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Abstract 

Data assimilation compensates for the deficiency of a numerical model and minimizes the short-term forecasting error by combining 

observation data and numerical results. Data assimilation has become a popular research topic all over the world in recent years. The 

development of ocean data assimilation is introduced in this paper. 4D variational and Kalman filter methods are considered the best 

means of data assimilation. Thus, these two methods are described in detail. Several novel research methods of assimilation, including 

assimilation with a constraint condition and dimensionality reduction, are discussed. 
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1 Introduction  

 

Data assimilation originated from early meteorological 

methods. Assimilation methods integrate different space–

time observations into a numerical model through physical 

and temporal constraints. During the development of 

ocean observation technology, the observations spread in 

a larger space–time range and promote assimilation 

methods. Data assimilation methods have been applied in 

many ocean operational numerical models. Using 

observations from various sources, assimilation methods 

improve the initial background accuracy and forecast 

capability. In this study, we review the development 

process of data assimilation, introduce the characteristics 

of these methods, and make a simple comparison of these 

methods. Furthermore, 4D variational and Kalman filter 

methods are discussed in detail. 

 

2 Development of data assimilation 

 

2.1 INTERPOLATION METHOD 

 

Early methods are simple. They maximize the 

interpolation (such as linear or polynomial interpolation), 

and the information at the observation position is 

interpolated in the background grid. Interpolation methods 

ignore the error between observations and numerical 

results and do not consider the relationship among multi 

variables. Therefore, interpolation methods are less 

theoretical. Nudging, an interpolation method, was 

proposed by Gilchrist [1] in 1954. The nudging factor is 

introduced into the model equation. The observations 

affect the numerical values in the grid points within the 

radius of influence, and the nudging factor is inversely 

proportional to the distance from the observation position. 

The difference between model simulation and analysis of 

observations is reduced by revising the numerical values 
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during the model process. An appropriate nudging factor 

should be determined. If a large factor is selected, model 

simulation will converge to the observations very fast, and 

the time steps become insufficient for dynamic adjustment. 

By contrast, a small factor increases the model error before 

the nudging adjustment is implemented. 

 

2.2 OPTIMAL INTERPOLATION METHOD 

 

Statistical theory was incorporated into assimilation 

methods until Gandin proposed the optimal interpolation 

(OI) method in 1963 [2]. OI considers the observation and 

model errors and determines the maximum joint 

probability in the law of maximum likelihood estimation. 

Several assumptions exist in OI method. Examples of such 

assumptions include the background and observation 

errors are unbiased, error distributions have a Gauss 

function, and the observation operator is linear. The 

amount of computation is small, and implementing the 

method in a time-invariant model is easy. Since 1970, OI 

method has been utilized widely in many operational 

numerical forecast systems. The analysis field is derived 

from observation increment multiplied by the optimal 

weight matrix and added to the background field. The 

optimal weight matrix is equal to the background field 

error covariance matrix in observation space multiplied by 

the inverse of the total error covariance matrix 

(background error covariance matrix plus observation 

error covariance matrix) in model space. White [3] 

assimilated Geosat altimetry sea level observations into a 

realistic wind-driven numerical synoptic ocean model of 

the California current in 1990. Mellor and Ezer [4] and 

Ezer and Mellor [5] proposed a continuous OI assimilation 

scheme with a primitive equation and multilayer numerical 

model and projected the surface observation information 

into a deep ocean. Tacker et al. [6] implemented the OI 

method and assimilated expendable bathythermographic 
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(XBT) data for 1972 to 1991 into a hybrid coordinate 

ocean model (HYCOM) for the Atlantic Ocean. Bluelink 

[7] is Australia’s contribution to the Global Ocean Data 

Assimilation Experiment (GODAE). BODAS is an 

ensemble optimal interpolation system that estimates 

background error covariance. 

 

2.3 3D VARIATIONAL METHOD 

 

Variational methods are utilized to determine the 

maximum value of the objective function to measure the 

distance between the model and observation fields through 

the Lagrange function. 3D variational method is 

essentially equivalent to OI method. Owing to the 

difference in the solutions of the two methods, the analysis 

fields are not exactly equal. Fu [8] discussed the 

similarities and differences between 3DVAR and 

Ensemble Optimal Interpolation. Dobricic et al. [9] 

described the development and evaluation of an 

oceanographic 3D variational (3D-VAR) data assimilation 

scheme based on a novel specification of the background 

error covariance. The new 3D-VAR scheme allows for 

regional variability of the background error covariance 

matrix, complex coastal boundary conditions, and variable 

bottom topography. 

 

2.4 PHYSICAL SPACE STATISTICAL ANALYSIS 

 

Another 3D assimilation method called physical space 

statistical analysis system (PSAS) was proposed by Cohn 

in 1998 [10]. The amount of computation in PSAS is less 

than that in 3D variational or OI method. The reduction in 

computation is due to two aspects. First, the objective 

function is based on observation space rather than model 

space. Generally, the dimensions of observation space are 

far less than those of model space. Second, solving the 

inverse background covariance matrix is avoided in the 

resolution process of PSAS [11]. 

 

2.5 4D VARIATIONAL METHOD 

 

The methods described above are time invariant. 3D 

variational method is expanded to 4D method when the 

time dimension is involved in the objective function. 

Among variational approaches, 4D variational method 

provides the best estimate of the initial condition, which 

leads to an accurate fitting forecast during the assimilation 

of time windows. Powell et al. [12] applied the 4D 

variational method in the Intra-Americas Sea. Smith and 

Ngodock [13] also applied this method to the base of the 

Navy Coastal Model. 

 

2.6 KALMAN FILTER 

 

Kalman filter is another 4D method. The amount of 

computation in the extended Kalman filter is considerably 

large, and the method cannot be applied in operational 

forecasting systems. Thus, many simplified versions of the 

Kalman filter have been proposed; Ensemble Kalman filter 

[14] is one of them. Ensemble Kalman filter (EnKF) 

method with an ensemble size of K allows for K number 

of model integrations (such as OI or 3D variational) 

computation. However, the computation cost is less than 

that in the extended Kalman filter method. Simplified 

methods include reduced-order extended Kalman filter 

(ROEK) [15, 16], singular evolutive extended Kalman 

filter (SEEK) [17], ensemble Kalman smoother (EnKS), 

error subspace statistical estimation (ESSE) [18], singular 

evolutive interpolated Kalman filter (SEIK) [19], and 

reduced-order information filter (FOIF) [20]. 

The final analysis field of 4D variational method is 

similar to that of extended Kalman filter. The covariance 

matrix is implicit in the 4D variational computation 

process, and the implicit covariance matrix in the final 

state is inaccessible. However, Kalman method can 

explicitly generate the error covariance matrix in model 

space. 

 

2.7 SUMMARY OF THE DEVELOPMENT PROCESS 

 

Data assimilation methods developed from simple 

interpolation methods, such as nudging, to advanced 

assimilation methods with mathematical and physical 

theories. 4D variational and Kalman methods are popular 

topics in international research on data assimilation 

methods. For most countries and regions with forecast 

centers, the computation involved in the two methods is 

overwhelming because of the large amount of calculation. 

OI method is widely utilized in most operational forecast 

systems. The operational 4D variational system was 

applied in the European Centre for Medium-Range 

Weather Forecasts in 1997 and in France in 2000. 

However, Kalman method is rarely employed in 

operational forecasting. 

 

3 Introduction of 4D variational method 

 

4D variational method minimizes the objective function. 

The deviation between model results and observation data 

is minimized via adjustment of the control variable. In 4D 

variational method, observations at different times and 

locations can be employed in the same manner to obtain an 

accurate estimate of the initial condition. Satellite and 

radar observations are difficult to use in OI but easy to use 

in 4D variational method. 4D method is an extension of 3D 

method. Thus, the processing of observations, background 

error, and optimal algorithm are similar in the two methods. 

Nonlinear, tangent, and adjoint models are introduced in 

the assimilation method because the observations and the 

model field at different times are considered in the 4D 

method. In mathematics, the objective function of 4D 

method can be expressed as: 
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where 
0

X  is the initial state of the forecast model, 
b

X
0

 is 

the background field at initial time, oy
i

 is the i observation, 

H  is the observation operator, and 
i

X  is the model result 

with the same time as oy
i

 and originates from initial state 

0
X  through the nonlinear model, )(=

0,0
xMx

itti
. The 

formula presents the process of the model from time 
0

t  to 

i
t . 

This objective function is related to initial state 0X , 

and the model results during the assimilation window 

originate from initial state 0X . Thus, the objective 

function is composed of two factors, namely, bJ  and oJ . 

bJ  is the deviation between the background and analysis 

fields in the initial state. oJ  is the deviation between the 

observations and analysis field during the assimilation of 

the window. 

4D method requires an iterative solution of nonlinear, 

tangent, and adjoint model. Hence, the computation is 

extensive and related to the resolution of 0X . Ideally, the 

resolution of 0X  is similar to the model’s. The cost of 

minimizing the objective function in high resolution is 

tremendous. Courtier’s [21] research indicates that 

minimizing the incremental analysis of 0X  instead of 0X  

itself significantly reduces the computational cost. The 

objective function is transformed into an incremental form, 

and the incremental analysis is minimized in low 

resolution. The low resolution incremental analysis result 

is transformed back to high resolution, and the final 

analysis result comprises the high resolution incremental 

analysis and initial state 0X . Thus, the computational cost 

is reduced with a low resolution. 

Furthermore, the preconditioning process is necessary 

because it enhances the iterative efficiency. 

Preconditioning transforms the coordinator of initial state 

0
X  [22], decreases the Hessian matrix (the second 

derivative of the objective function) condition number, and 

accelerates the convergence rate of the iterative algorithm. 

Andrew 2011 [23] utilized preconditioning technology to 

reduce the computation time. 

 

3.1 INCREMENTAL FORM OF 4D METHOD 

 

Standard variational methods, such as steepest descent and 

conjugate gradient methods, result in large amounts of 

computation. Incremental method generates a Taylor 

series expansion at approximate solutions and approaches 

the more accurate approximation solution iteratively. 

In the beginning of incremental method, the 

background field is the iterative initial value, 
0

0 bx x . For 

the n-th iterator, the analysis value is 
1

0 0 0

n n nx x x  . 

Thus, the incremental objective function is: 
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For the nonlinear model 
0 , it tM , the Taylor series at 

1

0

nx 
 that ignores the second-order term is: 
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Based on the hypothesis of the linear observation operator, 

Hi is: 
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Thus, the final incremental form is: 
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1n

id 
 is the deviation between the model result and 

observation o
iy , is expressed as: 
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0 , it tL  is the tangent model to calculate disturbance quantity 

n

ix  at time ti. 

The partial derivative of objective function is: 

  
0 0

-1 -1

0 0

0

-1 -1

, , 0

0

[ ( )]

,
i i

n n

bn

p
T T n n

t t i i t t i

i

J
B x x x

x

L H R H L x d

 






   



  
 

 (6) 

where 
0,i

T

t tL  is the adjoint model for resolving the initial 

disturbance from the final state reversely. 

 

3.2 PRECONDITIONING 

 

In the iteration process, preconditioning technology was 

adopted to accelerate the convergence. The inverse matrix 

of background error covariance matrix 
1-B  was utilized to 

determine the pre-conditioner as follows [24, 25]: 

n nx Uv  . (7) 

Transformational matrix U is the Cholesky 

decomposition of background error covariance matrix B. 
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Thus, TB UU . The new variable nv  is introduced as a 

control variable, so the new objective function is: 
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After preconditioning, the condition number of the 

Hessian matrix is reduced and thus accelerates the 

convergence of the algorithm. 

 

4 Kalman filter 

 

The process of the Kalman filter is composed of forecast 

and analysis stages. 

 

4.1 EXTENDED KALMAN FILTER 

 

The extended Kalman filter can be expressed as follows: 

1) Forecast stage: 

1

b a

i ix Mx  , (9) 

QLPLP T
i

a
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b
i   111 . (10) 

2) Analysis stage: 
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M is the linear model, P is the error covariance matrix, Q 

is dynamic noise, K is the gain matrix, y is observation, and 

H is the observation operator. In the forecast stage, the 

forecast result and error covariance matrix were obtained. 

In the analysis stage, the gain matrix was obtained from 

the error covariance matrix. The analysis result and error 

covariance matrix are thus renewed. 

Resolution of the error covariance matrix is 

computationally intensive in the extended Kalman filter. 

The dimension of P and L matrix is n×n. In a typical 

operational forecast system, the number of is 107. Thus, the 

ensemble Kalman filter is utilized to reduce the 

computation. 

 

4.2 EnKF 

 

Extended Kalman filter is inapplicable because the 

operational ocean forecast system is a high-dimension 

nonlinear model, and the computation of the background 

error covariance matrix is extensive. EnKF is proposed to 

estimate the background error covariance matrix with an 

ensemble scheme. Monte Carlo short-term ensemble 

forecast is utilized to estimate the background error 

covariance matrix. At the initial moment, K initial model 

fields are generated from random disturbance. The optimal 

estimation model predictions are averaged by 

corresponding forecasts and expressed by the equation: 

   
1

1 1

1 1

K T
b f f f f b bT

i k k

k

P x x x x X X
K K

   
 
 . (14) 

Since Evensen [14] introduced EnKF into the ocean 

model in 1994, an increasing number of models adopted 

this method [26]. Miyazawa et al. [27] adopted the local 

ensemble transformation Kalman filter algorithm based on 

20 members’ ensemble simulations of the parallelized 

Princeton Ocean Model (Stony Brook Parallel Ocean 

Model) with a horizontal resolution of 1/36°. Deng [28] 

assumed that the statistical properties of the background 

errors do not change significantly at neighbouring analysis 

steps within a short time window and thus allow the 

ensembles generated in the previous steps to be used in the 

current steps. As such, a joint ensemble matrix that 

combines the ensembles of previous and present steps can 

be constructed to form a larger ensemble for estimating the 

background error covariance. 

 

5 Frontier of ocean data assimilation 

 

Current data assimilation research mainly focuses on two 

aspects: data assimilation with several constraints and 

reducing the computational complexity of assimilation. 

 

5.1 DATA ASSIMILATION WITH CONSTRAINTS 

 

In many cases, the value range of the control variable is 

limited by certain constraints. For example, salinity is 

distributed in a certain range and sea surface temperature 

is higher than the freezing point. These constraints contain 

useful information to improve the calculation precision. 

However, linear estimation methods (such as Kalman filter) 

cannot take advantage of this information on constraints. 

Recently, several methods were proposed to introduce 

constraints into data assimilation. 

1) Adjustment operator method. Multivariate satellite 

observations [29] are assimilated into an isopycnic 

coordinate ocean model (Miami Isopycnic Coordinate 

Ocean Model). If a cold core ring of the Gulf Stream is 

absent from a model forecast and has to be introduced by 

the analysis, several layers must be corrected to outcrop at 

the bottom of the mixed layer. In this case, linear analysis 

would certainly introduce a number of negative layer 

thickness values that would need to be reset to zero. Simon 

[30] and Thacker [31] adopted similar methods. 

2) Introduction of non-second-order terms to the 

objective function. The variational methods described 

above are based on the hypothesis of a quadratic objective 

function. The new algorithm should be proposed to 

minimize the non-quadratic objective function. Fujii [32] 

adopted two types of constraints in 3D oceanic variational 

analysis for the equatorial Pacific. One is the constraint for 

the variational quality control procedure, and the other is 
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employed to avoid density and temperature inversions. 

3) Non-linear transformation for constrained variables. 

Bertino [33] reported that several positive variables are 

incorrectly described by the Gaussian model and can be 

addressed through the assimilation of their log transform. 

However, this approach may result in an asymmetric 

probability distribution. 

4) Non-Gaussian error probability distribution function. 

Generally, assimilation methods with an error distribution 

assume that error probability distributions are Gaussian. 

The non-Gaussian distribution approach adopts an 

assimilation method with certain implicit constraints by 

modifying the probability distribution function. Lauvernet 

[34] showed that an optimal filter dealing with inequality 

constraints can be formulated under the assumption that 

the probability distributions are truncated Gaussian 

distributions. The statistical tools required to implement 

this truncated Gaussian filter were described. This method 

was then applied to a 3D hybrid coordinate ocean model 

(HYCOM) of the Bay of Biscay (at 1/15° resolution). The 

results revealed that the algorithm can deal with the 

hydrostatic stability condition in isopycnic and z 

coordinates. 

A comparison of these four methods with constraints 

indicates that adjustment operator method lacks theoretical 

support because the process does not introduce the 

constraints and adjusts the model result forcibly to satisfy 

the constraints. A non-second-order objective function 

introduces the constraints via non-second-order terms, but 

the minimizing algorithm should be modified 

correspondingly. Non-linear transformation method may 

result in an asymmetric probability distribution. The non-

Gaussian method has sufficient theoretical basis and 

allows for assimilation with certain implicit constraints by 

modifying the probability distribution function. 

 

5.2 DIMENSIONALITY REDUCTION METHODS 

 

To reduce the computation cost of assimilation, the 

objective function can be minimized in a subspace. By 

reducing the dimensions, the required memory and CPU 

can be reduced considerably. Generally, the control 

variables are projected onto a set of feature vectors, and 

most of the energy in the original space is reversed. Cai 

[35] employed bred vectors as feature vectors and found 

that minimizing the projection of the bred vectors on the 

observation-minus-analysis field may be a beneficial 

factor to achieving an operational forecast system. 

Many dimensionality reduction methods for the 

Kalman filter have been developed. Cane [36] presented 

an approach to the Kalman filter that employs reduced 

state space representation for the required error covariance 

matrices. Kaplan [37-39] and Canizares [40] conducted 

similar dimensionality reduction research for 

meteorological and oceanographic historical datasets. 

Blayo [41] and Durbiano [42] employed a low-

dimensional space based on the first few EOFs or 

empirical orthogonal functions, which can be computed 

from a sampling of the model trajectory. Hoteit [43] and 

Robert [44] suggested reduced-order reduction method to 

improve the convergence rate of optimization by 

projecting the control vector onto a limited number and 

reducing the size of the control vector. 

 

6 Summary 

 

The development of data assimilation techniques was 

outlined in this paper. Two assimilation schemes, namely, 

4D variational and Kalman filter, were introduced. In 

addition, several frontier ocean data assimilation methods, 

such as assimilation with a constraint condition and 

dimensionality reduction, were discussed. 
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