11), the OP of 

the dual-hop system over mixed fading channels can be 

obtained as: 

1 ( )
SRDout thP F   . (12) 

 

3.3 AVERAGE END-TO-END SNR  

 

The average end-to-end SNR is a useful performance 

measure serving as an excellent indicator of the overall 

system’s fidelity. The qth moment of the end-to-end SNR 

can be derived by using CDF as: 

1

0 0
( ) ( ) [1 ( )]

SRD SRD

q q qf d q F d        
 

    . (13) 

By using Equations (11) with c=0, which is analytically 

more tractable and with the help of [20, eq. (6.621.3)], 

Equation (13) can be re-expressed as: 

1 21 1

1 0 0 0

2 1 1 1

( , , , )

( )
[ , 0.5; 0.5; ]

( )

( )

( )

( )

m mN k

i k s

q

j

i

i

i k s j

i
F u u

i









 

   

  

 





 

 

 
, (14) 

where 

2

2 1

1 1 1

2 1

4 ( ) ( )
( , , , )

! ( 0.5)[ ( ) ]( )

s j k

m k i

m u

C C Ca qM u u
i k s j

k i iu

 



  









   


 


  
, 

1 2u m k q   , 
2 1( , ; ; )F a b c z  is the hypergeometric 

function defined in [20, eq. (9.100)]. 

Therefore, the average end-to-end SNR can be 

obtained by setting q=1 in Equation (14). 
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3.4 AVERAGE SYMBOL ERROR RATE 

 

The ASER is a useful measurement for investigating the 

performance of wireless communication systems. For 

several modulations with Gray bit mapped constellations, 

a uniform expression of the ASER can be written as 

equation [19]: 

0
[ ( 2 )] ( 2 ) ( )sP E aQ b aQ b f d   



   , (15) 

where Q(∗) is the Gaussion Q-funtion defined by 

21
( ) exp( 2)

2 x
Q x t dt





  , the parameters a and b 

change by specific modulation scheme. Equation (15) 

provides exact SER results for binary PSK (a=1, b=1), 

binary frequency shift keying (BFSK) (a=1, b=0.5) and M-

ary pulse amplitude modulation (M-PAM) (a=2(M-1)/M, 

b=3/(M2-1)). Furthermore, Equation (15) also provides 

approximate SER results for other modulations such as M-

PSK (a=2, b=sin2(π/M)). After integration by parts 

Equation (15) can be rewritten using the CDF of γSRD, as: 

1 2

0
( 2 ) exp( ) ( )

SRDsP a b x bx F x dx


  . (16) 

Therefore, similar to Equation (14) one can get the 

analytical expression of ASER for the dual-hop system as: 

1 21 1

1

1 0 0 0

2 1 2 2

( )

( , , , )
2

( )
, 0.5; 0.5; ,

( ( ))

m mN k

s

i k s j

a
P i k s

i

j

i b
F u u

i b i
 

 



   

   

   
   

   




 (17) 

where:

2

2 2

0.5

1 2 2

2 2

4 ( ) ( )

(
( , , , ) ,

! ( 0.5)[ ( ) )]

s j k

m k i

m u

C C a bCa M u u
i k s j

k u i ib

 



 



 





   
 

    

 
2 2 0.5u m k   . 

 

3.5 ERGODIC CAPACITY 

 

For a dual-hop variable gain system with the single relay, 

the ergodic capacity can be obtained as in [22]: 

 ln 1 SRDC     Ε , (18) 

where 1 2ln 2  . 

Since an exact closed-form expression in Equation (18) 

over mixed Nakagami-m/MG fading channels is not 

mathematically tractable by directly using a traditional 

approach (i.e., finding the PDF of γSRD with c=1), we thus 

restructure Equation (18) as in[22]: 

     

1 2 3

1 2 1 2{ [ln 1 ] [ln 1 ] [ln 1 ]}

C C C

C           E E E . (19) 

Note that Equation (19) provides an interesting 

information. Theoretic result that states that the ergodic 

capacity of the dual-hop system is equal to the sum of the 

ergodic capacities of the source–relay link 
1C  and relay–

destination link 
2C  minus the ergodic capacity 

3C of the 

single input multiple output system, in which the source 

acts as a transmitter, and the relay and destination are the 

receivers. The advantage of Equation (19) is now clear, 

because the methods of finding closed-form expressions 

for the ergodic capacities are already available in the open 

literature, i.e., using the PDF of γi. In the following, we will 

now derive new closed-form expressions for the ergodic 

capacities of the dual-hop variable gain relay network over 

mixed Nakagami-m/MG fading channels by using 

Equation (19). 

First, we find the closed-form expressions of 
1C  and 

2C . By using Equation (3) and the integral expression in 

[19, eq.(15B. 7)] as: 

     
0

1

1

( 1)!exp(

ln 1 exp

0, 1,2,...,) ( , ) ,

n

k

k

n

n
n n

t t t

k

dt

n

 

  





  

    

 




 

then the closed-form expression of 
1C  can be written as 

    1

1 11 1
0

ln 1 ( ) ( )
m

mC x f x dx M M m



     . (20) 

Similarly, the closed-form expression of 
2C  can be 

written as: 

    2

2 22 210
ln 1 ( ) 2

N m

i m ii
C x f x dx Ca M 




    . (21) 

Then, we find the closed-form expression of 
3C . Here, 

we let 
1 2z    . By using Equation (3) and (6), the PDF 

of variable z can be obtained as: 

   

   

1 2

21

2 11

11

0

[ 2 ( )]exp

exp

N m m

z i ii

z mm

i

f z Ca M m M z

x z x x M M dx






   

    




. (22) 

When
iM M , by using the binomial expansion 

defined in [20, eq.(1.111)] and eq.(3.381) in [20], after 

applying some algebraic manipulations, Equation (22) can 

be rewritten as: 

 
 

 

   

12

2

12

2

1
1

1 0 2 1

1

1

1

2 ( )

exp ,

jm jmN
i m

z m jm
i j i

m j

i i

Ca M C
f z

m M M

z M z m j M M z









 

 


 

 

    


, (23) 

where (,) is the lower incomplete gamma function 

defined in [20, eq.(8.350.1)]. 

With the help of the series expression of (,) defined 

in [20, eq. (8.352.1)], and similar to the Equation (20), 

after applying some algebraic manipulations, the closed-

form expression of 3C  when iM M  can be written as: 
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   
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k







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

  



  
 

 

 
   
 
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 (24) 

When 
iM M , by using equation (3.191.1) in [20], 

(22) can be rewritten as: 
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 
 . (25) 

Similarly, the closed-form expression of 
3C  when 

iM M  can be written as: 

1

1 22

2
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1 2 1 2

( )
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i

m m im
i

Ca M m
C M

m m





 

 
 . (26) 

Finally, by substituting Equations (20), (21) and (24) 

or Equation (26) into Equation (19), we can obtain the 

exact closed-form expression for the ergodic capacity of 

the dual-hop system over mixed Nakagami-m/MG fading 

channels. 

 

3.6 DIVERSITY ORDER ANALYSIS 

 

Performance results obtained for OP and SER expressions 

in Equations (12) and (17) do not reveal any information 

about the diversity order and array gain of the relaying 

system. Therefore, we first try to find the upper bound of 

the OP and SER performance in this section, and then 

obtain their approximate performance in the high SNR 

region. Recently, in order to simplify the performance 

analysis of Equation (2) over Nakagami-m, Weibull and 

KG fading, its looser upper bound is often adopted in many 

recent literatures as [3] 

1 2min( , )SRD b     . (27) 

The physical interpretation of the upper bound SNR in 

(27) is that at high SNR region, the hop with the weaker 

SNR determinates the end-to-end system performance. 

This upper bound has been shown to be accurate enough 

at high SNR region. Based on (27), the OP of the dual-hop 

system can be expressed as: 

1 2 1 2
( ) ( ) ( ) ( )

bout th th th thP F F F F           , (28) 

where ( )
i

F   (i=1,2) is the CDF of the ith-hop link, and can 

be found using Equations (4) and (7). Substituting them 

into Equation (28) the following equation is received: 

2
2 1 2

1 1

1 ( , ) ( , )
2 ( )

N
i

out th i thm
i i

Ca
P m M m M

b m
 



   


 . (29) 

Although Equation (12) is valid and accurate and 

Equation (29) is its upper bound, they are too complicated 

to provide a clear insight about the diversity order and 

array gain of the system. Thus, in what follows, we derive 

the approximate OP expression at high SNR to reveal them 

for the dual-hop relaying system. 

Since the values of ( )
i

F   in Equation (17) range 

between 0 and 1, the product of these two CDFs will be 

much less than their addition when ρi→∞. Hence, by 

neglecting the product term in Equation (28) and using the 

series expression of ( ; )    defined in [20, eq. (8.354.2)] 

in high SNR region, we can derive an approximating OP 

when ρ1=ρ2=ρ→∞, as: 

1 2
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3 ( ) ( ) ( ) [( ) ]t t

out th th th thP F F A O       

     , (30) 

where O[|x|t+1)] represents the terms of order higher than t, 

t=min(m1, m2), 
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Similarly, by setting γth=x in Equation (29) and 

substituting Equation (29) into Equation (16), the upper 

bound expression of SER can be obtained as: 
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1 1

2

2 0.5
1 0 0 2
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   
  

   
  . (31) 

To find the asymptotic analysis of the SER, Ps can be 

expressed as: 

3 ( ) dG

s aP G  

  , (32) 

where Ga and Gd are the array gain and diversity order, 

respectively. By substituting Equation (30) into Equation 

(16), the diversity order of the dual-hop system can be 

given as 
1 2min( , )dG m m  when ρ1=ρ2=ρ→∞, the array 

gain can be expressed as: 
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For Equations (30) and (32), we can obtain the 

diversity order of the dual-hop system is min(m1,m2), 

which implies that the weaker hop dominates the system 

performance. 

 

4 Numerical and simulation results 

 

In this section, we present some numerical and simulation 

results to evaluate the performance of the dual-hop system 

in mixed fading channels, where the S-R link is subject to 

the Nakagami-m fading, R-D link is subject to the MG 

fading, vice versa. 

 

 
FIGURE 1 ASER of BPSK and 16PSK for the dual-hop system versus 

the unfaded SNR (ρ) 

Figure 1 illustrates the ASER of BPSK and 16PSK of 

the dual-hop variable gain system. The analytical results in 

Equations (17), (31), (32) and the simulation results (c=1) 

are given, respectively. In this case, a symmetric network 

geometry is assumed, this is, d0=1, d1=d2=0.5, ε=4, 

ρ1=ρ2=ρ. Each hop has the same fading parameters 

(m1=m2=2), N =10 for MG distribution. It can be seen from 

Figure 1 that the analytical results in Equation (17) has 

almost the same as the ones in Equation (31) in high SNR 

region, only a small gap in low SNR region. At the same 

time, the analytical results of Equation (17) coincide 

perfectly with the simulation results. The slops of 

approximate performance in Equation (32) show 

agreement with Equation (17) in high SNR region. As 

expected, the system performance is degraded when the 

shadow deviation increases, and the performance of BPSK 

outperforms that of 16PSK at the same channel conditions. 

The analysis and simulation results of OP are shown in 

Figure 2, where d1=d2=0.5, σ=4dB, ρ1=ρ2=ρ and N=10 for 

MG distribution. The analytical results in (12), (29), (30) 

and the simulation results are also given, respectively. As 

expected, these results are similar as that in Figure 1. 

Moreover, for discussing their diversity orders, it can be 

seen the diversity order of the dual-hop is determined by 

the minimum value between m1 and m2. It can be also seen 

that the fading parameter value of the second-hop increases, 

the array gain of the dual-hop system is improved. This is 

due to the fact that the system performance is determined 

by the weaker hop (i.e., the second-hop, σ=4dB). 

 
 

FIGURE 2 Outage probability for the dual-hop system versus 
the unfaded SNR (ρ) 

FIGURE 3 ABER of BPSK for the dual-hop system versus d1 

We show the effect of the relay location on the ABER 

of BPSK for the dual-hop system in Figure 3. In this 

section, the asymmetric network geometry is examined 

where R is moved on a straight line between S and D, d1 

denotes the distance between S and R. Each hop has 

different fading parameters, ρ1=ρ2=10dB, N =10 for MG 

distribution. It can be seen from Figure 3 that the optimum 

performance of the dual-hop system moves with the 

channel parameters of the weaker hop. When R is closer to 

S, the system performance is determined by the channel 

condition of the second hop, for example, if the fading 

parameter increases (m2=2→m2=4), the performance is 

improved and the location of the optimum performance 

moves toward S, and if the shadow deviation increases 

(σ=4dB→σ=8dB), the performance is degraded. When R is 

closer to D, the system performance is determined by the 

channel condition of the first hop. If the fading parameter 

increases (m1=2→m1=4), the performance is improved and 

the location of the optimum performance moves toward D. 

It can also be explained that they show the same 

performance when R is closer to D if only the channel 

conditions of the second-hop change. These results are 

helpful to the selection of relaying nodes in cooperative 

networks. Moreover, we also show the comparisons among 

Equations (17), (31) and the simulation results. It is clear 

that the difference between Equations (17) and (31) is small 

except the nearby region of the optimum performance. At 
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the same time, the simulation results show agreement with 

Equation (17). 

 
FIGURE 4 Ergodic capacity for the dual-hop system versus the unfaded 

SNR (ρ) under different fading parameters 

 

5 Conclusion 

 

In this paper, we investigated the end-to-end performance 

of a dual-hop AF relaying system over mixed multipath/ 

shadowing fading environment, where the composite NL 

distribution is approximated by using mixture gamma 

distribution. Based on the CDF of the end-to-end SNR, 

some novel closed-form expressions of the average end-

to-end SNR, the OP, the ASER and the ergodic capacity 

for the dual-hop AF system are derived, respectively. And 

then, some approximate analysis and the diversity order 

are found in high SNR region. Finally, we showed 

numerical and simulation results to verify the accuracy of 

the analytical results, and discussed the effect of the 

location of relaying node on the performance of the dual-

hop system. These results are helpful to the selection of 

relaying nodes in cooperative networks. Furthermore, 

these works in this paper can be helpful to analyse the 

performance of cooperative relaying systems with co-

channel interference over composite fading channels by 

using MG fading model in the future. 
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