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Abstract 

Atmospheric pollutant PM2.5 seriously harm to human health, to accurately predict its pollution condition, can avoid or reduce the 

risk of pollution events. In this study, we used the different algorithms and number of hidden layer neurons to improve BP artificial 

neural network model of computer technology, coupling GIS to evaluate the impact of different algorithms on the prediction and 

spatial variation of PM2.5, the results showed that, mean relative error and correlation coefficient of monitoring and predictive value 

by the six different algorithms and three different number of hidden layer neurons, were 14.02% and 0.97, respectively, indicating 

that improved BP artificial neural network model can be used to predict PM2.5 pollution. Optimization algorithm of trainrp and 

trainlm had the highest prediction accuracy while the number of neurons in the hidden layer is 20. In contrast, the same algorithm, 

different number of hidden layer neurons had a greater influence on the simulation of PM2.5. Spatial variation of PM2.5 by different 

algorithms and Inverse Distance Weighted interpolation method has various degrees of difference from that of the observed, although 

the simulation of north-central high risk area and southeast low risk region are basically consistent to interpolation analysis of 

monitoring data. 
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1 Introduction 

Air Pollution is critically damage to human health and the 

environment, is important for the sustainable development 

of social, economic and environmental challenges [1,2]. 

Accurate prediction of atmospheric pollutant concentra-

tions are people ahead of preparedness and be the basis of 

control, therefore, to accurately predict the concentration of 

atmospheric particulate matter has a very important signi-

ficance. 

PM2.5 refers to a diameter less than or equal to 2.5 

micron in atmospheric particles, often referred to as 

particulate matter into the lungs or fine particles [3]. Due to 

small size, easy with toxic and hazardous substances, stay 

in the atmosphere for a long time, transmission distance 

and other characteristics, leading to lung cancer and other 

respiratory diseases and human health damage [4], envi-

ronmental damage [5], has become the focus of interna-

tional air pollution prevention and control [6]. Around the 

distribution of PM2.5 pollution monitoring system [7], 

pollution analysis [8], influence factors [9], modeling and 

forecasting [10], and other aspects of human health risks, is 

one of the hot atmosphere of international environmental 

studies. 

PM2.5 is a primary pollutant affecting the air quality in 

China, the accurate prediction of PM2.5 concentrations, can 

make the people take necessary protective measures to the 

possible pollution in time, avoid or reduce the dangerous 

pollution events, has the important means for protecting 

human health and the environment science and social 

economy development. Currently PM2.5 air pollution 

forecasting methods are time-series model [11], gene 

expression programming algorithm [12], gray theoretical 

models [13,14], empirical coefficient method, multivariate 

statistical analysis and forecasting models [15], chaos 

theory and Back Propagation artificial neural network 

model [16] to study different forecasting methods will be 

applied to PM2.5 research, comparative analysis of the 

predictive accuracy of each method. BP artificial neural 

network model due to the uncertainty, multi-input, com-

plex nonlinear problems with good mapping ability to 

create very complex nonlinear model in the field of atmo-

spheric pollution prediction has a strong advantage. BP 

artificial neural network model was mainly used to time 

http://dict.cn/critically
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series prediction by most studies [17]. However, there is 

less study on the prediction of PM2.5 by using different 

algorithms and the number of neurons in the hidden layer, 

and the spatial interpolation analysis by coupling GIS and 

BP artificial neural network model is also less. 

In summary, this study coupling GIS and BP artificial 

neural network model to evaluate the prediction accuracy 

of PM2.5 by different BP algorithms and hidden layer 

neurons, analyze the impact of different algorithms and the 

number of neurons in the hidden layer on simulation 

results of PM2.5, application of Inverse Distance Weighted 

method to reveal spatial variation of PM2.5, improving the 

prediction accuracy and spatial interpolation analysis of 

PM2.5 simulation, provide a scientific basis for prevention 

and control of PM2.5 pollution. 

2 The study area 

Xi 'an is located in the middle of Weihe river basin in the 
Guanzhong basin (E107°40 '– E109°49, N34°42' – 
34°45'33), is the capital of Shaanxi province, the politics, 
economy, culture and science and education center, the 
world famous historical and cultural city. Annual average 
temperature was 13.0°C – 13.7°C (Figure 1). 

 

FIGURE 1 The study area of Xi'an in Shaanxi province, China 

3 Materials and methods 

3.1 BP ARTIFICIAL NEURAL NETWORK MODEL 

BP artificial neural network model can automatically 

inductive rules from the known data, obtained the data of 

the inherent law, and have a strong nonlinear mapping 

ability. BP network is multilayer feed forward neural net-

work based on error back propagation algorithm, each neu-

ron connection, no layer coupling and feedback coupling. 

BP neural network for an output samples, after the weights 

and thresholds, and transfer function after operation, get an 

output, then compared with the desired samples, if there is 

deviation, starting from the output back propagation the 

deviation for weights and thresholds adjustment, so that 

network output is consistent with the hope output gra-

dually. 

3.2 DIFFERENT ALGORITHMS OF BP ARTIFICIAL 
NEURAL NETWORK MODEL AND HIDDEN 
LAYER NEURONS SETTINGS 

3.2.1 Traingdm 

Additional momentum gradient descent method. The 

method is based on the back propagation method, the 

weights change with each value of a ratio of the weight 

change in the previous and the change from the reverse 

spread to generate new weight values: 

dXdperfmclrdXprevmcdX /)1(  , (1) 

where Prev is the argument round learning, mc is 

momentum. 

3.2.2 Traingda 

Adaptive learning step method. Learning step can be 
adjusted based on the error performance function can be 
solved in the standard BP learning step the problem of 
improper selection. 

 lrinclrlrkmeskmse _),()1( , (2) 

 lrdeclrlrkmsekmse _),(04.1)1( , (3) 

lrkmsekmsekmse ),(04.1)1()(  , (4) 

where mse is the mean square error, lr is learning step. 

3.2.3 Trainrp 

Flexible BP algorithm. This method eliminates the 

harmful effects of the size of the partial derivative of 

weights, using only symbols right direction derivative 

update, regardless of the size of the derivative. 

)(*. gXsigndeltaXdX  , (5) 

where gX is the gradient, deltaX is updated weights value 

will be corrected in accordance with gX and symbols that 

appear repeatedly similarities and differences. 

3.2.4 Trainscg 

Trainscg conjugate gradient method. The method conver-

ges faster than ordinary gradient descent is much faster. 

Does not require a linear search more than the number of 

iterations required for the first three methods, but the 

amount of calculation for each iteration is much smaller. 

3.2.5 Trainlm 

Trainlm is the Levenberg-Marquardt optimization algo-

rithm, this method of learning very fast, for medium-

sized networks, is the best kind of training algorithm: 

EjXmuljXjXdX TT  1)( , (6) 

where jX is differential weights for the error on the 
Jacobian matrix, E is the error vector, mu for the adjust-
ment amount. 
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3.2.6 Trainoss 

Step secant method. As a compromise gradient and 

Newton's method conjugate: 

dgXBcstepXAcgXdX  _ , (7) 

where dgX is the latest iteration of the gradient, Ac and Bc 
is a new adjustment parameter search direction. 

3.2.7 Hidden layer neurons settings 

The number of hidden layer neurons is an important factor 
affecting the accuracy of the PM2.5 prediction, help simu-
late more stable and accelerate convergence in the training. 
Based on existing research and many experiments, the 
number of neurons in the hidden layer was selected 5, 10 
and 20 in this study. 

3.3 INVERSE DISTANCE WEIGHTED 
INTERPOLATION METHODS 

The principle of Inverse Distance Weighted method is each 
sampling on the result of interpolation weakened with the 
increase of distance, therefore, the right distance from the 
target point near the samples given greater weight. It is a 
global interpolation method, that is, all samples are esti-
mated to be involved in a point estimate of Z values. Cal-
culated as follows: 





n

j

jje vwv
1

, (8) 

where ve (j = 1, ..., n) is the point (xj, yj) of variable value, 

wj is the weight corresponding to the coefficients. 

3.4 EVALUATION OF PREDICTION ACCURACY 

In order to evaluate the prediction accuracy of PM2.5 of 
different algorithms and number of hidden layer neurons 
by using the BP artificial neural network model, the rela-
tive error and correlation coefficients were used in this 
study, each index is calculated as follows: 
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where Si is the simulated data, Oi is the observed data. 

3.5 DATA COLLECTION 

Research data including daily PM2.5 monitoring data from 
January to December in 2013 and from January to June of 
2014, including 13 monitoring stations, which are high-
voltage switchgear plant, Xingqing district, the textile city, 

hamlet, the people of the stadium, high-tech zone, Econo-
mic Development zone, Chang'an District, Yanliang Dis-
trict, Lintong District, Qujiang District, Guangyuntan and 
marsh. The spatial data of study area boundary, and lati-
tude and longitude data of monitoring site. 

4 Results and analysis 

4.1 EVALUATION OF PM2.5 PREDICTION 
ACCURACY BY DIFFERENT ALGORITHMS 
AND HIDDEN LAYER NEURONS 

The Figure 2 shows that correlation coefficient of PM2.5 
value of prediction and observation by six different algo-
rithms and three different number of hidden layer neurons, 
achieves 0.93 and above. The relative error is within 
25.52%, prediction accuracy of different algorithms and 
the number of hidden layer neurons by BP artificial neural 
network model are basically up to par (Figure 2). 
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FIGURE 2 Relative error and correlation coefficient of PM2.5  
predicted and observed value by different algorithms  

and the number of hidden layer neurons:  
a) Traingdm, b) Traingda, c) Trainrp, d) Trainscg, e) Trainlm, f) Trainoss 

From the overall analysis, the relative error of trainlm 
algorithm was smallest while number of hidden layer neu-
rons is 20, and the relative error is 4.82%, in contrast, the 
relative error of traingdm algorithm was biggest while 
number of the hidden layer neurons is 5, and the relative 
error is 25.52%. The correlation coefficient is 0.99, inclu-
ding that trainrp algorithm while number of neurons in the 
hidden layer is 20 and trainlm algorithm while number of 
hidden layer neurons is 10 and 20. The relative error is 
within 10%, consisting of trainrp algorithm while number 
of neurons in the hidden layer is 20 and trainlm algorithm 
while number of hidden layer neurons is 5, 10 and 20, 
respectively. The trainlm and trinrp algorithms have the 
highest prediction accuracy of PM2.5 while the number of 
neurons in the hidden layer is 20. 

4.2 EFFECT OF DIFFERENT ALGORITHMS AND 
THE NUMBER OF HIDDEN LAYER NEURONS 
ON PM2.5 SIMULATION RESULTS 

Different algorithms and the number of hidden layer neu-
rons by BP artificial neural network model have different 
degrees of influence on PM2.5 simulation results. Overall, 
the Figure 3 shows that PM2.5 simulation effect by different 
algorithms and the number of hidden layer neurons is 
consistent with the observed value, but there are some 
differences. In contrast, the same algorithms, different 
number of hidden layer neurons had a greater influence on 
the simulation of PM2.5, with the increase of the number of 
hidden layer neurons, PM2.5 prediction accuracy show the 
increasing trend. However, different algorithms, the same 
number of hidden layer neurons had a less effect on the 
PM2.5 prediction. 
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FIGURE 3 PM2.5 prediction results by different algorithms  
and the number of hidden layer neurons:  

a) Traingdm, b) Traingda, c) Trainrp, d) Trainscg, e) Trainlm, f) Trainoss 

Specific analysis, comparison of simulated and obser-

ved values of PM2.5 by additional momentum gradient des-

cent method traingdm while number of neurons in the 

hidden layer from 5 to 10, the absolute error showed decli-

ning trend, with the number of hidden layer neurons 

increasing from 10 to 20, traingdm algorithm performs 

further decreasing trend, PM2.5 simulation accuracy by 

traingdm algorithm presents increasing trend. Comparison 

of simulation and monitoring of PM2.5 values by adaptive 

learning traingda algorithm while number of hidden layer 

neurons from 5 to 10, the absolute error performs declining 

trend, traingda algorithm showed an increasing trend with 

the increase in the number of neurons in the hidden layer 

from 10 to 20, PM2.5 simulation accuracy by traingda 

algorithm presented increase or decrease trend. Compa-

rison of simulated and observed values of PM2.5 by flexible 

algorithm trainrp while number of hidden layer neurons 

from 5 to 10, the absolute error performs constantly 

decreasing trend, and trainrp algorithm presents further 

decreasing trend while number of neurons in the hidden 

layer from 10 to 20. The results show that with the increase 

in the number of hidden layer neurons, PM2.5 simulation 

accuracy by trainrp algorithm presents increasing trend.  

Comparative speaking, absolute error of simulated and 

observed value showing declining trend by using the 

conjugate gradient method trainscg while number of 

neurons in the hidden layer from 5 to 10, trainscg algo-

rithm showed an increasing trend with the increase in the 

number of neurons in the hidden from 10 to 20, PM2.5 

simulation accuracy by trainscg algorithm presents increa-

se or decrease trend. Comparison of simulation and moni-

toring of PM2.5 by using Levenberg-Marquardt optimiza-

tion algorithm trainlm while number of hidden layer neu-

rons from 5 to 10, the absolute error showed increasing 

trend, trainlm algorithm showing declining trend with the 

increase in the number of neurons in the hidden layer from 

10 to 20, simulation accuracy by trainlm algorithm pre-

sents increase or decrease trend. Absolute error of simu-

lated and observed value showing declining trend by using 

the step secant method trainoss while number of neurons in 

the hidden layer from 5 to 10, trainoss algorithm showed 

an increasing trend with the increase in the number of 

neurons in the hidden layer from 10 to 20, PM2.5 simu-

lation accuracy by trainoss algorithm performs increasing 

trend. 

4.3 PM2.5 DISTRIBUTION CHANGES OF DIFFERENT 

MONITORING SITES BY DIFFERENT 

ALGORITHMS 

Figure 4 shows that daily average concentration of PM2.5 in 

different monitoring sites is relatively close, the same 

change trend, but there is a difference on the distribution. 
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FIGURE 4 Daily average concentration of PM2.5 of different monitoring stations by different algorithms:  

a) Observed, b) Traingdm, c) Traingda, d) Trainrp, e) Trainscg, f) Trainlm, g) Trainoss 

Distributed simulation of PM2.5 by traingdm (Figure 4b) 
algorithm is basically in accordance with observed values 
in Figure 4a but the peak is less than the monitoring values. 
In contrast, traingda algorithm (Figure 4c) simulated the 
distribution of PM2.5 and monitoring values (Figire 4a) are 
quite different, uneven distribution and are mainly distri-
buted in the region of peak and low value by traingda 
algorithm. Distributed simulation of PM2.5 by trainrp algo-
rithm (Figure 4d) is more consistent with the monitoring 

data (Figure 4a), but simulation of peak and low value are 
quite different. Trainscg (Figure 4e) and trainlm (Figure 4f) 
algorithms simulated the distribution of PM2.5 are basically 
in accordance with observed values (Figure 4a). The differ-
rence between trainoss algorithm (Figure 4g) and observed 
values (Figure 4a) are that, the peak is less than the moni-
toring values and are mainly distributed in the region of 
peak and low by trainoss algorithm. 
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4.4 SPATIAL DISTRIBUTION CHARACTERISTICS OF PM2.5  
BY DIFFERENT BP ALGORITHMS BASED ON THE INVERSE  
DISTANCE WEIGHTED INTERPOLATION METHOD OF GIS 

 
 

 
 

 

 
 

 
 

 

 

 
FIGURE 5 PM2.5 spatial distribution by different algorithms based on IDW interpolation method (Unit: g/m3):  

a) Observed, b) Traingdm, c) Traingda, d) Trainrp, e) Trainscg, f) Trainlm, g)Trainoss 
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Spatial distribution of PM2.5 by different algorithms and 
IDW interpolation method as is shown in Figure 5. 

From the analysis of spatial interpolation results, com-
pared with the monitoring data, different algorithms have 
various degrees of difference from the spatial distribution 
of PM2.5. The range of PM2.5 monitoring values is 106-150 
μg/m3, high-risk areas are mainly located in central and 
northern, moderate-risk areas in the west and low risk areas 
in the eastern and south (Figure 5a). Additional momentum 
gradient descent method traingdm simulated range of 
PM2.5 is 113-137 μg/m3, high-risk areas are mainly located 
in the central, southern and northeast, moderate-risk areas 
are mainly distributed in the western, low-risk areas loca-
ted in the southeast (Figure 5b). The range of simulated 
PM2.5 by adaptive learning step method traingda is 116-141 
μg/m3, high-risk areas are mainly distributed in the central 
and northeastern, moderate risk areas are mainly located in 
the western, low-risk areas in the eastern and southwestern 
(Figure 5c). 

Comparative speaking, flexible BP algorithm trainrp 
simulated range of PM2.5 is 99-144 μg/m3, high-risk areas 
are mainly located in central and northern, moderate-risk 
areas are mainly distributed in the western, low-risk areas 
in the south and east (Figure 5d). Range of simulated PM2.5 

by conjugate gradient method trainscg is 107-147 μg/m3, 
high-risk areas are mainly located in central and northern, 
moderate-risk areas are mainly distributed in the western, 
low-risk areas located in the east (Figure 5e). Levenberg-
Marquardt optimization algorithm trainlm simulated range 
of PM2.5 is 102-149 μg/m3, high-risk areas are mainly loca-
ted in central and northern, moderate-risk areas are mainly 
distributed in the western, low-risk areas in the eastern and 
south (Figure 5f). Range of simulated PM2.5 by step secant 
algorithm trainoss is 114-139 μg/m3, high-risk areas are 
mainly located in central and northern, moderate risk areas 
mainly in the west and south, the distribution of low-risk 
areas in the east (Figure 5g). 

5 Conclusions 

The paper coupled GIS and BP artificial neural network 
model to reveal the impacts of different algorithms and the 

number of hidden layer neurons on simulation and predict-
tion of PM2.5, evaluation of PM2.5 spatial variation by diffe-
rent algorithms based on Inverse Distance Weighted method 
of GIS, the following main conclusions are reached: 

(i) The correlation coefficient of train, validation and 
test samples of different algorithms by BP artificial neural 
network model on the whole is greater than 0.8, shows that 
the BP artificial neural network model in each sample 
meets the requirements in the process of simulation, can be 
used in the prediction research of PM2.5. The correlation 
coefficient is 0.99 including that trainrp algorithm while 
number of hidden layer neurons is 20 and trainlm algo-
rithm while that are 10 and 20. The relative error is within 
10%, consisting of trainrp algorithm while number of neu-
rons in the hidden layer is 20 and trainlm algorithm while 
that are 5, 10 and 20. 

(ii) The different algorithms and hidden layer neurons 
by BP artificial neural network model have various degrees 
of impact on the PM2.5 simulation results. The same algo-
rithm, different number of neurons in the hidden layer have 
greater impact on PM2.5 simulation, the difference is about 
20%. Different algorithms, the same number of neurons 
have less effect on PM2.5 prediction, the difference is about 
10%. 

(iii) Spatial variation of PM2.5 by different algorithms 
based on BP artificial neural network model has various 
degrees of difference from the interpolation results of 
observed data, although the spatial distribution of the high 
and low risk area by different algorithms relatively consis-
tent with the interpolation analysis of observed values. 
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