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Abstract 

Rolling bearing performance degradation assessment is a predict and prevent technology. In order to assess the performance 

degradation degree of the rolling bearing, and make the time domain and frequency domain statistical factors be applied more 

effectively in rolling bearing performance degradation assessment, a comprehensive analysis method is proposed based on time domain 

and frequency domain statistical factors. Time domain and frequency domain statistical factors are calculated and analysed for the life 

cycle data of the rolling bearing. Outer raceway moderate fault and severe fault of the rolling bearing can be distinguished well by 

peak-to-peak level, the root-mean-square (RMS) value, and kurtosis value of time domain factors; normal state and mild fault can be 

distinguished better by frequency centroid, F3, F4 and F5 of frequency domain factors than each time domain factor. The outer raceway 

performance degradation condition of the rolling bearing can be monitored well by using the proposed comprehensive analysis method, 

which uses partly frequency domain factors to analyse mild fault and partly time domain factors to analyse moderate fault and severe 
fault. 
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1 Introduction 

 

Rolling bearing is the important rotating base element of 

machinery device and applied in many fields of national 

production, but while it is main fault source of machinery 

device [1-3]. Once the rolling bearing occurs faults, the 

machinery device may be damaged, the stability and safety 

of the integral production system will be influenced and 

enormous economic loss will be caused, even if casualty 

[4, 5]. So, it has become a research focus of fault diagnosis 

and condition assessment field to monitor and maintain the 

working condition of rolling bearing [6]. 

At present, proposed time domain and frequency 

domain factors usually are used for diagnosing whether the 

rolling bearing causes faults. For example reference [7] 

adopted peak-to-peak level, the root-mean-square (RMS) 

value, crest factor and kurtosis value to detect the fault 

information of the rolling bearing. The location of the fault 

can be detected by using spectrum analysis method and a 

well effect can be obtained; aiming to the rolling element 

damage of rolling bearing, a damage severity assessment 

method was proposed based on RMS by reference [8]. And 

compared with kurtosis value, crest factor and frequency 

domain amplitude of FFT transform, the validity and 

accuracy of proposed method is proved. In addition, based 

on time domain, frequency domain factors and time-

frequency domain characteristic factors, some intelligent 

diagnosis methods for rolling bearing fault were proposed 

by some references [9-12]. 
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However, there are relatively few cases to use time 

domain and frequency domain factors into rolling bearing 

performance degradation assessment. Generally speaking, 

when a rolling bearing is running, it passes through 

different stages of degradation until it is no longer 

functional. Because of different degradation degrees, the 

rolling bearing usually passes a series of different 

performance degradation conditions [13]. According to the 

integral change trend of bearing degradation degrees, the 

bearing degradation can be roughly divided into four 

conditions, that is normal condition, minor fault, moderate 

fault and severe fault [14]. The performance degradation 

of rolling bearing is a predict and prevent technology, that 

supported by device life cycle data and identifying the 

performance degradation degrees during the device 

performance degradation processing. By through detecting 

the running conditions of the device, the maintenance 

planning of the production device can be carried out 

targeted, and achieve the predict and prevent maintenance, 

avoid sudden fault and reach high efficiency and safety 

production. 

The time domain and frequency domain factors are 

used for assessing rolling bearing performance 

degradation degrees in this paper. By analysing the life 

cycle data, the advantages and disadvantages of each 

statistical factor can be obtained. A comprehensive 

analysis method is proposed based on partly time domain 

and frequency domain statistical factors. Comparing the 

assessment curves, the validity of the proposed method is 
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proved for performance degradation assessment of rolling 

bearing outer raceway. 

 

2 Time domain and frequency domain statistical 

factors of the rolling bearing 

 

The vibration signal of rolling bearing contains its running 

condition information which reflected by the time domain 

and frequency domain statistical factors. The calculation 

method of each factor is shown as follows: 

1) time domain statistical factors [9] 

a) peak-to-peak Level, which reflects the impact strength 

produced by bearing local fault point, the calculation 

formula is: 

minmax XXX PP  . (1) 

b) RMS, which reflects the total energy of the signal, the 

calculation formula is: 
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c) Shape Factor, the calculation formula is: 
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d) Impulse Factor, the calculation formula is: 
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e) Kurtosis Value, which reflects the statistic of vibration 

signal distribution characteristic, the calculation formula 

is: 
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f) Crest Factor, which describes the sharp peak degree, the 

calculation formula is: 
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g) Clearance Factor, the calculation formula is: 
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Above factors, peak-to-peak level and RMS are 

dimension factors and other five factors are dimensionless 

factors. 

2) Frequency domain statistical factors 

The frequency domain statistical factors of reference 

[9] are selected, that is F1-F5 (No. 1-5 in Table 1). And the 

frequency domain statistical factors of reference [15] are 

selected, that is the frequency centroid, the mean square 

frequency, RMS frequency and the frequency variance 

(No. 6-9 in Table 1). 

TABLE 1 Frequency domain statistical factors 

No. calculation formulas No. calculation formulas No. calculation formulas 

1 

K

ks

F

K

k


 1

1

)(

 

4 

))((

))((

2
2

1

4
1

4
FK

Fks

F

K

k






  
7 








N

i

N

i

ix

ix

MSF

1

22

1

2

)(4

)(



 

2 

1

))((

1

2
1

2









K

Fks

F

K

k  

5 

 



 


K

k

K

k

k

K

k

k

ksfks

ksf

F

1 1

4

1

2

5

)()(

)(

 8 MSFRMSF   

3 

))((

))((

3
2

1

3
1

3
FK

Fks

F

K

k






  
6 








N

i

N

i

ix

ixix

FC

1

2

1

)(2

)()(



 9 2)(FCMSFVF   

where, in the calculation formulas of No. 1-5, s(k) is the spectrum value when k=1,2,…,K, K is the total number of 

spectrum lines; in the calculation formulas of No. 6-9, 
sfixixix  )]1()([)( , fs is the sampling frequency. 
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3 The experiment and the analysis 

 

3.1 THE LIFE CYCLE DATA OF ROLLING BEARING 

 

The life cycle vibration signals related to the rolling 

bearing and the paper investigation were provided by 

university of Cincinnati IMS laboratory, the experimental 

device is shown in Figure 1. 

 

motor

bearing 1 bearing 2  3 bearing 4

accelerometer

radial

load
thermocouple

bearing

 

FIGURE 1 Schematic diagram of the experimental device. 

Four bearings were mounted on the same shaft, bearing 

rotating speed remained 2000 rpm, PCB 353B33 high 

sensitivity accelerometer sensor is mounted on each 

bearing. The vibration data of the experiment are collected 

once every ten minutes using NI 6062E data acquisition 

card, the sampling frequency is 20 kHz, the data collecting 

time is about 164 hours. There are 984 files and each file 

consists of four rows and 20480 columns data, that is four 

passages data and each passage data is 20480 points. 

 

3.2 THE ASSESSMENT CURVES ANALYSIS OF 

TIME DOMAIN AND FREQUENCY DOMAIN 

STATISTICAL FACTORS FOR THE 

EPERIMENTAL DATA 

 

After the experiment, according to each passage data 

respectively, the time domain and frequency domain 

statistical factors of every data segment can be calculated. 

Then the statistical factors of all data segments, that is the 

life cycle data, are drawn and the life cycle assessment 

curve of rolling bearing could be obtained. 

1) The assessment curves and analysis of the domain 

factors. 

The peak-to-peak level assessment curves of rolling 

bearing 2, 3 and 4 are shown in Figure 2, the assessment 

curves of each time domain statistical factor of rolling 

bearing 1 are shown in Figure 3. 

 

 
a) bearing 2 

 
b) bearing 3 

 
c) bearing 4 

FIGURE 2 Peak-to-peak Level assessment curves of bearing 2, 3 and 4 
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a) Peak-to-peak Level 

 
b) RMS 

 
c) Shape Factor 

 
d) Impulse Factor 

 
e) Kurtosis Value 

 
f) Crest Factor 

 
g) Clearance Factor 

FIGURE 3 The assessment curves of time domain statistical factors of bearing 1 
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From the assessment curves of time domain statistical 

factors in Figure 2 and Figure 3, the change trends of peak-

to-peak level factor of bearing 2, 3 and 4 are relatively 

consistent and keep stably. The similar curves can be 

obtained for other time domain statistical factors. So, it can 

be preliminarily judged that bearing 2, 3 and 4 are normal 

condition and no severe fault; but comparing with other 

bearing curves, the latter stage of each factor assessment 

curve of bearing 1 fluctuates violently, so the bearing 1 

occurs fault. And with the increase of fault degree, the 

performance of the bearing degrades faster and faster that 

is consistent with the actual condition. The assessment 

curve amplitudes of bearing 2, 3 and 4 increase slightly 

about at 160h around, in fact, it is influenced by the fault 

of the bearing 1. When the end of the experiment, the outer 

of the bearing 1 occurs fault and finally the bearing 

becomes failure because of serious fault. 

Next, the bearing 1 with the fault is analysed detailed. 

From Figure 3 (a) and Figure 3 (b), it can be seen that peak-

to-peak level and RMS of the bearing 1 all remain 

consistent and stable condition at the beginning of a long 

period of time, which shows that the rolling bearing runs 

well; at 88.5h around, the amplitudes of peak-to-peak level 

and RMS increase slightly, the rolling bearing occurs 

minor fault and can work stably at this stage; until 116.7h 

around, the amplitudes of peak-to-peak level and RMS 

increase obviously, which represents the bearing 

degradation degree becomes serious and comes into the 

moderate fault stage. After the fault becoming serious, the 

degradation speed of the bearing accelerates and the 

amplitudes fluctuate stronger; at 158.3h around, it can be 

seen that the fluctuation becomes further stronger from the 

two factors’ change, and the amplitudes rise obviously, the 

bearing comes into the severe fault stage; until 163.5h 

around, the factors rise rapidly, the bearing could not run 

and finally it is no longer functional, the experiment 

finishes. From Figure 3 (c), (d) and (e), it can be seen that 

the shape factor, impulse factor and kurtosis value all show 

sensitively reflection to the moderate fault and the severe 

fault. Among these three factors, the amplitudes of kurtosis 

value change more seriously and have better validity for 

identifying the moderate fault. From Figure 3 (f), the entire 

change trend of crest factor assessment curve fluctuates 

bigger and only reflects to the severe fault. From Figure 3 

(g), clearance factor reflects to the moderate fault and 

severe fault, but cannot distinguish them easily. 

Summary, peak-to-peak level and RMS factors reflect 

relatively weakly for outer raceway minor fault of rolling 

bearing and the sensitivity is low; other time domain 

statistical factors do not reflect to outer raceway minor 

fault of rolling bearing. Except for crest factor and 

clearance factor, other time domain statistical factors are 

sensitive to the moderate fault, the severe fault and the 

failure condition. 

(2) The assessment curves and analysis of the 

frequency factors 

The assessment curves of each frequency statistical 

factor of the bearing 1 are shown in Figure 4. 

 
a) Frequency domain factors F1 

 
b) Frequency domain factors F3 

 
c) Frequency domain factors F5 

 
d) Frequency centroid 

FIGURE 4 The assessment curves of frequency domain statistical factors of bearing 1 
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From Figure 4 (a), it can be seen that the frequency 

factor F1 fluctuates slightly at 88.5h around and increases 

obviously at 116.7h around, the growth rate increases at 

158.3h around and continues to rise until the bearing 

failure at 163.5h around. So, the frequency factor F1 is very 

sensitive to rolling bearing outer raceway moderate fault, 

severe fault and the failure condition, and slightly sensitive 

to the minor fault. The similar result can be obtained for 

the frequency factor F2 and the Figure is omitted. From 

Figure 4 (b), the frequency factor F3 obviously decreases 

at 88.5h around which represents the rolling bearing comes 

into the minor fault stage, then the amplitude fluctuates 

slightly until 158.3h around becomes stronger and the 

bearing final failure at 163.5h around. So, the frequency 

factor F3 is very sensitive to rolling bearing outer raceway 

minor fault, generally sensitive to the severe fault and 

relatively lack to distinguish moderate fault. The similar 

result can be obtained for the frequency factor F4 and the 

Figure is omitted. From Figure 4 (c) and (d), the frequency 

factor F5 and frequency centroid are relatively stable 

before 88.5h and increase obviously at 88.5h which 

represents the bearing comes into minor fault stage, then 

the amplitude increases slowly until 116.7h around further 

increases obviously which represents the bearing comes 

into moderate fault stage, next the curve amplitude 

strongly waves. So the frequency factor F5 and frequency 

centroid are very sensitive to the minor fault and moderate 

fault, and nearly can’t distinguish severe fault. The curve 

trends of the mean square frequency, RMS frequency and 

the frequency variance factors are similar to factor F5 

besides the amplitude, the curves are omitted. 

It is visible that frequency centroid, F3, F4 and F5 

factors are more sensitive to outer raceway minor fault of 

the bearing than time domain statistical factors, but 

obviously lack to severe fault and the failure condition. 

Based on above time domain and frequency domain 

factors analysis for rolling bearing life cycle data, time 

domain factors and frequency domain factors respectively 

have different assessment ability aiming to different 

degree faults. So, in practical application, the advantages 

of each factor can be used for comprehensive assessment. 
 

4 Conclusions 

 

By analysing time domain and frequency domain factors 

curves of experimental data, the change trend of the curve 

is basically consistent with the practical outer raceway 

fault condition of rolling bearing. But the assessment 

ability of each factor is different for outer raceway 

different fault degrees. 

Comparing with other time domain factors, peak-to-

peak level, RMS and kurtosis value can well distinguish 

outer raceway moderate fault and severe fault of rolling 

bearing. Comparing with each time domain factor, F3, F4, 

F5 and frequency centroid of the frequency domain factors 

are more sensitive to outer raceway initial fault of rolling 

bearing and the stability is well. 

By using the proposed comprehensive analysis 

method, partly frequency domain statistical factors (F3, F4, 

F5 and frequency centroid) are used for analysing outer 

raceway minor fault of the rolling bearing, and partly time 

domain statistical factors (peak-to-peak level, RMS and 

kurtosis value) are used for analysing moderate fault and 

severe fault, the outer raceway performance degradation 

condition of the rolling bearing can be monitored well. 

Although the experiment shows that the proposed 

comprehensive analysis method can monitor the outer 

raceway performance degradation condition of the rolling 

bearing, it is inconvenient for user to use multiple 

statistical factors. So, the further research focus is to study 

a unified and effective assessment factor for rolling 

bearing performance degradation. 
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