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Abstract 

In the two-stage supply chain, under the model of lead time reduction management cost shared by upstream and downstream based 

on Stackelberg Game, when suppliers have the priority of decision right rather than retailers, it is more advantageous to reduce the 

cost and the lead time and can reach the maximum profit for the whole supply chain. 

Keywords: Supply chain, Lead time, Decision order, Cost sharing  
 

                                                           
*Corresponding author e-mail: liukejian@gmail.com  

1 Introduction 

 
Lead time refers to the interval from ordering to receiving 

goods in the downstream delivered by suppliers in the 

upstream. This is also called inventory replenishment 

lead time. Those in the downstream hope suppliers to 

reduce the lead time so as to reduce inventory and cost. 

To reduce the lead time, suppliers usually needs some 

extra investment, for example, buy new equipment, 

improve or set up new information system or upgrade 

inventory equipment. However, many enterprises can’t 

afford such a huge investment and have to shift the cost 

to those in the downstream. When the cost is on buyers in 

the downstream, some suppliers take it for granted that 

buyers should shoulder all cost for reducing the lead time. 

If buyers are willing to do so, then they are granted with 

the right to reduce the lead time and decide the length of 

it. 

When suppliers decide the length of inventory lead 

time, there are usually two decision orders: one is that 

retailers decide how many goods to order and inform it of 

suppliers, and leave it to suppliers to decide the length of 

the lead time; the other is that suppliers decide the time of 

arrival and retailers decide when to order and how many 

to order based on the delivery situation.  

Suppliers are facing the following questions: when to 

decide the lead time, before retailers’ order or after? 

What is the best lead time for ordering so as to reduce the 

cost as much as possible? What will be the influence on 

the cost if the decision order between the upstream and 

the downstream is exchanged?  

 

 

 

2 Literature review 

 

Many researchers have focused on the importance of 

reducing the lead time from several perspectives. Perry, 

M. Ben-Daya and Zhang describe the random and swift 

response model [1-3].  

Swift response model is necessary when orders are 

given at the same time [4]. In two recent articles, some 

researchers propose an effective qualitative model for the 

supply chain [5-7]. Many researches study the ordering 

lead time decision [8-11]. They suppose that those in the 

downstream decide the ordering lead time and shoulder 

the cost for reducing the lead time. Moreover, researchers 

also study the lead time decision made by retailers for the 

maximum profit. However, although suppliers have 

shifted the cost for reducing the lead time to retailers, it 

doesn’t mean that cost of suppliers is free from the 

influence of retailers’ decision on ordering. It is because 

under the condition that suppliers have the priority to 

decide the length of the lead time, the cost for reducing it 

will be affected by the cost of ordering and further, the 

quantity of ordering which may lead to a drop of profit 

for suppliers. Thus, suppliers do not favour such strategy. 

To move a step further, if retailers cannot afford the cost 

alone, they will give up reducing the lead time.  

 

3 Model description and establishment 

 

3.1 STACKELBERG GAME MODEL  

 

Suppose there are two producers who take the turn to 

decide the production in a two-stage Stackelberg Game. 

In the first stage, producer 1 as the leader takes the 

priority to plan for the production. In the second stage, 
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producer 2 as the follower plans for the production under 

the principle of obtaining the maximum profit after 

learning about the yield level of the leader. Suppose the 

marginal costs of two producers are the same, 

1 2c c c  , the market demand function is 

1 2( )D a q q   , in which 0a  , a is a constant. 1q  is 

the production of producer i , 1, 2i  . This function is 

known by two producers.  

By the backward induction, we consider the second 

stage first. Suppose the production of producer 1 is 1q , 

the optimal production 1

s

q of producer 2 is: 

21 2 1 2 1 2 2arg { ( , ) [ ( ) ] }
s

qq gMax q q a q q c q      

Based on the first order condition, we can get the 

optimal reaction function for producer 2: 

1

2 2 1( )
2

a q c
q R q

 
   

Then, we consider the first stage and predict the 

reaction function for producer 2 1

2 2 1( )
2

a q c
q R q

 
  . 

The optimal production 1

s

q  of producer 1 is 

21 2 1 2 1 2 1 1

1

1 1

arg { ( , ) [ ( ( )) ]

[ ( ) ]
2

s

qq gMax q q a q R q c q

a q c
a q c q

    

 
   

 

By the first order condition, we can get the optimal 

production 1
2

s a c
q


  of producer 1. So, 

1

2 2 1( )
2 4

s

s s a q c a c
q R q

  
   . Thus, the result of 

Stackelberg Game is 

1 2

3( ) 3
;

4 4

s s s s
sa c a c

q q q D a q
 

      . The profits of 

two producers are: 

2

1 1

2

2 2

( )
( )

8

( )
( )

16

s
s s

s
s s

a c
D c q

a c
D c q





 
  




   


. 

However, in actual economic activities, producers 

cannot know exactly about the market demand function 

but only estimate it. Nevertheless, such estimation varies 

from person to person. Here we suppose that every 

producer takes it for granted that the estimation of his 

counterparts is the same as his.    

Suppose the market demand function estimated by 

producer 1 is 1 1 2( )D a q q   , and that he thinks 

producer 2 estimates the same.  

The market demand function estimated by producer 2 

is 2 1 2( )D a q q   , and that he thinks producer 1 

estimates the same. Here , 1, 2ia i  , which are above 0.  

 

Under such circumstances, we divide the Stackelberg 

Game Model into two stages as the conventional way. 

And apply it to backward induction method. First we 

consider the second stage, set the production of producer 

1 is 1q , as producer 2 thinks the market demand function 

to be 2 1 2( )D a q q   . If producer 2 produces 2q , 

producer 2 thinks that his profit is expected to be 

2 1 2 2 1 2 2( , ) [ ( ) ]q q a q q c q     , from the first order 

condition, we can get the optimal reaction function of 

producer 2 is 2 1

2 2 1( )
2

a q c
q R q

 
  . 

Let’s be back to the first stage, as producer 1 

estimates the market demand function is 

1 1 2( )D a q q   , and thinks that the production of 

producer 2 will be 2q  in the second stage, then the profit 

is 2 1 2 1 1 2 2( , ) [ ( ) ]q q a q q c q     . From the first order 

condition, we can get the optimal reaction function of 

producer 2 estimated by producer 1: 

2 1

2 2 1( )
2

a q c
q R q

 
  . In this case, producer 1 thinks 

his profit is 1 1 2 1 1 2 1 1( , ) [ ( ( )) ]q q a q R q c q     . From 

the first order condition, producer 1 thinks that his 

optimal production is 1

1
2

a c
q


 , in which  q1=a1-c2. 

2 1

2 2 1( )
2

a q c
q R q

 
  . 

Let’s be back to the second stage. As the production 

of producer 1 is, producer 2 thinks that his optimal 

reaction function is:  

Thus, producer 2 thinks that his optimal production is: 

2 1 2 1

2

2

2 2

a q c q a c
q

   
   

The actual market demand function is 

1 2( )D a q q   , so the market price will be: 

1 2 1 1 2

1 2

2 4 2 3
( ) [ ]

2 4 4

q c a a c a a a c
p a q q a

     
       . 

Therefore, the profits of two producers are: 

1 1 2

1 1

2 1 1 2

2 2

( )(4 2 )
( )

8

(2 )(4 2 )
( )

16

q c a a a c
D c q

a a c a a a c
D c q





   
  


       



. 

 

3.2 INVENTORY MODEL BASED ON ( , )Q r  

STRATEGY 

 

( , )Q r  inventory strategy is a common inventory 

management strategy, in which the warehouse manager 

checks the inventory with continuity. When the existing 

inventory drops to the replenishment point r , the manger 

will order Q  goods from suppliers in the upstream. 
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Those goods will arrive after the lead time L. The 

variation of inventory under ( , )Q r  strategy is shown in 

Figure 1.  

 
FIGURE 1 The variation of inventory 

Here we discuss the replenishment cost with fixed 

lead time. LD  is the aggregate demand during the lead 

time, then function ( )G y  is expressed as: 

( ) [ ( ) ( ) ]L LG y E h y D g D y      

D is the demand per unit time. It is a random variable. 

  refers to the demand rate of market; R refers to fixed 

ordering cost; /g  (piece·per unit time) refers to 

replenishment cost; /h (piece·per unit time) refers to 

holding cost; the replenishment lead time is L .  , R , 

g , h , L  are all constants.  

When the demand is reached in the way that the 

demand grows stably and randomly and keeps such 

growth, under such condition, if inventory y  is subject to 

the even distribution of ( , ]r r Q  (when the demand is 

discrete, y  is subject to the even distribution of 

{ , 1, , }r r r Q  )  

When the demand is a continuous variable, the 

average cost per unit time is expressed as: 

( )
( , )

r Q

r
R G y dy

C Q r
Q








. 

When the demand is a discrete variable, the average 

cost per unit time is expressed as: 

( )

( , )

r Q

r

R G y

C Q r
Q









. 

 

3.3 MODEL ESTABLISHMENT  

 

We have studied the two-stage supply chain consisting of 

suppliers and retailers with single product. The ordering 

lead time L  refers to the interval between ordering and 

receiving. It can be divided into n  separated parts. Part i  

has the minimum interval ia  and the standard time jb . If 

1

n

o j

j

L b


  is used to express the initial ordering lead 

time of the supply chain, iL  is to express the minimum 

length of ordering lead time of part 1,2,…, i , then there 

is:  

1 1 1 1 1

1

( )

( )

i n i n i n i

i j j j j j j j j

j j i j j i j j i j

i

o j j

j

L a b a b b b b a

L b a

       



       

  

      



. (1) 

The ordering lead time L  can be shortened by adding 

some cost. Therefore, it is controllable. Suppose the cost 

for reducing a unit time for part i  is iC , and 

1 2 nc c c    refers to the cost of the ordering lead 

time as well as the cost for reducing the ordering lead 

time. Then, there is:  

1 1

1

( ) ( ) ( ), ( , )
n

i i j j j i i

j

K L c L L C b a L L L 



     , (2) 

0

1

( ) 0, ( ) ( )
n

n j j j

j

K L K L C b a


   . (3) 

The cost of suppliers and retailers and the cost of 

ordering constitute the cost of inventory. The cost of 

ordering and that of the lead time management are 

shouldered by suppliers. The aggregate ordering cost per 

unit time is ( , )m L Q . There is: 

( , ) ( )
2

m m m

QD D
L Q C P h K L

Q Q
    . (4) 

D  is the average demand per unit time; Q  is the 

quantity of orders; h  is the inventory holding cost rate; 

mC  is the cost of a single supplier; p  is the purchasing 

price of the supplier;   is the ratio of cost for reducing 

the ordering lead time shouldered by suppliers. Given 

that ( , )Q r  strategy is very common in researches and 

actual situations, this paper also employs this strategy as 

the inventory strategy. Suppose retailers are faced with 

the natural distribution of demand during the lead time, 

averaging LD  and the standard variation to be L . 

Then we can know the average inventory level per unit 

time is 
2

p

Q
I K L  . K  is the inventory security 

coefficient. The ordering cost of suppliers consists of 

average inventory cost, ordering cost, and the lead time 

management cost. The aggregate ordering cost per unit 

time is ( , )m L Q . Then there is:   

( , ) ( ) (1 ) ( )
2

r r r

QD D
L Q C K L P h K L

Q Q
       . (5) 
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rC  is the ordering cost of a single retailer. rP  is the 

purchasing price of retailers. (1 )  is the ratio of cost 

for reducing the lead time shouldered by retailers.  

Usually, the ordering process is that the upstream 

decides the arrival time of goods and the downstream 

decides the quantity of goods. This paper compares two 

cases: one is that the upstream decides the ordering lead 

time first, the other is retailers decide the quantity of 

goods first.  

 

4 Comparison of different decision orders 

 

Usually, the ordering process is that the upstream decides 

the arrival time of goods and the downstream decides the 

quantity of goods. This paper compares two case: one is 

that the upstream decides the ordering lead time first, the 

other is retailers decide the quantity of goods first.  

 

4.1 THE OPTIMAL MODEL OF SUPPLIERS’ 

PRIORITY DECISION 

  

Suppose suppliers are equipped with relevant information 

of retailers, such as the ordering cost and inventory cost. 

Suppliers have the priority to decide the ordering lead 

time and then leave it to retailers to decide the quantity of 

ordering. Obviously, in this Stackelberg Game, suppliers 

stand as leaders while retailers as the followers.  

First, we consider the optimal ordering quantity of 

retailers under the condition that the ordering lead time L 

is given. The optimal decision mode of retailers is: 

 min ( , ) ( ) (1 ) ( )
2

r r r

QD D
L Q C K L P h K L

Q Q
       . (6) 

Calculate the derivatives of Q in the cost function and 

equal it to 0.  

2

( , )
[ (1 ) ( )] 0

2

r r

r

d L Q P hD D
C K L

dQ QQ



     , (7) 

2

2 3

( , )
[ (1 ) ( )] 0r

r

d L Q dD
C K L

dQ Q



    . (8) 

As 1( , )i iL L L  , ( , )r L Q  is the concave function 

about Q, then the optimal quantity is: 

*

1

2 [ (1 ) ( )]
, ( , )r

i i

r

D C K L
Q L L L

P h




 
  , (9) 

*

*

2 [ (1 ) ( )]
(1 ) { }

(1 )

i r

r r

i

r

DC D C K LdQ

dL P h P h

DC

P hQ






 
  

  

. (10) 

Thus, 
*

0
dQ

dL
 . The ordering quantity of retailers will 

increase along with the reduction of the lead time. When 

suppliers can predict the quantity decided by retailers 

based on formula (9), there is:  

*
min ( , ) ( )

2
m m m

QD D
L Q C P h K L

Q Q
    . (11) 

For each 1( , )i iL L  , we can get the derivatives of 

*( , )m L Q  to L.  

* *

*2 *

( , )
[ ( )]

2

m i m

m

d L Q DC P hdQ dQD
C K L

dL dL dLQ Q
 


     . (12) 

Substitute (9) to (12) and get: 

*( , ) ( )
{ }

2[ (1 ) ( )] 1 2

m m r mr

r

d L Q C K L p h P hP dQ

dL C K L dL

 

 

 
   

  
. (13) 

Because 

*( , )
0md L Q

dL


 , it is easy to get: 

( ) 2

(1 ) ( ) 1

m m

r r

C K L P

C K L P

 

 


 

  
. (14) 

When ( ) 0K L  , we can get: 

* *( , ) [(1 ) ]
0

2[ (1 ) ( )]

m r i m r

t w

r

d L Q p C C C dQ
L L

dL dLC K L

 



  
   

 
. (15) 

Thus, when ( ) [0, ( )]t nK L K L , the optimal ordering 

lead time of suppliers is *

tL L . If ( ) ( )t nK L K L , then 

*

nL L ; If ( ) 0tK L  , then, *

0L L  .Thus the optimal 

ordering quantity is 

*

1

2 [ (1 ) ( )]
, ( , )r

i i

r

D C K L
Q L L L

P h




 
  . *L  and 

*Q  are 

the equilibrium of the Stackelberg Game with suppliers 

as leaders. Compare this result and the original ordering 

lead time and quantity, there is: 
* *

0 0( , ) ( , )m mL Q L Q  . 

 

4.2 THE OPTIMAL MODEL OF RETAILERS’ 

DECISION PRIORITY 

 

Suppose retailers first decide the ordering quantity and 

leave it to suppliers to decide the ordering lead time. 

Obviously, such decision order is featured by retailers’ 

decision priority in the Stackelberg Game.  
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First we assume that suppliers make the decision of 

the ordering lead time after they know about the ordering 

quantity Q. For them, there is the following model:  

min ( , ) ( )
2

m m m

D Q D
L Q C P h K L

Q Q
   

, (16) 

( , )
0m id L Q DC

dL Q



  

. (17) 

Thus, in this case, the optimal ordering lead time is 

0L  and 0( ) 0K L  . When retailers predict that the 

ordering lead time is 0L  and when 1( , )i iL L L  , 

( , )r L Q  is the concave function about Q. the optimal 

ordering quantity of retailers is:  

0

2 r

r

DC
Q

p h
 . (18) 

0L  and 0Q  are the equilibrium of the Stackelberg 

Game with retailers as leaders. Whatever the ordering 

quantity is, for suppliers, the ordering lead time is 0L . 

Retailers’ decision does not affect the lead time.  

Comparing the situations in which suppliers and 

retailers serve as leaders respectively. When suppliers are 

leaders, the ordering lead time *L  is smaller or equals to 

that when retailers are leaders. Thus, in the supply chain, 

suppliers’ priority of decision helps reduce the ordering 

lead time. In the Stackelberg Game, suppliers have the 

right of priority of decision and the arrival time is: 
*

0 0( , *) ( , )m mL Q L Q  . Compare to the situation in 

which retailers decide the ordering quantity first and 

suppliers decide the lead time later, suppliers are more 

willing to take the initiative to decide the length of the 

lead time and then leave it to retailers to decide the 

ordering quantity.  

However, are retailers willing to decide the ordering 

quantity after suppliers’ decision of the lead time? 

Suppose   is to express the optimal cost respectively 

when suppliers and retailers serve as leaders, there is: 

* *

0 0

* 0

* 0

* *

0 *

* 0 *

0

( , ) ( , )

( ) ( )
2 2

( ) (1 ) ( )

( ) ( )

m m

r r

r

r r

L Q L Q

Q QD D
C p h

Q Q

R
L L p hk K L

Q

Q Q p h L L p hk

 

   

   

   

   

, (19) 

1

2
0

0

* *

0 0

0

* *

0 0

1
0

2

( ) 0,

( ) 0,

r

r r

r

d
L p hk

dL

d
L L p hk L L

dL

d
L L p hk L L

dk





 
  


 

   

 

   


. (20) 

With the increase of the standard deviation R of 

customer demand, the cost difference G of retailers of the 

original security coefficient k and the arrival time L0 will 

decrease for sure, no matter who is the leader. The 

fluctuation of the demand is more significant to retailers 

when suppliers take the priority to decide the lead time. 

Whether willing or not, under the original condition, the 

decision of suppliers will affect the fluctuation of 

customer demand, the service of retailers and the arrival 

time.  

 

5 Data analysis 

 

We calculate the aggregate ordering cost *( , *)m L Q  

and 0 0( , )m L Q  under two different cost ratio  , and 

conclude that the cost of ordering lead time decided by 

suppliers first is smaller than or equals to the cost of 

ordering quantity decided by retailers. Thus, suppliers 

wish to take the priority to replenish the inventory.   

With the increase of the standard deviation of 

customer demand faced by retailers, or to say, the 

uncertainty of the demand, the cost difference varies 

between the priority of decision of suppliers and retailers. 

This indicates that when the demand fluctuates, retailers 

are more willing to let suppliers decide the ordering lead 

time first. If the fluctuation is small, then it may not 

favour the retailers in that the cost function * *( , )r L Q  is 

bigger than the static Game cost function 0 0( , )r L Q  

when retailers are exposed to full information.  

When the cost sharing ratio   is given, the cost of 

suppliers’ priority of decision is smaller than or equals to 

that of suppliers’ following decision. That is to say, 

suppliers are prone to take the priority to decide the lead 

time.  

Under different cost ratio  , we calculate the cost of 

suppliers, the cost of customers in the downstream, the 

aggregate cost of the supply chain and the cost of the 

optimal lead time. The results show than when the cost 

sharing ratio is 0.3  , the cost of suppliers, the cost of 

customers in the downstream and the aggregate cost of 

the supply chain are smaller than that shouldered by 

retailers for reducing the lead time. This indicates that 

when the sharing cost is given, leaving suppliers to take 

the priority of decision and shoulder some cost for 

reducing the lead time is advantageous both to supplier 

and retailers. Suppliers can choose a proper ratio to 

decide the cost of the lead time and the operation.  
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6 Conclusion  

 

This paper considers the cost sharing for reducing the 

lead time. It studies the decision order of the ordering 

lead time which is common but overlooked. Under the 

Stackelberg Game Model, suppliers take the initiative to 

decide the lead time and retailers, the quantity of goods. 

This paper analyses the ordering order in which retailers 

decide the quantity of goods after suppliers decide the 

lead time. It points out that this way helps to reduce the 

lead time in the two-stage supply chain as well as the cost 

of suppliers. If the demand is uncertain, then suppliers’ 

priority of decision on the lead time is advantageous to 

themselves, retailers and even to the whole supply chain. 

This paper provides a new idea to supply chain 

management.  
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