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Abstract 

For the optimization design of two-stage gear reducer, an optimization mathematical model is built in this work to determine the 

objective functions and constraints. And chaotic particle swarm optimization (CPSO) is utilized to optimize these functions and 

constraints. Algorithm simulation is carried out based on CSPO algorithm steps, and the results are compared with particle swarm 
optimization (PSO). Simulation indicates that CSPO can optimize the results of PSO and achieve faster convergence rate. 
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1 Introduction 

 

As a conventional mechanical device, reducer is widely 

utilized in heavy machinery including mining machinery, 

construction machinery and transportation machinery. Its 

main role is to reduce motor speed or increase motor 

torque, so reducer optimization design has considerable 

theoretical and practical value. 

 

2 Particle swarm algorithm 

 

2.1 ALGORITHM PRINCIPLE 

 

Particle swarm [4-7] optimization algorithm simulates 

predatory behavior of birds, make groups to achieve 

purpose through the collective cooperation among birds. 

In particle swarm optimization (PSO) algorithm, a bird is 

called "particle"; solving group is equivalently bird fauna; 

the migration from one location to another is equivalently 

evolution of the population; "good news" is equivalently 

the local optimization of population; food sources is 

equivalently the global optimal solution of population. In 

particle swarm model, the search space is D-dimension; 

and the total number of particles is n. Each optimization 

goal is the state of "particles" in the search space, including 

speed and position. Secondly every particle has a fitness 

value decided by the optimization function, and also a 

speed determines their flight direction and location. 

According to flying experience of oneself and the 

companions, the particles adjust dynamically the status, 

that is to say, update oneself through updating two 

positions. One is the individual best position id p found by 

particles themselves; another is the global best position 

found by entire population.  

Particle swarm algorithm in operation process 

randomly generates an initial population and gives each 
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particle a random speed, then update the particle speed and 

position according to  
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Randomly generate the initial position and velocity of 

particle swarm, and then execute iteration according to 

Equations (1-3) until satisfactory solution was found. 

Convergence rate of particle swarm algorithm is fast; it is 

easy to implement and the number of the parameter needed 

to adjust is less. It has become a new hotspot of study in 

intelligent optimization evolutionary computation field. Its 

advantages aroused the attention of academic circles, such 

as simple implementation, high accuracy, fast convergence 

rate, strong approximation ability, and the algorithm 

shows its advantages in the solving actual problem.  

 

3 Chaos particle swarm optimization  

 

For the problem of local optimum in particle swarm 

algorithm, the work presents the chaos theory for 

improvement of PSO algorithm, and the process is as 

follows [8-10]: 

1) In chaos initialization, supposing the variable to be 

optimized is D-dimensional, a D-dimensional 

vector  1 11 12 1, ,..., Dz z z z  is randomly generated, 

and each component is within the range of [0,1] . 

Then M components are obtained according to the 

logistic equation [8], 
1 2, ,..., Mz z z . 

1 (1 ), 0,1,2,...;0 1; [0,4]n n n nz z z n z        . (4) 
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The chaotic interval will be mapped to the range of 

variable according to Equation (5). 

( )ij j j j ijx a b a z   , (5) 

where ,j jb a  are the upper and lower limits of optimized 

variable, respectively. 

2) The fitness value of each particle is calculated using 

objective function. The N particle swarms with better 

performance are chosen as the initial solution from the M 

initial swarms, randomly generating particle velocity.  

3) The initial individual and global extreme of particles 

are set: the current position of each particle is defined as 

individual extreme Pi, thereby calculating the 

corresponding fitness value of each individual extreme 

based on objective function; the position of particle with 

the optimal value is defined as global optimum Pg. 

4) The flight speed and position of particles are updated 

according to velocity-position updating formula.  

5) Chaos optimization is conducted on optimal position 

Pg: firstly, the optimal position is mapped to the defined 

domain of logistic equation [11] using Equation (6). Then, 

according to logistic equation, the iteration process 

generates m chaotic variable sequences. Finally, these 

sequences are mapped to the value interval of optimization 

variable, obtaining m particles. Fitness values of each 

particle are calculated for the optimal solution p’. 

9
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i i
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
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6) The current position of any particle in the swarm is 

substituted by p’. 

7) The algorithm will return to Step 4 until the 

termination condition of particle swarm is fulfilled. Then 

it will stop calculating and output the results. 

 

4 Reducer optimization design model 

 

In this work, two-grade gear reducer is the object of design 

study, and the mechanism chart is shown in Figure 1 [12]. 

 

FIGURE 1 Reducer mechanism chart 

This problem of design optimization has seven design 

variables, gear face width 
1x , tooth mold 

2x , tooth 

number of small gear 
3x , bearing spacing of axis 1 

4x , 

bearing spacing of axis 2 
5x , the diameter of axis 1 

6x  and 

the diameter of axis 2 
7x . The ranges of these variables are 

as below: 

1 2 3

4 5 6

7

2.6 3.6,0.7 0.8,17 28,

7.3 8.3,7.3 8.3,2.9 3.9,

5.0 5.5.

x x x

x x x

x

     

     

 

 (7) 

The smallest volume of reducers can be found utilizing 

objective function. 

2 2

1 2 3 3

2 2

1 6 7

3 3 2 2

6 7 4 6 5 7

min 1( ) 0.7854 (3.3333 14.933

43.0934) 1.508 ( )

7.477( ) 0.7854( ),

f x x x x x

x x x

x x x x x x

  

  
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 
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1 1 6

1 2 3 4745 16.9 10A x x x    
  

, (9) 

3

1 60.1B x , (10) 

 
0.5

2
1 1 6

2 2 3 5745 157.5 10A x x x    
  

, (11) 

3

2 70.1B x . (12) 

There are 11 constraints including tooth bending stress, 

contact stress, axis transverse deviation, design size, etc. 

[13,14]. 

1 2 1

1 1 2 3( ) 27 1 0g x x x x     , 

1 2 2

2 1 2 3( ) 397.5 1 0g x x x x     , 

1 1 3 4

3 2 3 4 6( ) 1.93 1 0g x x x x x     , 

1 1 3 4

4 2 3 5 7( ) 1.93 1 0g x x x x x     , 

5 2 3( ) 40 0g x x x   , 

1

6 1 2( ) 5 0g x x x   , 

1

7 1 2( ) 12 0g x x x   , 

8 4 6( ) 1.9 1.5 0g x x x    , 

9 5 7( ) 1.9 1.5 0g x x x    , 

1

10 1 1( ) 1800 0g x A B   , 

1

11 2 2( ) 1800 0g x A B   . 

 

5 Simulation 

 

To verify the proposed algorithm, the above mathematical 

model is optimized and solved with the proposed method. 

The maximum of iteration is 50; the swarm size 20; 

popmin = –5.12; popmax = 5.12; vmax = 1; vmin = –1. 

Figure 2 shows the results of simulation. 
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a) Results of the first operation 

 

b) Results of the second operation 

 

c) Results of the third operation 

FIGURE 2 CPSO simulation results 

From the optimization results of CPSO algorithm, the 

design variables are 3.5, 0.7, 17, 7.30, 7.7153, 3.3502 and 

5.2867. Figure 2 shows the convergence diagram of 

CPSO. 

To highlight the difference between CPSO and PSO 

algorithms, parameters are set as follows: the maximum of 

iterations is 100; the swarm size 20; popmin = –5.12; 

popmax = 5.12; vmax = 1; vmin = –1. Figure 3 shows the 

convergence comparison before and after the 

improvement. 

 
FIGURE 3 Convergence comparison of CPSO and PSO algorithm 

In Figure 3, CPSO, with more stable performance, has 

a significantly faster convergence rate than PSO algorithm, 

which validates the stability and effectiveness of the 

proposed algorithm. 

 

6 Conclusions 

 

The work focuses on reducer design optimization. Chaos 

theory is introduced to particle swarm algorithm due to the 

problem of local optimum in PSO, thus proposing a CPSO 

algorithm for optimization design. The steps of CPSO 

algorithm are elaborated in detail, and the algorithm is 

combined with a specific case of reducer optimization 

design for simulation. The results indicate that the 

algorithm has faster convergence rate than PSO algorithm, 

so it is of great theoretical and practical value for 

engineering application.
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