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Abstract 

Modal parameters of a structure are important for system identification. In order to identify modal parameters of a structure more 

accurately, this paper proposes a parameter identification method combined with stabilization diagram. Stochastic subspace 

identification (SSI) is a recently developed method for identifying a linear system. Combining SSI and the proposed method can 

easily confirm system order. However, the proposed method has difficulty in distinguishing spurious modals. Therefore, the 

proposed method must be revised to ensure that the spurious modal can be detected and the SSI can be used to improve identification 

accuracy. Finally, a simulation is conducted on a fracturing pump truck, when the damping ratio increases from 10% to 40%, those 
spurious modals disappear. The results indicate that this method performs precise identification. 
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1 Introduction 

 

Determining modal parameters has become important for 

system identification in the past decades. Results of 

experimental modal analysis (EMA) are used in practice; 

an overview of the EMA method can be found in [1–3]. 

In some cases, performing the vibration test on large 

structures is difficult or impossible because some 

excitations, such as wind or traffic, cannot be measured. 

In addition, using artificial excitation, such as hammer or 

drop weight, is impractical or, in some cases, expensive. 

Therefore, output-only stochastic system 

identification methods have been developed. In these 

methods, ambient forces cannot be ignored and should be 

regarded as stochastic quantities with some unknown 

parameters. Stochastic subspace identification (SSI) is 

one of the methods for identifying system parameters. 

SSI has two implementation procedures: covariance-drive 

(SSI-cov) and data-drive (SSI-data) implementation [4]. 

Given that these methods need only the outputs of the 

structure for measurement, artificial excitation is 

unnecessary. 

Estimating the modal parameters of the structures 

according to the measured data involves three steps: data 

collection, system identification, and determination of 

modal parameters [5–7]. This paper focuses on data 

collection. Thus, system identification should be treated 

as an important problem and is defined as construction of 

the system model according to the measured data. The 

SSI method is used in the time domain because of its 

convenience [8]. The modal parameters can be 

determined according to a free vibration analysis of the 

identified system model.  

In this paper, the stabilization diagram can be used to 

determine the system order, which is an important step 

for system identification. Other studies [9–11] confirmed 

the stabilization diagram method based on singular value 

decomposition. However, the obtained results are 

insufficient because the stabilization diagram method is a 

comparatively new method of determining system order. 

The stabilization diagram method can be used to 

distinguish real modals and modals in cases with excess 

noise. The stabilization diagram can delete certain system 

poles that meet the condition, but cannot be treated as 

real poles because they may belong to noise modals and 

not to the system. Thus, these poles can be distinguished 

and deleted by using the stabilization diagram. 

This paper is organized as follows: Section 2 shows 

how the vibration structure can be modeled according to 

stochastic state-space models and modal analysis. Section 

3 discusses the subspace identification method used for 

system identification. The use of a stabilization diagram 

to determine the system order is discussed in Section 4. 

Section 5 shows the application of this method to a real 

structure. 

 

2 Stochastic state-space model for vibrating structures 

 

For a linear dynamical system model, the following 

system of ordinary differential equations can be obtained: 

2
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where M  represents the mass matrices, 
2C  represents 

the stiffness matrices, K  represents the damping 

matrices, ( )tf  and ( )tu  represent the nodal forces and 

nodal displacement, respectively, 
2

B  is the selection 

matrix, and t is the time. This equation can be converted 

into the state-space model as follows: 
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where x(t) is the state of the structure. The quantities of 

interest can be grouped in an output vector (t) as follows: 

( )

1
2 2

d d
y t a v dd d

a v ad

  

  
 

u(t) u(t)
C C C u(t)
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= C C M KC C M C x(t)+ CM B f(t)

= Cx(t)+ Df(t)

, (4) 

when they are the linear combination of nodal 

displacements, velocities, or accelerations. 

In these equations, Ca, Cv, and Cd are the selection 

matrices. The discrete-time state-space model can be 

obtained after discretization in time: 

1k k k
 


x Ax Bf , (5) 

k k k
 y Cx Df . (6) 

From the relationship above, the system matrices on 

continuous-time and the discrete-time can be obtained as 

follows: 
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where t  is the discrete-time step. 

When system matrices A , B , C , and D  are known, 

the outputs ky  are measured. However, the inputs cannot 

be known; thus, kf  remains unknown. In the state-space 

equation, the measurement noise on the measured outputs 

should not be neglected.  

The state-space equation can be written as follows: 

 k kx Ax wk+1 , (8)  

 k k ky Cx v , (9) 

k kw Bf  and  k kv Df ny,k , (10) 

where Ny,k can be considered the measurement noise. The 

stochastic terms wk and vk are unknown in the above 

equation. However, these variables are assumed to have a 

white noise nature and an expected value of zero. The 

covariance matrices can then be defined as follows: 

 p q
    

      
          

p T T
p p T

p

Q Sw
w v

v S R
E . (11) 

The states and the output can be separated into a 

purely stochastic part as follows: 

d s d s
k k k k k k k

d s d d s s
k k k k k k k k k

x = x + x ,  x = Ax + Bf ,  x = Ax + w ,

y = y + y ,  y = Cx + Df ,     y = Cx + v .

d s
k+ 1 k+ 1

. (12) 

The state cannot be calculated exactly because of the 

stochastic terms. However, x
d
k+ 1  can be estimated when 

the output vector yk can be measured. The Kalman filter 

offers a method of determining the optimal linear 

estimate because of the unbiased and minimum variance 

of the estimator. 

 

3 Reference-based deterministic-stochastic subspace 

identification 

 

3.1 IDENTIFICATION OF SYSTEM MATRICES 

 

In some vibration tests, the sensors are less adequate than 

the test spots in the structures. Hence, several steps may 

be needed to complete the tests. Several test spots are 

selected as reference spots to unify every test step. 

Sensors in the reference spots are stabilized and 

sustained. In the state-space equation, the system 

matrices A , B , C , D , Q , R  and S  are all unknown. 

The outputs can be grouped into the following block 

Hankel matrix: 
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The inputs can also be grouped into the following 

block Hankel matrix: 
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According to the subspace identification theorem, the 

following equation can be obtained: 

ˆ. . lim lim i iij j
a s

 
 X  , (15) 

where 
i

  is the oblique projection of the row space of 

f
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direction of the row space of 
f
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P
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P
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where i  is the extended observability matrix: 

1

.
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.

i
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where ˆ
iX  is the sequence of reference-based Kalman 

filter states: ...
1 1

ˆ ˆ ˆ ˆi i i i j
x x x
 
 
    

X . 

The theorem states that the rank of 
i

  is equal to the 

system order n. The matrix i  can be calculated 

according to the following singular value decomposition: 

11
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where 11
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1
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ref j nli n n n
V R

i
rank n U R Rs 

 
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The state sequence of the Kalman filter can be 

obtained as follows: 

1

1
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The stochastic state-space model equations can be 

calculated as follows: 

1

|
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i
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The output sequence is represented as follows: 
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The system and output matrices of the structures have 

the least squares solution: 
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The noise sequence is given by 
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3.2 DETERMINATION OF MODAL PARAMETERS 

 

The modal parameters of the system (eigenfrequencies, 

damping ratios, and mode shapes) can be obtained from 

the identified system description ( A , C ). An eigenvalue 

decomposition of A  obtains the diagonal matrix   of 

discrete-time system poles 
i
  and corresponding right 

eigenvectors i : 

1
A = ,

i i i
A =  . (24) 

The continuous-time system poles 
ci
  can be 

calculated by the discrete-time system poles 
i
  as 

follows: 

ln( )i
ci t


 


. (25) 

The undamped eigenequencies f
i
 and damping ratios 

i
  can be calculated from the continuous-time system 

poles 
ci
  by 

2

ci
f
i




  and 100

R
ci

ci
i





  . (26) 

The experimental mode shape 
i

  can be calculated as 

follows: 

C   , C
i i
  . (27) 

 

4 Stabilization diagram 

 

As the true system order is often unknown, a practical 

method is to calculate the model orders n. The true 
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system poles can be detected by comparing the modal 

parameters for different model orders. Thus, weakly 

excited system poles can be detected. This procedure is 

called stabilization diagram and is one of the novel 

methods for distinguishing system modals. The basic 

concept of the stabilization diagram is shown in Figure 1. 

 
FIGURE 1 Theory of the stabilization diagram 

Certain matrices, such as frequency, damping, and 

mode shape matrices, should be established to obtain 

accurate results. According to the frequency and damping 

matrices, every model order frequency and damping can 

be confirmed because they are both the average of each 

matrix.  

Every point should then be judged according to 

whether they are stable or not based on the following: 

(1) The deviation between frequency and average 

frequency. 

(2) The deviation between damping and average 

damping. 

In practice, when the assumed deviation of the 

damping ratio is under 10%, numerous mode shapes have 

similar frequencies. Thus, many false mode shapes are 

eliminated when the deviation of the damping ratio 

increases.  

 

5 Sample analyses 

 

One of the applications of the SSI modal analysis method 

is the fracturing pump truck, which has become 

increasingly important with the development of shale gas. 

Shale gas has a crucial role in fracturing work. Thus, 

learning the vibration characteristics of fracturing pump 

trucks and determining abnormal vibrations is important. 

 

5.1 EXPERIMENT SETUP 

 

An experiment on truck vibration characteristics is 

carried out to simulate fracturing pump truck vibration 

characteristics under the support boundary condition, as 

shown in Figure 2. This experiment consists of 14 

reference channels, which can collect all acceleration 

data. 

 

 
FIGURE 2 Experiment system: fracturing pump truck 
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5.2 SIMULATION OUTPUT 

 

Simulations are performed to illustrate the function of the 

stabilization diagram. In these simulations, 
k

f  is white 

noise, and 
k

v  is a white noise vector. The only 

assumption of SSI is the infinite amount of measurement 

data. The stabilization diagram for this simulation is 

shown in Figure 3. Certain mathematical poles can be 

removed based on the following criteria: difference in 

two consecutive eigenfrequencies dfi < 1%; difference in 

two consecutive damping ratios d i <5%; and the highest 

modal transfer norms Nn =3. The modal transfer norm 

in  is the contribution of each mode to the total positive 

power spectral density. Given that the system and 

measurement noise terms are white noises, the 

contribution of the spurious modes is low enough that the 

modes are equal to an infinite number of samples. 

 

 
Frequency (Hz) 

FIGURE 3 Stabilization diagram obtained by applying SSI. Stabilization criteria: 2% for frequencies, 10% for damping ratios, 2% for mode 

shape correlations, and dfi < 1%, d i <5%, Nn =3 

Spurious modes are removed as shown in Figure 4. 

The simulation shows that the stabilization criteria are 

similar to those of the first simulation, except for the 

damping ratio deviation. In this simulation, the mode 

shape shows the operational deflection shapes. The 

spurious modes that pass the stabilization criteria can be 

easily detected based on the nature of their mode shapes. 

The SSI method can distinguish the system mode shape 

accurately, as shown in Table 1. When the damping ratio 

is 10%, spurious modals occur and the frequency of these 

modals and mode shapes are similar, except for the 

obvious difference in the damping ratio. When the 

damping ratio is 40%, these spurious modals can be 

eliminated.  

 

 

TABLE 1 Dynamic parameters of the fracturing pump truck frame 

Number 

Frequency/Hz Measurement 

Damping 

criteria:10% 

Damping 

criteria:40% 

Damping 

ratio/% 

1 2.186 2.186 0.24 

2 4.369  0.46 

3 4.378 4.378 0.14 

4 6.449  0.34 

5 6.515  0.27 

6 6.539 6.539 0.18 

7 8.711 8.711 0.61 

8 8.840  0.92 

9 10.492  1.15 

10 13.037 13.037 0.21 

11 15.505   

12 15.535 15.535 0.73 

13 15.552   
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Frequency (Hz) 

FIGURE 4 Stabilization diagram obtained by applying SSI. Stabilization criteria: 2% for frequencies, 40% for damping ratios, 2% for mode shape 

correlations, and dfi < 1%, d i <5%, Nn =3 

5 Conclusions 

 

This paper presents a modal parameter identification 

method that combines SSI and stabilization diagram. The 

proposed method is used to evaluate a fracturing pump 

truck system, and it obtains ideal results. A simulation of 

the fracturing pump truck shows that the damping ratio 

can affect the accuracy of the results. In the stabilization 

diagram, most points can meet the demand for frequency 

and stability of mode shapes. Therefore, this method can 

effectively identify system parameters. 
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