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Abstract 

Optimal Interpolation (OI) data assimilation is a technique to combine available observations with background states to improve 

prediction states. In this research, pseudo measurement of surface currents generated by adding noise with Monte Carlo simulation is 

used to update the background states with optimal interpolation. The core of Optimal Interpolation data assimilation is the definition 

of background error covariance, which determines to what extent the model background states will be corrected to match the 

observations. The background error covariance is computed before the data assimilation process. The model background errors are 

calculated from the mean over a short time interval ten minutes. A series of sensitivity tests with Optimal Interpolation are done by 

calculating Root Mean Square Error (RMSE) to decide the appropriate parameters. The improvement of Optimal Interpolation at 

reference points is measured in Taylor diagrams, and the surface current maps of test domain show the effectiveness of Optimal 
Interpolation.  
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1 Introduction 

 

Data assimilation is a technique to improve the modelling 

prediction ability by blending available measurement 

information with the background states. In general, there 

are two kinds of data assimilation algorithms: sequential 

and variational data assimilation (Robinson and 

Lermusiaux, 2000, Moore, Arango, Broquet, Powell, 

Weaver and Zavala-Garay, 2011, Ma, Zheng, Zhong and 

Zou, 2014). The analysis equation of the former is 

expressed by the linear combination between background 

and measurement states; the latter algorithm is generally 

derived from an objective function measuring the 

distance between observed states and background states 

(Zaron, 2009, Dong and Xue, 2012). In our current work, 

sequential Optimal Interpolation data assimilation scheme 

is undertaken to update the model background states. 

For sequential Optimal Interpolation data assimilation 

schemes, innovation of calculating the background error 

covariance results in a variety of methods, such as 

Optimal Interpolation (Gu, Woo and Kim, 2011, 

Rienecker, 1991), Ensemble Optimal Interpolation 

(EnOI) (Oke, Brassington, Griffin and Schiller, 2010, 

Counillon and Bertino, 2009). Due to the inexpensiveness 

and flexibility of Optimal Interpolation data assimilation 

algorithm, it is becoming a popular data assimilation 

approach in oceanography (Counillon and Bertino, 2009, 

Oke, Brassington, Griffin and Schiller, 2008, Srinivasan, 

Chassignet, Bertino, Brankart, Brasseur, Chin, Counillon, 

Cummings, Mariano, Smedstad and Thacker, 2011). 

Optimal Interpolation and Ensemble Optimal 

Interpolation data assimilation had been applied in some 

operational oceanic hydrodynamic prediction systems 

(Oke, Brassington, Griffin and Schiller, 2010, Oke, 

Brassington, Griffin and Schiller, 2008, Carton and 

Giese, 2008). In this paper, Optimal Interpolation method 

is used to update the surface velocity components by 

using pseudo measurement generated with Monte Carlo 

simulation (Doucet, de Freitas and Gordon, 2001). In 

order to clearly analyse Optimal Interpolation data 

assimilation process, a small test area is defined as our 

data assimilation domain, the purpose of this work is to 

develop an Optimal Interpolation data assimilation 

system for coastal areas and assess the improvement of 

Optimal Interpolation data assimilation. 

An outline of this paper is as follows: Section 2 and 3 

describe the three dimensional numerical modelling and 

generation process of pseudo measurement. Section 4 

presents Optimal Interpolation data assimilation schemes. 

Results of Optimal Interpolation data assimilation is 

presented in Section 5, followed by conclusions of 

Optimal Interpolation data assimilation in Section 6.  

  

2 Numerical modelling 

 

The Environmental Fluid Dynamics Code (EFDC) is 

applied to simulate the dynamic process of Galway Bay, 

which is located on west coast of Ireland. The numerical 

model EFDC solves the three-dimensional, vertically 

hydrostatic, free surface, turbulent averaged equations of 
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motions for a variable density fluid. The module uses a 

sigma vertical coordinate and curvilinear, orthogonal 

horizontal coordinates. There are 380×241 grids in the 

rectangular simulation domain of model, the grid 

resolution is 150 metres, the physical domain is from (-

9.71891E, 52.97371N) (left at the bottom) to (-8.87716E, 

53.03773N) (right on the top), following picture shows 

the modelling area and data assimilation domain. The 

basic research area is Galway bay, a square domain with 

961 wet cells is defined as our data assimilation domain, 

real dimension is a 4.65km×4.65km square area.  

FIGURE 1 Research area and data assimilation test domain 

The meteorological data (temperature, rain, solar 

radiation and relative humidity etc.) are obtained from the 

weather station located at National University of Ireland, 

Galway (http://weather.nuigalway.ie/). The river inflow 

of River Corrib was got from the Office of Public Works 

(http://www.opw.ie/hydro/). And the tidal information is 

generated from Oregon State University Tidal Prediction 

Software (OTPS), which provides tidal information on 

the western and southern open boundaries. In order to 

illustrate the Optimal Interpolation data assimilation 

process in detail, there are three main simulations 

performed: the Free run, which is initialised with no data 

assimilation for seven days (01/10/2011-07/10/2011), its 

output is applied to compute the background error 

covariance; the Assimilation run, which is initialised for 

seven days (14/10/2011-20/10/2011), but the surface 

velocity components are updated by utilising the pseudo 

measurement during the last four days; the Control run is 

the same as the Assimilation run, but with no data 

assimilation, which is regarded as the standard reference 

state, its output of surface velocity components are used 

to generate pseudo measurement by adding normal 

distribution noise. 

 

3 Pseudo measurement 

 

In order to update the background states in numerical 

model, pseudo measurement is generated by adding 

normal distribution noise to the output from a model run 

with Monte Carlo simulation, Monte Carlo simulation is 

undertaken to yield pseudo measurement based on the 

basic hydrodynamic trend(Doucet, de Freitas and 

Gordon, 2001). In order to clarify the difference between 

original model results and generated pseudo 

measurement, the noise is unbiased, the standard 

deviation of added noise is 20% of the maximum 

absolute difference of velocity components during model 

stable phase, the value of standard deviation are 4 cm/s 

and 3 cm/s for surface velocity components (u and v) 

separately. There are three obvious advantages by using 

this kind pseudo measurement: firstly, the generated 

pseudo measurement is based on the output from Control 

run, the general trend of generated pseudo measurement 

still follows the basic dynamical process; secondly, the 

value of noise can be controlled, which means that the 

sensitivity test of Optimal Interpolation data assimilation 

can be more accurately assessed; thirdly, the generation 

process of pseudo measurement is based on the 

background states field from the Control run and the 

noise field has the same structure of background states, so 

the yielded artificial measurement field matches well 

with the model state field.  

 

4 Optimal interpolation data assimilation 

 

Optimal Interpolation data assimilation combines 

observation states with model background states to obtain 

better prediction results, here, the background states are 

updated by utilising pseudo measurement.  

The analysis equation of Optimal Interpolation is a 

linear combination of background states and 

measurement states, the optimal weight factor (Kalman 

gain) is derived by minimizing the analysis error 

covariance, the analysis equation could be expressed as 

follows (Kalnay, 2002): 

0( )a b bx x K y Hx   , (1) 

http://weather.nuigalway.ie/
http://www.opw.ie/hydro/
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where 
ax  is the analysis state, 

bx is the forecast or 

background state, K  is the Kalman gain, H  is the 

measurement operator, 
0y  is the observation state. 

The state in our research is surface velocity 

components u and v, which could be given as: 

( , )Tx u v . (2) 
The Kalman gain is obtained in the following formula 

by minimizing the analysis error covariance (Kalnay, 

2002): 
1b T b TK P H (HP H R)  , (3) 

where bP  is the background error covariance, R  is the 

measurement error covariance 

The steps of Optimal Interpolation data assimilation 

updating surface velocity components with generated 

pseudo measurement by using Monte Carlo simulation is 

listed as follows: 

• Run the free model from 01/10/2011 to 07/10/2011, 

calculate the background error variance, the error 

variance of measurement field is averaged on space 

using obtained background error variance, then 

calculate the Kalman gain with equation (3) 

• Generate noise following normal distribution N (0, 

16) and N (0, 9) for producing pseudo measurement, 

because surface velocity component are calculated 

separately in our numerical model, normal 

distribution noise N (0, 16) is for u component of 

surface velocity, normal distribution noise N (0, 9) 

is for v component of surface velocity. 

• Control run is undertaken from 14/10/2011 to 

20/10/2011 with no data assimilation, the time 

interval of its surface velocity components output in 

data assimilation domain is sixty minutes 

• Add the generated noise to corresponding velocity 

components from Control run by using Monte Carlo 

simulation, the new dataset is the pseudo 

measurement field, then interpolate the pseudo 

measurement on time to every five minutes  

• Update the surface velocity states every five 

minutes with the generated pseudo measurement by 

utilising Optimal Interpolation data assimilation 

scheme in the square data assimilation domain  

Since the model takes about three days to be stable, 

the output of surface velocity components from the free 

run and data assimilation process are only taken during 

the last four simulation days.  

 

4.1 BACKGROUND ERROR COVARIANCE 

(FORECAST ERROR COVARIANCE) 

 

In Optimal Interpolation data assimilation scheme, the 

background error covariance is static, which means that 

the background error covariance is a constant matrix. It is 

calculated before the data assimilation process is 

performed (Robert, Blayo and Verron, 2005). According 

to the statistical relationship between the covariance and 

correlation coefficient, the background error covariance 

could be expressed as (Oke, 2002): 

cov( , )i j ij i je e      , (4) 

where ,i je e  are the errors at different locations, ,i j   

are the standard deviation of errors at different locations, 

ij  is the spatial correlation function, which is defined 

based on Gaussian function 
2

2
exp( )ij

d

L
   ,   is the 

scale factor, L  is the correlation length, d  is the spatial 

distance between two points. Our interest is to update the 

surface velocity components u and v. The appropriate 

parameters   and L  are determined when the Root 

Mean Square Error reaches minimum.  

According to equation (4), the background error 

covariance can be simplified as: 

1 1

2 2bP D CD , (5) 

D is the diagonal background state variance matrix 

describing the modelling error structure. The background 

state error 
be  is computed from the difference over a 

short time interval ten minutes ( 10min )t s  . 

var( ) [ ] [( )( ) ]b b bT b b b b TD e E e e E e e e e     , (6) 

b b b

i te x x  . (7) 

The overbar means the expected value.  
be  is the model error at different locations. 
b

ix  is the background state at time step i . 

C is the spatial correlation matrix. Every element is 

calculated from equation (4).  

Since pseudo measurements are yielded from Control 

run by adding noise with Monte Carlo simulation, the 

pseudo measurement field has the same structure as 

background states of numerical modelling, the 

measurement operator H in equations (1) and (3) is an 

identity matrix. 

In order to clearly show the improvement of 

sequential data assimilation schemes, in following 

Optimal Interpolation data assimilation, five minutes is 

chosen as the data assimilation interval.  

 

4.2 ADJUSTMENT OF   AND L  FOR OPTIMAL 

INTERPOLATION 

 

For Optimal Interpolation data assimilation process, 

parameters   and L  directly decide its effectiveness. Gu 

((Gu, Woo and Kim, 2011)) had used different optimized 

values of the two parameters at different location to 

assimilate vertical current data to the unstructured grid 

ocean numerical model, the minimum and maximum of 

  was 1 and 4, the minimum and maximum value of 
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correlation length L was 20 km and 100 km. Ragnoli 

(Ragnoli, Zhuk, Donncha, Suits and Hartnett, 2012) 

assimilated the High Frequency radar surface current data 

of Galway bay in numerical model, the scaling factor war 

chosen as 100 and correlation length was 0.3 km, their 

data assimilation area was the whole inner Galway bay. 

For different research area and using different types of 

measurement, the optimal parameters of scaling factor 

and correlation length are different. In our research, a 

variety of test cases with different values of these 

parameters are investigated, RMSE is employed to 

measure the degree of their match. For these tests, 

assimilation interval is five minutes. Firstly, the RMSE is 

calculated on space (961 grids) every five minutes, then it 

is averaged on time (see Table 1 and Table 2).  

 
TABLE 1 RMSE of u component 

a/L 0.15 km 0.30 km 0.45 km 0.75 km 1.05 km 1.50 km 3.00 km 

1 0.0523 0.0508 0.0508 0.0538 0.0605 0.0769 0.1910 

2 0.0550 0.0524 0.0535 0.0642 0.0846 0.1292 0.3770 

3 0.0570 0.0541 0.0573 0.0754 0.1094 0.1834 0.5705 

 
TABLE 2 RMSE of v component 

a/L 0.15 km 0.30 km 0.45 km 0.75 km 1.05 km 1.50 km 3.00 km 

1 0.0383 0.0373 0.0372 0.0393 0.0438 0.0556 0.1947 

2 0.0404 0.0385 0.0392 0.0472 0.0630 0.0994 0.4089 

3 0.0418 0.0398 0.0418 0.0561 0.0833 0.1466 0.6074 

 

From the RMSE (u) and RMSE (v) in these cases, 

when 0.1  and kmL 45.0 , both of them are 

minimum, so these values are employed in our Optimal 

Interpolation data assimilation.  

 

5 Results 

 

The goal of Optimal Interpolation data assimilation is to 

enhance the modelling prediction capability referring to 

the measurement trajectory. Surface current maps at 

certain time steps are displayed and statistical comparison 

of surface velocity components time series for reference 

points is shown in Taylor diagrams. The surface current 

maps of assimilation model field are compared with 

control model field with no data assimilation process and 

pseudo measurement field at certain time steps. Here, 

only the data assimilation domain is displayed.  

In Figure 2-4, the left panels show surface current 

map at t=4.0 days, the right panels show surface current 

map at t=6.0 days. For both surface current map at t=4.0 

days and t=6.0 days, compared with results from original 

model in Figure 3, Figure 4 shows that the Optimal 

Interpolation data assimilation process absorbs useful 

information from pseudo measurement into numerical 

model, since the consideration of observation error in 

Optimal Interpolation data assimilation process, the 

pseudo measurement is not fully projected into the 

numerical model, the assimilation model just assimilated 

the basic trend of pseudo measurement into assimilation 

model. The pseudo measurement is generated by adding 

normal distribution noise into the results from Control 

model, the general trend in the data assimilation domain 

is chaotic. We use this way to test the sensitivity 

reflection of our Optimal Interpolation data assimilation 

process when this kind of pseudo measurement is used 

for update. The reason behind this is that observation data 

in real world is always noisy. Generally, Optimal 

Interpolation works well when chaotic pseudo 

measurement is used for assimilation, and compared with 

Control model, general trend of assimilation model in 

data assimilation domain is closer to pseudo 

measurement trajectory.  

  
FIGURE 2 Surface current map with no data assimilation from Control model (t=4.0 days and t=6.0 days) 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 240-248 Ren Lei, Nash Stephen, Hatnett Michael 

244 
Operation Research and Decision Making 

 

  
FIGURE 3 Surface current map of pseudo measurement (t=4.0 days and t=6.0 days) 

  
FIGURE 4 Surface current map with Optimal Interpolation data assimilation (t=4.0 days and t=6.0 days) 

In order to further assess the effectiveness of Optimal 

Interpolation data assimilation, Taylor diagram (see 

Figure 5-12) of two inside reference point C, point D and 

two boundary reference (point A and point B) are 

displayed (see Figure 1). Data of these figures is from 

t=3.0 days to t=7.0 days. Taylor diagram is a graphical 

way to summarise degree of match between observation 

and reference models, their statistic (correlation, centred 

root-mean-square difference and standard deviation) 

could be concisely shown in terms of each model’s 

position in the diagram (Taylor, 2001). In the following 

Taylor diagrams, the blue point means the results of data 

assimilation model, the red point stands for the results of 

control model with no data assimilation process from 

Control run, the hollow black dot on the horizontal axis is 

the measurement state. The centred root-mean-square 

difference between the modeming results and observed 

patterns is proportional to the distance to the point on the 

x-axis identified as measurement. The dotted contours 

indicate the RMS values. The dotted line from the origin 

to arch shows the correlation relationship between 

observation and modelling states. The standard deviation 

of the modelling results is proportional to the radial 

distance from the origin. Generally, the RMS values of 

assimilation states (blue point) is smaller than Control 

modelling results (red line), especially for point B, which 

means that the Optimal Interpolation data assimilation 

process makes the numerical modelling takes useful 

measurement information into the dynamic system. There 

is not obvious improvement of correlation relationship 

for point A and point D, but for point B and v component 

of point C, in other words, the assimilation process 

renders the model have a closer correlation relationship 

with measurement states. For the standard deviation, 

since the pseudo measurement is produced by adding 

normal distribution noise to the results from original 

modelling. Surface velocity components of four points 

time series are outputted at the exact data assimilation 

time step with five minutes assimilation interval. The 

chaotic pseudo measurement is not smooth comparing 

with results of the Control run, so the assimilation model 

could not show smaller standard deviation when noisy 

pseudo measurement is used. This also proves that the 

quality of measurement is of great importance for our 
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data assimilation, although the measurement error is 

considered in the Kalman gain, check of measurement 

data is needed. From the below Taylor diagrams, the 

majority of the Taylor diagrams show that the Optimal 

Interpolation data assimilation process improves the 

modelling prediction ability, making the model states 

closer to observation states, which means that Optimal 

Interpolation data assimilation is an effective tool to 

enhance the numerical modelling by blending the 

available measurement data. 

Since the surface u and v pseudo measurement are 

assimilated in the numerical modelling respectively, the 

impact of data assimilation on the direction of total 

velocity is also investigated. Taylor diagrams of these 

reference points direction (t=3.0~7.0 days) are shown as 

follows. Except for point A, the correlation relationship 

between measurement states and assimilation states is 

enhanced and the RMS values are reduced with 

assimilation.  

  
FIGURE 5 Taylor diagram of u component at point A FIGURE 6 Taylor diagram of v component at point A 

  
FIGURE 7 Taylor diagram of u component at point B FIGURE 8 Taylor diagram of v component at point B 
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FIGURE 9 Taylor diagram of u component at point C FIGURE 10 Taylor diagram of v component at point C 

  
FIGURE 11 Taylor diagram of u component at point D FIGURE 12 Taylor diagram of v component at point D 

  
FIGURE 13 Direction Taylor diagram at point A FIGURE 14 Direction Taylor diagram at point B 
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FIGURE 15 Direction Taylor diagram at point C FIGURE 16 Direction Taylor diagram at point D 

 

6 Conclusions 

 

Taylor diagram at reference points and surface current 

maps in data assimilation domain showed that application 

of Optimal Interpolation to update model background 

states with pseudo measurement improves the modelling 

prediction ability in data assimilation domain, which 

means the method to calculate the background error 

covariance in our data assimilation system is meaningful. 

The improvement of Optimal Interpolation data 

assimilation is not obvious or the added analysis 

increment contaminates the background states in certain 

area or at few points (point A, v component). This is due 

to the modelling error covariance could not well stand for 

the development the modelling error, namely the 

background error covariance is stationary (Oke, 

Brassington, Griffin and Schiller, 2010, Counillon and 

Bertino, 2009, Oke, 2002). For further research, authors 

are trying to develop an operational real time forecasting 

surface current data assimilation system, real in situ 

measurement data will be used to update the background 

state in the following work.  

The background error covariance was calculated from 

a free run, the model error was defined by subtracting the 

mean of background states over ten minutes from the 

model states. The time series improvement of surface 

velocity components at four inside reference points 

during the last four simulation days is displayed in Taylor 

diagram, the shown statistical values in Taylor diagrams 

depict that the model states are closer to the measurement 

trajectory when the Optimal Interpolation data 

assimilation is applied. The surface current map at certain 

time steps describe the Optimal Interpolation data 

assimilation process has assimilated the useful 

information from measurement into the model. When 

comparing with the original model that contained no data 

assimilation process, the general regional tends to follow 

the measurement trend after assimilation, which proves 

that the method used to compute the background error 

covariance is reasonable and Optimal Interpolation data 

assimilation works when pseudo measurement is used to 

update the model states. Optimal Interpolation data 

assimilation scheme of updating with pseudo 

measurement does improve the model prediction ability, 

which proves that this new way of computing background 

error covariance is efficient.  
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