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Abstract 

Against the shortcoming that the traditional method of fractal image compression coding has inferior decoding quality on the original 

image subject to salt-and-pepper noise interference, this paper raises a least absolute deviation (LAD) method to be applied in fractal 

image compression, which can replace the method of least square error in computing contrast and brightness adjustment value and 

solve the L1-norm recursive problem using weighted median. The experimental result indicates that the LAD method has a very 

good anti-noise effect on the outliers introduced by salt-and-pepper noise.  
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1 Introduction 

 
Put forward by Mandelbrot in 1975 [1], the fractal theory 

was first applied in image compression by Barnsley in 

1988 [2]. It was not until Jacquin raised iterated function 

system (IFS) and local iterated function system (LIFS) 

[3] that the theoretical foundation of fractal image 

compression technique has been laid. Afterwards, this 

theory was used in image retrieval [4], digital 

watermarking [5], image inpainting [6] and image 

denoising [7], etc., respectively. The algorithm raised by 

Jacquin is based on the concept of local self-similarity of 

image, in which the local blocks can identify another 

similar block through three adjustment methods - 

contrast, brightness and reversal. The LIFS can 

automatically convert images into affine transform 

coefficients, which can achieve the aim of compression 

only by being stored up. Fractal image compression 

enjoys advantages like high compression ratio, 

irrelevance of resolution ratio, fast decoding and more, 

whereas the disadvantage is the overlong compressing 

hour as result of using the global searching method to 

seek for the optimal matching blocks. Therefore, in order 

to speed up the encoding and strengthen the image detail 

compensation, some scholars combine fractal with other 

algorithms. He Jia, zheng-kai liu [8] used low frequency 

coefficients in DCT as the matching feature, and made 

matching more rapid and accurate.  

The LAD method was put forward by Boscovich in 

1757, namely the L1-norm, whose aim is to minimize the 

absolute deviation through estimative parameters, though 

the weakness of non-differentiability left it unused for 

complicated computation. Many parallel methods, such 

as the Barrodale-Roberts [9] Algorithm, the Bartels-

Conn-Sinclair Algorithm and the Maximum Likelihood 

Estimation Algorithm [10] did not rise until Edgeworth 

put forward resolving the problem of non-differentiability 

using weighted medians [11] in 1887 and Harris solved 

the LAD method using the simple concept of linear 

programming in 1950 [12]. 

In traditional fractal image compression algorithms, 

the least square error (LSE) method is adopted to 

determine brightness and contrast adjustment coefficients 

by contrasting the range blocks to the domain blocks. It 

can be known from the recursive principle that the LSE 

method is of no robustness, so the restored image has 

inferior quality upon being interfered by noise after 

undergoing compression. Replacing the traditional LSE 

method with the LAD method, we take the advantage of 

robustness with the LAD method to remove noise from 

the fractal images straightforward during the compression 

procedure without undergoing the pre-processing prior to 

noise-removal so that the quality of image is not affected 

by noise. 

 

2 Theory evidence 

 

2.1 LEAST SQUARE ERROR (LSE) METHOD  

 

Fractal encoding performs compressed encoding by 

exploiting the characteristic of image’s local self-

similarity. Each block within an image may correspond to 

a big similar block. Taking the two groups of blocks in 

Figure 1 as an example, one group is the hat edge in 

correspondence to the hat in the mirror, the other being 

the similar but larger block in correspondence to the part 

of shoulder. The larger block approximates the smaller 

counterpart within the same group after being minimized 

and adjusted in contrast and brightness.  
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A 256-by-256 image can fall into non-overlapped n-by-n 

range blocks, the set of which is a range pool. Then the 

original image is divided into 2n-by-2n domain blocks 

that can be overlapped, the set of which is called a 

domain pool. The procedure of fractal image compression 

is to pinpoint the most similar domain block from the 

domain pool for each range block in the range pool. This 

procedure can be viewed as finding a domain block 

through convergent operations of affine transform. 

 
FIGURE 1 Local Self-similarity of Fractal Image Compression 

In the contrasting procedure, the square error is used 

to estimate the difference between the range block v and 

the domain block u after the sub-sampling. Smaller is 

indicative of higher similarity between the domain block 

u and the range block v, as shown in Equation (1). 

2
( )k k k kE p u q v   , k=0,1,...,7, (1) 

where k denotes 8 directions of reversal; , ,k k kE p u and qk 

represent the square error value, the contrast adjustment 

value, the block after the secondary sampling, and the 

brightness adjustment value, respectively, of the 

difference degree of the estimative block under the kth 

reversal. ˆ
kp  and ˆkq  are the predicted values of kp  and 

kq , respectively, which can derive from 

Equation(1)through partial differential. This method to 

compute p and q is just the LSE method, N in the 

following Equation being the size of the range block. 
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LAD Method 

The LAD method is interpreted against the concept of 

linear regression, a model of which is assumed as 

Equation (4). 

iii baxy  , i=1......L, (4) 

where x is the input value, y is the output value, and   is 

the error term. When i  meets the following assumptions: 

(a) ( ) 0;iE    

(b) The variance number is constant; 

(c) i  is a Gaussian distribution function whose formula 

of Gaussian distribution follows Equation(5), where the 

mean μ = 0 and the variance is σ; 

(d) Each follows independent distribution. 

When i  meets the above assumption, it is the 

optimal choice to solve Equation (4) using the LS method. 

When i  is assumed as a Laplace distribution function 

whose formula of Laplace distribution follows Equation 

(6) where the mean μ = 0 and the variance 
2




 , and 

when i  meets the above assumptions (a), (b) and (d) 

with a Laplace distribution, it is the optimal choice to 

solve Equation (4) using the LAD method. Different 

methods are employed for the optimal solution according 

to different assumptions of i . 
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The LAD method and the traditional LSE method are 

applied to Equation 4 respectively to produce Equation (7) 

and Equation (8). 
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In the above Equations, E is the sum of the parameters 

in group L, ei is the error value of the parameters in the ith 

group. For the same group of parameters, ei has identical 

value. Between both methods mentioned above, the 

difference lies in the fact that the LAD method takes the 

absolute value of ei. When ei is positive sgn (ei) becomes 

1, when ei is negative sgn (ei) becomes -1. While in the 

LSE method, the error value E will become greater after 

the value of ei is squared. Under the circumstance where 

the LAD method is used, there is no significant difference 

with ei between the interval [-1, 1] from the LSE method; 

but when outliers emerge to the data, ei will be magnified 

at a square rate when the LSE method is employed, 

which leads the error E to become too great to make good 

judgment and estimation, so the value of ei shall be kept 

from being magnified fast to reduce the effect of a few 

outliers on all the data, which is the robustness in 

inhibiting outliers, as shown in Figure 2. 
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FIGURE 2 Relations between LAD, LSE and error E 

 

2.2 MAXIMUM LIKELIHOOD ESTIMATES (MLE) 

 

The LAD method cannot perform differential since 

absolute value exists, so the parameters with least 

absolute deviation value need to be determined through 

other methods. What is adopted in this paper is the 

maximum likelihood estimation algorithm [10], in which 

the weighted medians are operated. The weighted median 

starts from the viewpoint of geometric slope. Where the 

slope is greater than 0, the deviation value is minimum. It 

can be inferred as follows that the slopes after being 

sorted are on a progressive increase, turning from 

negative to positive as increasing to a certain value, 

which is the approximate minimum rising when the least 

deviation method is used. The proof goes as below: 
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F(a) is the absolute value taken from Equation (4); x 

and y are the input and output, respectively, each holding 

the parameters in L Group, where: 
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I_(a) is a set of parameters in L Group whose slopes 

are smaller than a; I+(a) is a set of parameters in L Group 

whose slopes are greater than a. Partial differential is 

applied to a in Equation (9) to get the slope as Equation 

(10). The minimum deviation value is determined by the 

LSE method when the slopes are 0. Since the LAD 

method is linear and continuous, it is taken that 

'( ) 0F a  . While the parameter in correspondence to 

the slope turning from negative to positive reaches the 

minimum. 
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According to Equation (10), when 5 groups of 

parameters are input, the change of their slopes is shown 

as Figure3. The slopes are sorted as 1, 2, ..., 5 in an 

incremental order, whereas the slopes are 
[ ]

[ ]

i

i

y b

x


, and 

the corresponding parameters can be yielded. At Interval 

(3) '( )F a  is negative while becoming positive at 

Interval (4), so Interval (4) is the first group of data [4]x  

when '( ) 0F a  . And Figure 3 indicates that the 

minimum should be among ]3[x . It can be known from 

Equation (11) that the input data are within the set of 

I_(a). As the data ]1[x  input at the first time are 

accumulated to the data ][ix  input at the ith time and 

when the accumulated sum is greater than one half of the 

sum of all input data, the input data at the ith time are the 

input ones of the first positive slope when the slope just 

turns from negative to positive. From Equation (11) it can 

be found the first datum where '( ) 0F a   is the one 

input at the ith time, so the minimum deviation value may 

occur when the datum is input at the (i - 1)th time. 

 
FIGURE 3 Conceptual Schematic Diagram of Weighted Median 

Figure 3 reveals the minimum deviation value may 

occur among the data in the third group. It can be 

concluded from Equation (11) that, When the input data L 

group, the minimum deviation value may be among the 

data input at the (i - 1)th time. The weighted medians 

compute the slope of the data with the least deviation 

value. They are denoted by MED(•) as below: 

1( )Li

i i

i

y b
a MED x

x



  . (12) 

The steps to compute the weighted medians are as follow: 

Step I: Assume 
i

i

i

y b
w

x


 , record the slope input 

each time.  
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Step II: Compute the threshold value 
1

' (1 / 2)
L

i

i

x x


  . 

Step III: Express all the slopes 
Lww ......1

 as 

[1] [ ]...... Lw w   after sorting them; in correspondence 

to 
][iw  after being sorted, the relevant input data is 

][ix  

as the weight.  

Step IV: Apply summation to [ ]ix  one after another; 

record the index value j that first meets 
[ ] 0

1

j

i

i

x x


 , 

then the index value of the minimum is j - 1. 

Step V: 
]1[ jw  is the slope in correspondence to the 

minimum; the computation for the weighted medians is 

just done by letting [ 1]ja w  . 

The above is introduction to the concept of and steps 

for weighted median, whereas the following provides 

illustration on how MLE figures out the slope and the gap 

by means of the weighted medians. In order to accelerate 

convergence after using the weighted medians, MLE 

transforms the space to finely adjust the slope, thereby to 

get more accurate slope, reduce the times of training, and 

get the slope with the least error and the corresponding 

gap through fast convergence. 

The MLE calculation method 4 offers to pinpoint the 

parameters a and b in correspondence to the minimum E 

in Equation (7). 

The steps are as follow: 

Step I: Set the times of recursion as k = 0 at the very 

beginning; b = bk is yielded through calculation using the 

LSE method, as shown in Equation (13): 
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Step II: Compute the parameter a0 using the weighted 

medians, expressed as Equation (14): 
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Determine the index value h for existence of least 

deviation value. The parameter a0 can be yielded from 

Equation (14), accordingly update 0olda a
. 

Step III: Let k = k + 1 to convert the input spatial 

coordinate i i hz x x 
. 

Step IV: Compute 
'

1 1k ka a  , 

'

1 1 1k k k hb b a x     and the weighted median 
'

ka
 
as 

Equation (15): 
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Compute from Equation (15) the new index value m 

and the corresponding parameter '

ka . 

Step V: Compute '

k ka a  and ' '-k k k hb b a x  by 

converting the original spatial coordinate. 

Step VI: Let h = m. Stop where the variances of aold and 

ak are below the permitted value or where the time of 

recursion exceeds the set value; otherwise update 

0olda a  and return to Step III. The above steps can be 

expressed by the flowchart as Figure 4. 

 

3 Application of LAD in fractal image compression 

 

The workflow of introduction of LAD in fractal image 

compression bears general similarity to traditional 

methods of fractal compression, the only difference being 

how to compute p and q and utilize the absolute deviation 

as an indicator of estimation, as shown in Figure 5.The 

main steps by which to replace LS with LAD are as 

follow: 

Step I: Fall the original image into an 8-by-8 non-

overlapped range block v and a 16-by-16 overlapped 

domain block u. 

Step II: Apply secondary sampling to u and perform 

reversal at k. 

Step III: The iteration time t = 0. Compute the initial 

ˆ
k kq q

  

 
FIGURE 4 Flowchart of LAD 
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FIGURE 5 Flowchart of LAD-FIC 

Step IV: Figure out pk using MED(•), expressed as 

Equation (16): 
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Where N is the size of the range block v. According to 

the above Equation, the least deviation value within the 

8-by-8 uk(i, j) is (h1, h2), whereby to update pold = pk. 

Step V: Let t = t + 1. Convert the input space 

( , ) ( , ) ( 1, 2)k kz i j u i j u h h  . 

Step VI: ( 1, 2)k k k kq q p u h h   and pk after space 

conversion are shown as Equation (17): 
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According to the above Equation, the least deviation 

value within z(i, j) is (m1, m2). 

Step VII: Convert to the original space, where 

( 1, 2)k k k kq q p u h h  .  

Step VIII: Let h1 = m1, h2 = m2. Stop where the 

variances of pold and pk are below the permitted value or 

where the time of iteration exceeds the set value; 

otherwise update pold = pk and return to Step IV. LAD 

offers to compute pk and qk from Step IV through Step 

VIII. 

Step IX: Return to Step II if none of the eight 

directions of reversal has been used. 

Step X: Record the fractal code in correspondence to 

the least absolute deviation in Equation (15). 

))(min( vqupE kkkK 
, k=0,1,...7 

Step XI: Apply global search to the domain pool to 

pinpoint the domain block u in correspondence to each 

range block v. Thus the LAD-FIC computation is done. 

 

4 Experimental result 

 

The tool for experiment in this paper is Visual C++ 6.0, 

the operating system is Microsoft Windows XP, the CPU 

is Intel Core i5 3450, and the internal memory is 4G. In 

this section, a comparison will be made between the 

traditional method of fractal compression and the LAD-

introduced method of fractal image compression for 

multiple frames of images where different noises are 

included. The images in use are all 256-by-256, the size 

of range block being 8-by-8. The condition under which 

MLE stops is that the time of iteration reaches 5 or that 

the difference between the yielded p value and the 

previous p value is smaller than 0.05. PSNR, which is 

used to evaluate the quality of the decoded image, is 

defined as Equation (18), whereas MSE is defined as 

Equation (19). 
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where f is the original image, f̂  is the decoded image. 

Initially, the Lena image in which no noise has been 

included offers as the image to test. The traditional fractal 

image compression (FIC) method and the fractal image 

compression method where LS gives way to LAD (LAD-

FIC) are used separately to observe the effects of 

compression by both, as shown in Figure 6. Baboon is the 

initial image to decode. Through 9 times of iteration, 

Figure 6(b) is the image decoded by FIC, whose PSNR 

value is 28.86dB. Figure 6(c) is the image decoded by 

LAD-FIC, whose PSNR value is 28.27dB. The images 

decoded by both methods have almost the same PSNR, 

wherefrom both LAD-FIC and FIC methods can be 

verified to make the same effect in terms of compression. 

 

   

(a) Original Image 

Lena 
(b) Decoded Image by 

FIC, PSNR = 28.86dB 

(c) Decoded Image 

by LAD-FIC, PSNR 
= 28.27dB 

FIGURE 6 Contrasted Effects of Lena Image Tested by FIC and LAD-FIC 
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Next, it is attempted to include 5% and 10% salt-and-

pepper noises in the four images (Lena, Baboon, Pepper 

and F16). After being compressed by both methods, all 

the decoded images are based on Baboon as the initial 

image but Baboon itself, which is based on Lena as the 

initial image. The decoded images are produced after 9 

times of iteration. Figure 7(a) is the image by including 

the 5% salt-and-pepper noise in Lena. Figure 7(b) and 

Figure 7(c) are the decoded images after FIC and LAD-

FIC are used for compression. Obviously, it can be seen 

that Figure 7(b) has been vulnerable to noise in that its 

decoded image fails to restore Lena but presents only a 

few lines across big blocks which cannot clearly 

distinguish the original image. The difference between 

the PSNR values of Figure 7(c) and Figure 6(c) is only 

1dB, wherefrom it can be seen that LAD-FIC can almost 

remove the effect of the 5% salt-and-pepper noise 

entirely. 

   

(a) 5% Salt-and-
Pepper Noise 

(b) Decoded Image by 

FIC, PSNR = 
11.87dB 

(c) Decoded Image 

by LAD-FIC, PSNR 
= 27.21dB 

FIGURE 7 Lena Image for Testing 5% Salt-and-Pepper Noise 

Next, 10% salt-and-pepper noise is then included in 

the test. Figure 8(a) is the image by including the 10% 

salt-and-pepper noise in Lena. Figure 8(b) is the decoded 

image by FIC whose PSNR value is 11.41dB, with only a 

bit more inferior effect than 7(b) though the quality of 

image has been so poor as to obscure the original image. 

Figure 8(c) is the decoded image by LAD-FIC whose 

PSNR value is 26.42dB, which falls below the 

counterpart of Figure 7(c) for the image’s vulnerability to 

noise but is still above that of the decoded image by FIC. 

   

(a) 10% Salt-and-

Pepper 

(b) Decoded Image by 
FIC, PSNR = 

11.41dB 

(c) Decoded Image 
by LAD-FIC, PSNR 

= 26.42dB 

FIGURE 8 Lena Image for Testing 10% Salt-and-Pepper Noise 

The test is conducted on the three other images by the 

same method. To illustrate it with Table 1, the parameter 

S in the table denotes the salt-and-pepper noise. The 

experiment demonstrates that the PSNR value of the 

decoded image produced through fractal compression on 

the image in which the salt-and-pepper noise has been 

included has decline to a considerable degree, whereas 

LAD-FIC remains not affected by this noise, therefore 

LAD-FIC has the effect of resisting the salt-and-pepper 

noise 

 
TABLE 1 the PSNR (unit: dB) Values of Pepper, Baboon and F16 

under 5%, 10% and 20% Salt-and-Pepper Noises 

 

Pepper Baboon F16 

FIC 
LAD-

FIC 
FIC 

LAD-

FIC 
FIC 

LAD-

FIC 

Original 
Image 

29.78 29.31 20.03 19.82 25.17 24.43 

S=5% 17.89 27.88 15.43 19.26 12.83 23.71 
S=10% 17.96 27.21 17.56 20.12 5.53 23.23 

S=20% 18.31 25.92 17.41 18.33 6.24 22.67 

 

5 Conclusion 

 

Traditional techniques of fractal image compression fail 

to discuss how to resist noise, so the quality of 

compression will be vulnerable to noise when the original 

image is interfered by noise. The LAD method of 

robustness used in substitution for the traditional LSE 

method endows the image with the capacity of resisting 

the salt-and-pepper noise, namely the LAD-FIC solution 

proposed in this paper can remove noise while 

compressing the image. This method makes extremely 

excellent effect on images vulnerable to the salt-and-

pepper noise, yet there is no distinct effect for Gaussian 

noise and Laplace noise. Since LAD-FIC first uses FIC to 

estimate the rough contrast and brightness adjustment 

value prior to further adjustment to figure out the accurate 

contrast and brightness adjustment value, it is discovered 

through a comparison between both that the time cost for 

LAD-FIC is 18 times that for FIC. In the research 

direction in the future, it is hoped that the compressing 

time can be further reduced, or the contrast and 

brightness adjustment value can be changed to get their 

linear relationship, on the premise of guaranteeing its 

robustness, so as to achieve a higher quality of 

compression. 
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