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Abstract 

Online social networks (OSN) are up-and-coming complex network systems. Experiments indicate that it is difficult for simple complex 

network theory to describe virus transmission behaviour. Based on comprehensive research into current virus transmission, this paper 

combines user behaviour with social engineering theory and builds a model of virus transmission on OSN. Key factors affecting virus 

transmission on OSN are then analysed. Lastly, in light of public opinion transmission theory, this paper refers to social reinforcement 

factors concepts to describe computer virus transmission on OSN and analyses transmission disciplines in regular and random networks. 
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1 Introduction 

 

The classical virus transmission model SI/SIR/SIS is 

frequently used to simulate the spreading process of 

viruses, which is through nodes. On social networks, the 

relationship between nodes depends on the on-line status. 

Besides, we are more likely to receive information from 

friends. So, whether from the macro- or microscopic angle, 

virus transmissions on OSN differ greatly from those on 

off-line. 

Using research into on-line social networks, Centola 

investigated the transmission process of public opinion on 

various network structures [1]. The research argues that 

social reinforcement can be a great impact factor in terms 

of transmission of behaviours on networks. If an individual 

is subject to certain behaviours or opinions from multiple 

friends then, from a macro point of view, this behaviour or 

opinion will tend to propagate faster on networks. 

Experiments show that a single signal cannot influence the 

decision of a node. Only when the node receives more 

signals can it receive information or produce behaviours. 

Information and behaviours can propagate faster on a 

regular network with a high clustering coefficient than on 

a random network, because people can receive signals 

more easily from other nodes on a regular network with a 

high clustering coefficient. This article describes the 

research of Centola, considers the differences between 

virus transmission and information behaviour 

transmission, and builds the social network virus 

transmission SEIR model combining with communication 

opinion [2]. 

                                                           
* Corresponding author e-mail: ym8670435@126.com  

2 Model description 

 

2.1 MECHANISM OF VIRUS SPREADING IN THE 

MODEL 

 

According to the model described in this article, the virus 

transmission process is as follows: Firstly, some virus 

infected nodes exist on social networks. They deliver the 

signal with a virus to all nodes on the friends list. However, 

only some of the friend nodes of this node will be infected 

by the virus. Then the infected nodes will spread the virus 

signal to all their friend nodes on their friends list. Thus 

these signals can be links to the virus or the Auto-run file 

of the virus in real life. 

The nodes in social networks can be described by these 

four states: 

1) S status. S status indicates the node has not received any 

signals and it can be infected [3]. 

2) I status. I status indicates the node has been infected by 

a virus and it will spread the virus signal to infect other 

nodes. 

3) R status. R status indicates this node recovers from I 

status. It develops immunity, and it may receive the virus 

signal but not be infected. 

4) E status. E status indicates the node has received the 

virus, but it is not infected and it will not spread the virus. 

E status can describe the issues that users receive malice 

information, but not believe and be infected. During the 

spread process, the node which receives more signals is 

more likely to be infected [4]. Through this process, the 

virus achieves spread on the social networks. The model is 

shown in Figure 1. 

Firstly, randomly select a node as "seed". The seed 

node must be at I status, other nodes at S status. The seed 

node deliver virus signals to other nodes. Then it will 

recover to R status and will never infect or spread the virus 

further. 
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At time t, if a node at status S or status E receives the 

virus signal, then the probability for it to transform to 

status I is 
m  m is the frequency the node receiving the 

signals of the virus, m and 
m  have a positive correlation. 

If the node does not receive any signal, the status will not 

change, irrespective of how many times the node received 

the signals before. 

At time t, if the status of the node is I, during the next 

Δt, the node will deliver the virus to all its neighbours, and 

itself will transform to status R. 

The changes of status of all the nodes are synchronous 

in the model, i.e., at time t all nodes assess their status at 

the next time simultaneously and make the changes during 

tt   . 

When there is no node to change status, transmission 

of the virus stops. 

 

FIGURE 1 Mechanism of virus transmission in the model 

The differences between the model provided by this 

article and other existing models are that we use the link 

between the nodes at most one time. For social networks, 

if one node delivers the information with the virus to its 

neighbour nodes many times, it will increase their 

vigilance. So, as social networks, few users will deliver the 

same information to their neighbours many times [5]. 

 

2.2 THE MATHEMATICAL MODEL OF THE VIRUS 

SPREADING PROCESS 

 

When node j is at status S, it receives the virus signals the 

first time. We assume the probability of infection is 1 , 1  

is the initial spread rate. When node j is at status S, the rate 

of infection when it receives the virus signals the second 

time is 2 , simply, when node j is at status S, the m-th time 

it receives the signals, the infected rate is m , Here is the 

expression: 
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In the expression, [0,1]  it means social reinforcement 

factors, the bigger  , the higher and the rate at which the 

other node can be infected. From the Equation (1), we 

know the infection rate for a node after receiving m-th 

times is 1(1 )m    higher than if it receives (m–1)-th 

times. 1(1 )m    can be regarded as the rate when the 

node isn't infected at the (m–1)-th virus signal 11 m   

transforming to I status influenced by social reinforcement 

factors  . There are two special situations in the Equation 

(1), when 1  , social reinforcement factors have a great 

influence, and when m >= 2, the rate of virus infection 

approaches 1. That means the node will be infected as soon 

as it receive the virus signals two times. When 0  , it 

means social reinforcement factors have no influence on 

the model. That is, the model provided by this article 

degenerates to the normal SIR model [6]. 

Simplifying and deforming the Equation (1) we can get 

the Equation (2): 
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In the Equation (2), when   and 1  are fixed, m  will 

increase monotonically by m. That is, a node in social 

networks is more likely to be infected if it receives virus 

signals more times. As   increases, so does m . In Figure 

2, we describe the relationship among, m and   when

1 0.2  . 

 

FIGURE 2 the relationship between m , m and α 

During the spreading process, a node turns from status 

S to status E, meaning the node received the virus signals 

but is not infected and will not spread the virus. The rate

SEP  is decided by each neighbouring node. 
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Node i is the neighbour of node j.  
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means at time m–1, the neighbour of node j still has not 

attained the rate of status S. which are the neighbours of 

node j, the j node must receive the virus signals next time. 

Combining Figure 1 with the description of the 

mechanism of the model, we can get the node status 

changing the sum formula: 

S(t) R(t)I(t)E(t)

Pse λm

λm
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   R t t I t  . (7) 

 

3 Simulation experiment and analysis 

 

3.1 EXPERIMENTAL NETWORK SELECTION AND 

CONSTRUCTION  

 

The regular network that simulation experiments mainly 

select is the Moore network, with the network boundary 

conditions periodic. The network structure is shown in 

Figure 3: 

 

FIGURE 3 Nodal neighbour structure in the Moore network 

Referring to experimentation in which Centola 

researched the dissemination of public behaviour in the 

network, in the simulation experiments in this paper, we 

select the network structure in which the length and width 

ratio is two. It is a uniform random network using the 

Maslov-Sneppen small world model [1]. The process of 

setting it up is as follows: 

1) At time t, we randomly select a pair of edges A-B, C-D, 

then we reconnect this pair of edges to A-D, B-C. In the 

process of reconnection, we do not allow self-connection 

and reconnection.  

2) In order to establish a completely random network 

structure, the reconnection process must be repeated many 

times. In the experiment in this article, the number of 

repeating the above process of selection is EpN . In EpN ,

p  can be used to describe the randomness of constructed 

random networks, EN is the number of connections in 

random networks. 

3) Strictly speaking, only when p  , it is a random 

network really but as the literature shows simulations of 

topological information and true random network are very 

approximate when 1p  , so in this paper 10p  . 

The main tool for virus transmission simulation 

experiments on a regular Moore network is cellular 

automata, so we set up a cellular automata model 

T(C,Q,V,f): Cellular space is selected as a quadrangle 

cellular space; Cellular discrete state is combined as Q={S, 

E, I, R}; Cellular neighbour set’s selection is as shown in 

Figure 1, the cellular boundary’s selection cycle type; 

Cellular transformation rules as shown in Equation (7). 

 

3.2 DESIGN OF SIMLATION EXPERIMENT AND 

ANALYSIS OF THE RESULTS 

 

3.2.1 Experiment about the impact on the experimental 

results and analysis of different network topologies 

 

Let ,t

t t

t

I

N
   represent the proportion of nodes whose 

state is I to the total nodes in the network space at time t, 

reg  and rand  respectively represent the proportions of 

nodes whose state is I to the total nodes in the regular 

networks and random networks in the final stable state. In 

order to compare the spread of the virus in the two different 

network topological structures, we define 

p reg rand     . If 0p  , the virus spread in the 

dissemination of a wider range in a regular network than 

in a random network;
 
if 0p  , the spread of the virus is 

faster in the random network. 

Figure 4 shows the relation diagram of  , 1  and t  

in the regular networks and random networks. In Figure 4, 

the longitudinal coordinates are   the abscissa is 1 , 

different colors represent different  . 

In Figure 5, when the 
1  = 0.1, 0.2, ..., 1, we take 

different social enhancement factor 's  values of 
; it 

will help us more clearly observe the change trend of 

and provide a supporting role to explain Figure 4. 

In order to more intuitively represent the spread of the 

virus in two different kind of networks, we use along with 

the changes of   and 1 , and we use Matlab visual effects 

to draw Figure 6. In Figure 6 the longitudinal coordinates 

are  , the abscissa is 1 , different colours represent 

different 
p . 

As shown as Figure 4, when   is larger but 1  is 

smaller, the range of the spread of the virus is bigger in a 

regular network than in a random network. However, when 

  is smaller and 1  is larger (about 0.3), the range of the 

spread of the virus is larger in a random network than in a 

regular network. 
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(a) (b) 

FIGURE 4  in the regular networks and random networks 

 

  
(a) (b) 

FIGURE 5   in the regular networks and random networks when 1  and α are given 

 

 
FIGURE 6 p  in two different kinds of networks 

Figure 6 shows the distribution of  in regular 

networks and random networks in the space ( 1 , ). In 

Figure 6, we can clearly see that there are two isolated 

“island” shapes in this figure: one is that when 1  is small 

and   is big, the scope of the spread of the virus is much 

greater in a regular network, which is consistent with 

Centola’s experimental results. The other is when 1  is 

relatively larger and   relatively smaller, the scope of the 

spread of the virus is much greater in random networks 

than in regular networks. This is fully consistent with the 

conclusion of previous researchers: viruses spread faster in 

random networks than in regular networks.   has a gap 

except in two ranges, the other times the value of   is 

zero.  

Analysis of two areas is worthwhile, the first region 

is located in the top right corner of Figure 6 areas: When 

1  is very large, regardless of whether social 

reinforcement factor   is big or small, the virus will 

spread almost throughout all the network range, the 

expression of experiment shown that there have not any 

basic difference of virus between regular networks and 

random networks; the second region is located in the lower 

left corner of Figure 5 areas: when 1  is very small and 

social enhancement factor   is very small, the virus in the 

two kinds of networks are not spread very well apart, in 

Figure 4 we can see that in the steady state I node occupies 

a small proportion of all nodes in the network in 0.1. 
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3.2.2 Experiment about evolution of I state nodes in the 

model 

 

In order to illustrate the effectiveness of the models, in 

Figure 7 we give the change curve of the infected nodes’ 

amount with the curve of time in regular networks and 

random networks, and in Figure 8 we present the 

experimental results of Centola. In Figure 8, the black solid 

circular and hollow triangle respectively represent the 

number of individuals receiving public opinion behaviour 

dissemination in regular networks and random networks. 

 

FIGURE 7 The change curve of the infected nodes’ amount with the 
curve of time 

 

FIGURE 8 The experimental results of Centola 

The parameters in Figure 7 is that the value of 
1  is 

0.18 and the value of  . By comparing Figures 7 with 8, 

we can find that from the preliminary transmission rate and 

the final steady-state communication range, regular 

networks spread faster and wider than random networks. 

In order to describe each time t infected nodes’ density, we 

use 1t t    to describe the increased amount of the I 

node’s density in regular networks and random networks 

in each time. Thus we can draw Figure 9: 

 

 

FIGURE 9 The change of 1t t    in regular network and random 

networks 

In Figure 9 we can see that when virus transmission 

process begins, the rate of spread of the virus in the two 

networks grows very fast. After the two curves are almost 

simultaneously at a peak of their own, this corresponds to 

virus outbreak events in the real world. After reaching the 

peak value, the two curves begin to decline rapidly with 

the passage of time. In the propagating process of the virus, 

1t t    is always bigger in regular networks than in 

random networks, which means that the transmission 

rate of the virus is bigger in regular networks than in 

random networks. The value of 1t t    is zero, meaning 

that with the termination of the propagating process, the 

range of transmission of the virus reaches the maximum 

value. 

 

3.2.3 Experiment about the critical value of the social 

enhancement factor when the virus spreads in the 

social network 

 

In the propagating process of the virus,   plays an 

important role in the transmission process of the virus in 

the social network. In Experiment 2, when   is equal to 

0.52 and 1  is equal to 0.14, finally there is a   

difference of about 0.35. Therefore, an issue emerges: 

what is the social enhancement factor's influence in the 

spread of the virus, namely, how many does a node need 

to receive a signal to be infected? 

Parameters of Experiment 2 were selected as follows: 

1  is 0.18,   is 0.4. The model is simulated by cellular 

automata, degree of nodes is four. The cellular space is 

1000, the experiment is carried out 10 times, the statistic 

selection for the network reaches the steady state. Each cell 

has a count value to calculate the number of signals of the 

virus which are to be received to change into the R state, 

according to the rules of virus transmission, count subtract 

one to calculate the number of signals of the virus which 

are to be received to change into the I state [7]. 

We define Pm as the probability of being infected by 

the virus after the user receives the virus’s signal m times. 

The Pm statistics are as follows: 
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FIGURE 10 Pm statistics 

As shown in Figure 10, only about 17% of people after 

they receive the virus’s signal only once will accept and 

become infected with the virus. When the node receives 

two signals of the virus, more than 30% of people will 

choose to believe the information and will become infected 

with the virus. Although when m is equal to 3 or 4, the 

degree of users’ adoption of virus information is very high, 

the experiment proved that the second virus signal is the 

most important. This conclusion is verified by the 

experiment of Centola [9]. 

4 Verify and description of the validity of the model 

 

The first experiment forms the basis for all other tests. In 

Experiment 1, we tested the relationship between 1  and 

t  in the case of different topologies and different values 

of   In Figures 3 and 4, what are shown are the values of

reg  and rand  in the hexagonal network topology. 

There are two examples to prove the validity of the model 

presented in this paper: One is under the condition of small 

1  and large   the scope of transmission of the virus is 

large in the regular network, which is consistent with the 

conclusions of Centola experiments; another is under the 

condition of relatively large 1  and smaller  , the scope 

of transmission of the virus in the random network is wider 

than the one in the regular network. This is in line with the 

research conclusions of previous scholars: A virus travels 

faster in a random network than in a regular network [10]. 

In Experiment 2, we compared the experimental results 

with Centola. In addition to good description of the spread 

of the virus on social networks, this model can also 

describe well the Centola experiment when 1 0.18  ,

0.4t  , which confirms the validity of this model from 

the side. 

In Experiment 3, we obtained statistical information on 

the social reinforcement factor parameter that makes users 

infected with the virus. By averaging the testing values of 

repeated measurements, we can infer that the second time 

users receive the virus information is crucial for whether 

or not the node is infected with the virus, as the same point 

is also verified in the Centola experiment.  

5. Conclusion  

 

This paper combines innovatively with social public 

opinion communication and establishes a SEIR virus 

spread on a social network model. Using Matlab and 

quadrilateral cellular space and periodic boundary 

conditions of cellular automata as a tool, the model was 

put forward by the simulation experiment. In the 

experiments we first established regular and uniform 

random networks, then studied the effects of network 

topology, the social reinforcement factor parameters  , 

and the initial virus infection rate 1  on the process of the 

spread of the virus.  

Studies have shown that in the process of the spread of 

the virus in a social network, social reinforcement factor  

and the initial transmission rate 1  played a very important 

role. The main conclusions and results of the model are as 

follows: 

1) Even when the initial transmission rate 1  is very small, 

the virus can still be spread on the regular network if social 

reinforcement factor   relatively large, but on the same 

condition, the virus cannot be spread extensively on 

uniform random networks. That is to say, the virus travels 

faster and wider in the random network than in the regular 

network. This conclusion supports the results of the 

Centola experiment in certain cases. When social 

reinforcement factor   is 0.4 and the initial transmission 

rate 1  is 0.18, the model proposed in this paper can be 

used to simulate the Centola experimental network.  

2) When the initial transmission rate 1  is bigger, social 

reinforcement factor   is smaller, the spread of the virus 

travels faster and wider in the uniform random network 

than in the regular network. This conclusion is consistent 

with the traditional conclusion of virus spread on the 

network. 

3) When the initial transmission rate 1  is very large, all 

nodes in the network have a high probability of infection 

no matter what social reinforcement factor   is. As a 

result, the virus spreads quickly to the whole social 

network, and the spread of the virus has nothing to do with 

the network structure. 

4) When social reinforcement factor 0   the proposed 

model can be degraded as the standard SIR model for the 

spread of the virus in complex networks. 
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