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Abstract 

Previous DOTF model is only for static, uniform motion and high speed harmonic vibration. In order to characterize random motion-

blurred image, an arbitrary motion DOTF model was built, and it is a function of displacement s(t) of the motion image. The 

displacement function is no limits to any motion type, and we rigorous derived previously known DOTF expressions for static, uniform 

motion and high speed harmonic vibration, it is therefore concluded that our DOTF model can be developed for random motion. At 

last, an experiment was developed to verify our DOTF model. 
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1 Introduction 

 

Machine vision and computer vision technology are 

already widely used in the field of industry, agriculture, etc 

[1]. However, relative motion between the image sensor 

and the object during imaging will cause the image 

degradation, what’s more, motion degradation is generally 

much more severe than that from other factors. So, in order 

to improve the imaging quality, we have to quantitatively 

characterize the motion-blurred image and restore it. 

Dynamic optical transfer function (DOTF) is an image 

quality evaluation function to characterize this motion 

degradation, and it is also widely used for restoring 

motion-blurred image. 

The research of DOTF can be tracked back to 1960s. 

Trott derived the DOTF expressions for uniform motion 

and high frequency harmonic vibration [2]. Based on 

Trott’s work, Hadar proposed DOTF calculating methods 

in the space domain and in the spatial frequency domain 

separately [3, 4]. Later, a series of theoretical analysis and 

experiments were proposed to prove the correctness of the 

DOTF calculating methods [5-8]. From then on, DOTF 

were more and more applied to characterize the motion 

degradation and restore the motion-blurred image. 

In the field of image quality evaluation, the uniform 

motion DOTF model was used to evaluate the display 

performance of LCD [9-11], and it suggests that the LCD 

is a low-pass dispaly device. The harmonic vibration 

DOTF model was used to evaluate the imaging quality of 

a push-broom CCD camera [12, 13], and it suggests that 

the image quality will not change no matter what the 

Vibration frequency is. Jingyu Liao [14] and Hanzhou Guo 

[15] used the DOTF model to evaluate the image quality 

of the aerial camera, and the research results shows that 
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harmonic vibration is more harmful than uniform motion 

at the same displacement. 

In the field of image restoration, an image restoration 

method was proposed based on harmonic vibration DOTF 

model [16]. According to the motion of lung is 

approximated as harmonic vibration, the restoration 

method in [16] was used to recover motion-blurred lung 

image [17]. In [18], an analytical approach for estimating 

the vibration DOTF from the measured system DOTF by 

the frequency response of the sensor was present. The goal 

of this research is to build an automatic system for 

restoring pictures blurred by vibration.  

However, because the existing DOTF models are 

limited to uniform motion and high frequency harmonic 

vibration, image quality evaluation and image restoration 

are aim at the motion-blurred image only for these two 

motion types, and for other motion type, the existing 

DOTF models can’t be applied to characterize and restore 

the motion-blurred image.  

The purpose and the main advantage of this paper are 

building a DOTF model for random motion. The 

remainder of this paper is organized as follows: In Section 

2, according to the frequency domain definition of DOTF, 

our random motion DOTF model is built. In order to verify 

our DOTF model can be applied to random motion, our 

DOTF is compared with the existing models in Section 3. 

Section 4 presents experiment results and related 

discussions. Finally, the paper is concluded in Section 5. 

 

2 The random motion DOTF model 

 

2.1 CONTRAST AND PHASE OF THE INPUT 

COSINE PATTERN 

 

A motion cosine input pattern can be described as: 
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)))((2(cos1   tsxfCI , (1) 

where C, f, x, s(t), and φ represent the amplitude, spatial 

frequency, position, initial phase, and motion function of 

the pattern separately. The function s(t) is not restricted by 

any motion type, so the function in Equation (1) can 

describe random motion of the pattern. 

According to the definition of the contrast, the contrast 

of the input pattern is: 

C
CC

CC

II

II
CI 











)1()1(

)1()1(

minmax

minmax . (2) 

If the exposure time of the time-delay imaging system 

is from ts to ts+te, and s(ts)=0, the phase of the pattern at ts 

is: 

  fxI 2 . (3) 

 

2.2 CONTRAST AND PHASE OF THE INPUT 

PATTERN 

 

The imaging process is an integral average one for time, so 

the output image can be calculated as: 
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We can get the output pattern function by substituting 

Equation (1) into the Equation (4): 
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Equation (5) can be written as: 

)2cos(1 22   fxSICICO . (8) 

Comparing Equation (8) with Equation (1), it can be 

concluded that the output signal is also a cosine pattern, 

which has the same spatial frequency as the input one, but 

different contrast and phase. We can calculate the contrast 

and the phase of the output pattern, and the results are: 
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2.3 CONTRAST AND PHASE TRANSFER RULES OF 

THE COSINE IMAGE 

 

The C0 in Equation (9) is divided by the CI in Equation (2), 

DMTF can be calculated. The θ0 in Equation (9) subtract 

the θI in Equation (3), DPTF can be also obtained. The 

calculation results are shown in Equation (10): 
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Using Equation (10), DOTF can be calculated as 

follows: 
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The expressions of the CI and SI in Equation (6) are 

substituted into Equation (11), we can get: 
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The expression in the Equation (12) is the finally result 

of the DOTF model. It shows that the image degradation 

is only related to the motion function s(t) of the image, so, 

if the motion trajectory of the motion-blurred image can be 

get strictly, degradation rules of the degraded image can be 

exactly described. 

 

3 Theoretical verification of our DOTF model can be 

applied to random motion 

 

3.1 COMPARASION BETWEEN OUR DOTF MODEL 

AND THE STATIC ONE  

 

If the input pattern is static during the exposure time, the 

motion function is: s(t)=0, the equation is put into the 

Equation (12), DOTF=1 can be easily got, and there are: 


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DMTF=1 suggests that the contrast of the output cosine 

pattern is the same as the one of the input signal, DPTF=0 

suggests that the phase of the output cosine pattern is the 

same as that of the input signal. These results shows that if 

the input pattern is static, the output one has no contrast 

reduction and phase shift. This conclusion has been a 
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broad consensus, so it can be concluded that our DOTF 

model can be applied to static. 

 

3.2 COMPARASION BETWEEN OUR DOTF MODEL 

AND THE UNIFORM MOTION ONE  

 

If the input pattern is in uniform motion type, the motion 

function is s(t)=vt, and we put this function into the 

Equation (12), the following result can be got: 
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According to the definition of the DMTF and the DPTF, 

we can obtain: 
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The results in the Equation (15) are the same as those 

in the Ref. [7], so it can be concluded that our DOTF model 

can be applied to uniform motion.  

 

3.3 COMPARASION BETWEEN OUR DOTF MODEL 

AND THE HIGH FREQUENCY HARMONIC 

VIBRATION ONE 

 

If the input pattern to be of the form: 

)'cos()(   tDts , (16) 

where D is the amplitude, ω represents the spatial 

frequency, φ’ denotes the phase of the vibration function. 

In order to make Equation (16) equal to the vibration 

function of the existing DOTF model, we set: 
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The following equation can be easily obtained. 
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The ωt+φ’ is marked as θ, the Equation (18) can be 

written as: 
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The limit of integration in Equation (19) can be 

expressed as combination of the one from 2kπ to (2k+1)π 

and the one from (2k–1)π to 2kπ, no matter s(ts) = D or 

s(ts )= –D. What’s more, it is easily to be proved: 
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So Equation (19) can be written as: 
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The modulation of the DOTF in Equation (21) is: 
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Equation (22) is the expression of the first kind 0 orders 

Bessel function at v=0 and z=2πfDs, so it can be marked 

as: 

)2(0 fDJDMTF  . (23) 

For DPTF, we can obtain the follow result from the 

Equation (17): 
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The results in Equation (23) and in Equation (24) are 

the same as those in the [4-7], so it can be concluded that 

our DOTF model can be applied to high frequency 

harmonic vibration. 

According to the work above, we have proved that our 

DOTF model can be applied to static, uniform motion and 

high frequency harmonic vibration, beyond that, the 

displacement function s(t) is no limit to any motion type, 

so, our DOTF model can be applied to random motion can 

be deduced. 
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4 Experimental verification of our DOTF model 

 

4.1 THE EXPERIMENTAL PRINCIPLE  

 

It takes two aspects to verify the DOTF model. The first 

one, the DOTF model can be verified by the consistency 

between the measuring DOTF curve and the theoretical 

one in the same parameter. The second one, The DOTF 

curve will change with a parameter changing, so, the 

DOTF model can be verified by comparing the changing 

law we get by experiment to the theoretical analysis one. 

According to the conclusion in the first section, the 

DOTF is a function of the motion function s(t), and the s(t) 

is a integral function of the velocity, so the DOTF is also a 

function of the velocity, and it can be written as: 
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If the velocity changes from v into kv, the DOTF in 

Equation (25) changes into: 
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Form Equation (26), we can see the coefficient k shifts 

form the velocity to the spatial frequency, and it shows that 

the DOTF curve will expand and contract in the spatial 

frequency direction with the change of velocity. 

 

4.2 THE EXPERIMENTAL DEVICE  

 

Based on the experimental thinking above, an 

experimental device is built (Figure 1). 

 
FIGURE 1 Experimental device 

In the object space, there is a 20mW laser, and in front 

of the laser, there is a 5μm diameter pinhole. The laser and 

the pinhole combine into a point light source, and it is set 

on a motion stage controlled by a stepper motor controller. 

In the image space, there is an image sensor whose pixel 

distance is 5.2μm, and the distance between the pinhole to 

the image sensor is 1000mm. between the point light 

source and the image sensor, there is a 50mm lens. The 

light emitted from the point light source, focused to the 

image sensor by the lens.  

In the geometrical optics theory, focal length, object 

distance, and image distance satisfy the following 

relationships: 
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, (27) 

where –l and l’ represent the object distance and the image 

distance separately, –f and f’ denote the object space focal 

length and the image space focal length separately.  

According to the object image distance equation, we got 

l’=52.7864mm, l=–947.2136mm, and we can calculated 

the lateral magnification of the imaging system is –0.0557. 

 

4.3 THE EXPERIMENTAL RESULTS  

 

In the experiment, the exposure time of the image sensor 

was set to 1s, and the speeds of the point light source were 

set to 2442.5μm/s, 4882.5μm/s, and 9767.5μm/s. 

According to the lateral magnification of the imaging 

system is -0.0557, the displacement of the point image on 

the surface of the image sensor are 136μm, 272μm, and 

544μm. In the above parameters, three motion-blurred 

images were obtained and shown in Figures 2 a-c. 

 
a) 

 
b) 

http://cn.bing.com/dict/search?q=distance&FORM=BDVSP6
http://cn.bing.com/dict/search?q=distance&FORM=BDVSP6
http://cn.bing.com/dict/search?q=image&FORM=BDVSP6
http://cn.bing.com/dict/search?q=distance&FORM=BDVSP6
http://cn.bing.com/dict/search?q=distance&FORM=BDVSP6
http://cn.bing.com/dict/search?q=image&FORM=BDVSP6
http://cn.bing.com/dict/search?q=distance&FORM=BDVSP6
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c) 

FIGURE 2 Motion-blurred images at different displacements: 
a) 136μm, b) 272μm, c) 544μm 

The Fourier transform of Figures 2 a-c are three 

experimental DMTF-spatial frequency arrays. According 

to the resolution of the motion-blurred image is 100×100, 

and the pixel length is 5.2μm, we can obtain the spatial 

frequency of the motion-blurred image is an arithmetic 

progression with initial term of 0 and common difference 

of 1.92lp/mm. The experimental DMTF-spatial frequency 

arrays are shown in Tables 1-3. 

TABLE 1 The experimental DMTF-spatial frequency arrays at 136μm 

displacement 

Spatial frequency (lp/mm) DMTF 

0.00 1.00 

1.92 0.98 
3.85 0.94 
5.77 0.86 
7.69 0.77 
9.62 0.66 

11.54 0.55 
13.46 0.44 
15.38 0.34 
17.31 0.24 
19.23 0.15 
21.15 0.07 
23.08 0.02 
25.00 0.06 

TABLE 2 The experimental DMTF-spatial frequency arrays at 272μm 

displacement 

Spatial frequency (lp/mm) DMTF 

0.00 1.00 
1.92 0.95 
3.85 0.81 
5.77 0.61 
7.69 0.37 
9.62 0.15 

11.54 0.02 
13.46 0.13 
15.38 0.18 
17.31 0.16 
19.23 0.11 
21.15 0.04 
23.08 0.02 
25.00 0.06 

TABLE 3 The experimental DMTF-spatial frequency arrays at 544μm 
displacement 

Spatial frequency (lp/mm) DMTF 

0.00 1.00 

1.92 0.82 
3.85 0.40 
5.77 0.03 
7.69 0.20 
9.62 0.14 

11.54 0.02 
13.46 0.12 

15.38 0.08 
17.31 0.02 
19.23 0.08 
21.15 0.05 
23.08 0.02 
25.00 0.05 

The three displacement parameters and the spatial 

frequency arithmetic progression were put into the DMTF 

function in the Equation (13), the theoretical DMTF-

spatial frequency arrays were obtained and shown in 

Tables 4-6. 

TABLE 4 The theoretical DMTF-spatial frequency arrays at 136μm 

displacement 

Spatial frequency(lp/mm) DMTF 

0.00 1.00 

1.92 0.99 
3.85 0.96 
5.77 0.90 
7.69 0.83 
9.62 0.74 

11.54 0.64 
13.46 0.53 
15.38 0.41 
17.31 0.30 
19.23 0.19 
21.15 0.09 
23.08 0.00 
25.00 0.08 

TABLE 5 The theoretical DMTF-spatial frequency arrays at 272μm 

displacement 

Spatial frequency(lp/mm) DMTF 

0.00 1.00 
1.92 0.96 
3.85 0.83 
5.77 0.64 
7.69 0.41 
9.62 0.19 

11.54 0.00 
13.46 0.14 
15.38 0.21 
17.31 0.21 
19.23 0.17 
21.15 0.09 
23.08 0.00 
25.00 0.07 

TABLE 6 The theoretical DMTF-spatial frequency arrays at 544μm 
displacement 

Spatial frequency (lp/mm) DMTF 

0.00 1.00 

1.92 0.83 
3.85 0.41 
5.77 0.00 
7.69 0.21 
9.62 0.17 

11.54 0.00 
13.46 0.12 
15.38 0.10 
17.31 0.00 
19.23 0.08 
21.15 0.08 
23.08 0.00 
25.00 0.06 

In order to comparing the experimental result with the 

theoretical one, the experimental DMTF-spatial frequency 

arrays and the theoretical ones were draw together in the 

form of curves and shown in Figure 3. 
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FIGURE 3 Comparison between the theoretical DMTF curves and the 

experimental DMTF ones 

The theoretical curves was compared with the 

experimental ones in the same displacement, we can see 

that no matter what the displacement is, they have a good 

consistency. On that basis, the varying law of the DOTF 

model with the velocity is the same as the experimental 

one. So, Based on the experiment and the analysis above, 

the correctness of our DOTF model was proved. 

5 Conclusions 

 

In this paper we have built a DOTF model, and it is a 

function of displacement s(t) of the motion image. Using 

our DOTF model, we rigorous derived previously known 

DOTF expressions for static, uniform motion and high 

frequency harmonic vibration, according to the 

displacement function s(t) of the motion image is no limits 

to any motion type, it is therefore concluded that our 

DOTF model can be developed for random motion. An 

experiment was developed to verify this conclusion. Our 

DOTF model can be implemented in image motion 

degradation analysis and in restoration of arbitrary motion 

degraded image. 
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