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Abstract 

The estimation of the frequency parameter of operational risk quantification has received increased attention under the new Basel 
proposal. This paper proposes an advanced measurement approach using fuzzy point estimation. In this approach, prior membership 
function could be obtained through fuzzy maximum entropy rule. When operational risk loss data is given, posterior membership 
function can be easily calculated by using fuzzy point theorem. After posterior mean is exploited as fuzzy point estimate, loss 
frequency distribution is gotten. Finally, an empirical analysis on this model is conducted based historical data obtained from a 
Chinese commercial bank. The result shows that economical can reduce the complexity and communication cost. 
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1 Introduction 

Operational Risk is an important quantitative topic in the 
banking world. Under the Basel II requirements [5,6], 
many banks intend to use the Advanced Measurement 
Approaches (AMA) for the quantification of operational 
risk. Through the Advanced Measurement Approach, the 
banks are permitted significant flexibility over the approa-
ches that may be used in the development of operational 
risk models. There are various quantitative operational risk 
models including extreme value theory [2, 26],Bayesian 
inference [4, 17, 24, 29, 32, 33], dynamic Bayesian net-
works [30], maximum likelihood [12] and EM algorithms 
[3], VAR techniques [11, 13, 14], other approaches [1, 7]. 
Of the methods developed to model operational risk, the 
majority follow the Loss Distributional Approach (LDA) 
[25].  

The idea of LDA is to fit frequency distributions over a 
predetermined time horizon, typically annual. he financial 
institutions use a wide variety of frequency and severity 
distributions for their operational risk data, including 
exponential, weibull, lognormal, generalized Pareto, and g-
and-h distributions [8].There are potentially many deferent 
alternatives [16, 15] for the choice of severity and 
frequency distributions. Several researchers [12, 8, 28, 31] 
have experimented with operational loss data by Basel II 
business line and event type over the past few years. 
Maryam Pirouz[34]discuss several statistical methods for 
modeling truncated data, and suggest the best one for 
modeling truncated loss data, the approach can be useful 
for increasing accuracy of estimating operational risk 
capital charge in E-banking. Fengge Yao[35] used 
Conditional value-at-risk (CVaR) models based on the 
peak value method of extreme value theory to measure 
operational risk. Younès, Moutassim[36] used separately a 

lognormal distribution and a gamma distribution in the 
mixture models for the zeros losses. an operational risk 
assessment model of distribution network equipment based 
on rough set and D-S evidence theory was built[38]. 
Ahmed Barakat[39] investigates the direct and joint effects 
of bank governance, regulation, and supervision on the 
quality of risk reporting in the banking industry. Pjotrs 
Dorogovsa[40] discussed new tendencies of management 
and control of operational risk in financial institutions. 

Liu [21] proposed credibility measure and credibility 
theory, and introduced random fuzzy variable as a measu-
rable function defined on a credibility space valued random 
variables. Chance measure was proposed by Li and Liu 
[22] to measure the chance of a random fuzzy event. The 
conditional chance measure was introduced by Li and Liu 
[23] to measure the chance of a random fuzzy event after it 
has been learned that some other event has occurred. 

For the considered bank, the unknown parameters (for 
example the Poisson parameter or the Pareto tail index) of 
these distributions have to be quantized. Our approach to 
estimate the parameter of the loss distribution is based on 
fuzzy point inference. The idea is to use the banks collec-
tive losses and expert opinions to improve the estimates of 
the parameters of loss distributions. We demonstrate how 
the parameter uncertainty can be taken into account by 
bank internal data and expert opinions and study the 
impact on the capital charge. In any risk cell, we model the 
loss frequency and the loss severity by distributions where 
the lognormal and Pareto distributions are used for mode-
lling severity distributions and Poisson distributions for 
frequency distributions, respectively. The model might be 
very useful at this stage when the data are very limited and 
it may also have educational impact. Financially, we ana-
lysis the results of an empirical study with external opera-
tional loss data of some Chinese commercial banks. 
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2 Fuzzy variables 

Definition1. [21] A Fuzzy variable is defined as a 
function from a credibility space ( , ( ), )Cr    to the set 
of real number. 

Definition 2. [21] Let  be a fuzzy variable with mem-
bership function  . Then for any set B of real numbers,  

1
Cr{ }= (1 ( ) ( )).sup sup

2
x x

cx x
   

 
  

 
 (1) 

Definition 3. [21] Let   be a fuzzy variable on the 
credibility space ( , ( ), )Cr   . The expected value [ ]E   
is defined as 

0
[ ] { } { }0E Cr r dr Cr r dr  


       (2)                    

Definition 4. [21] Suppose that   is the continuous 
fuzzy variable, then its entropy is defined by 

[ ] ( { })H S Cr x dx 


   (3) 

where  ( ) ln (1 ) ln(1 )S t t t t t      

Example 1. [21] Let   be a trapezoidal fuzzy variable 
(a, b, c,d), then the expected value of   is 

[ ] .
4

a b c d
E 

  
  

Its entropy is defined by 

[ ] ( 2 0.5) ( )
2

d a
H ln c d


      

Definition 5. [34] Let ( ), ( ), , ( )
1 1 1

X a X a X a  random 

fuzzy variables where 1 2( , , , )ma a a a
 
is fuzzy vector 

such that for each ( , , , ) ( )
1 2

a a a a am i


   , 

( ), ( ), , ( )
1 1 1

X a X a X a  are iid random variables with 

function (pdf ) or probability mass function(pmf) ( , )f x a . 

Then, given the sample, the way to get the posterior mem-

bership function of prior membership function is called 

fuzzy point estimation. 

Theorem 1. [34] Let ( ), ( ), , ( )
1 1 1

X a X a X a  be iid conti-

nuous random variables, where ( , , , )
1 2

a a a am is 

fuzzy vector with prior membership functions

( ), 1,2
ia a i m  , such that for each

( , , , ) ( )
1 2

a a a a am i


   , ( ), ( ), , ( )1 1 1X a X a X a  are iid 

random variables with pdf ( , , , )
1 2

f x a a am , let x  be a 

sample. If ( , , , )
1 2

f x a a am  is continuous with respect 

to ( , )x a  then the posterior membership function of a can 

be deduced by 

( ( ) )

2 sup { ( , ) ( ) } 1,
1

a X a x
a

Ch a a a X a xi
ma i

  

  


 
 
 
 

 (4) 

where 

{ ( ) }

0, min { } 0
1

0

( ) ( ), ,1 1
, 0.5 min { } 0

1sup ( ) sup ( ), ,1 1

( 0.5),

Ch a a X a x

if Cr a ai ii m

n n
f x a f x ai ii i

if and Cr a an n i ii mf x a f x am mi ii ia a

y where otherwise

 

 
 

 
 

   
  

  











   

(5) 

3 Fuzzy point estimation for loss frequency  

Suppose that the frequencies of operational risk losses is 
modeled by Poisson distribution ( )P  with a density 

( | ) , 0,1, ...
!

N

f N e N
N

 



   (6) 

In this section,   is viewed as a non-negative fuzzy 
variable on the credibility space ( , ( ), )Cr   ) with mem-
bership function 


 , which is called prior membership 

functions. The parameters of prior membership functions 
are called hyper-parameters (parameters for parameters). In 
a more general framework the parameters of the prior 
membership function ,

1 2 k
    are estimated by maxi-

mum entropy rule and expert opinions. Expert opinions 
modify this characteristic according to the actual expe-
rience. Then ( )P   can be considered as random fuzzy 
variable on the space ( , ( ), ) ( , , Pr)Cr      . Let x  
denote the observations sample ,

1 2
x x x

k , the sample 
can be observed and take crisp values. According to Equ-
ation (4), the posterior membership function can be dedu-
ced as 

( ( ) ) (2 { }) 1.X x Ch    


      (7)  

where 
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{ }

{{ } { }} {{ } { }}
, 0.5

{ } { }

( 0.5),

Ch x

Ch x Ch x
if

Ch x Ch x

y otherwise

 

     

 



     


  








 

Then Pr{ } 0.5,x      

{{ } { }}
0.5,

{ }

Cr x

Ch x

  



  



 

sup( { } Pr{ } 0.5,Cr x


          

We can get 

{{ } { }} { } { }Ch x Cr x                (8) 

{ } sup( { } Pr{ })Ch x Cr x      


     
 (9) 

Then posterior membership function is formulated as 

2 { }
!1

( ) 1, 0,1,...

sup( { } )
!1

xin
Cr e

xt ix xin
Cr e

xt i

 

  
  



 
   

 
   
    

 

   (10) 

4 Fuzzy point estimation of loss frequency parameter 

The sample of loss frequency in corporate finance is 
(2480,964)x  , the experts give the range of loss fre-

quency of corporate finance is 500 3500 . The loss fre-
quency will be decreased by 100 times in order to prevent 
from the probability of poison distribute in positively 
infinite, then will be 5 35 , (25,10)x  . 

Let   be trapezoidal fuzzy variable (5, , ,35)a b , then 
the prior membership of ¸ is. 

5
, 5

5

1,
( )

35
35

35

0,

if a
a

if a b

if b
b

otherwise





 
 




 



 



 











 (11) 

According by equation (2) and (3), the expectation of 
  is 

40
[ ] ,

4

a b
E 

 
   (12) 

the entropy of   is [ ] ( 2 0.5)( ) 15.H ln b a     (13) 
It follows from fuzzy maximum entropy rule equation 

max [ , ] | [ ] |
1

1

H M E
k

k

    
 

 
, where   is the 

mean of those experts estimate. We can get  

40
max( 2 0.5)( ) 15 13

, 4

. .5 35,

a b
ln b a M

a b

s t a b

 
    

  

, (14)  

where M is a sufficiently larger number. 
By applying the graphic method, then the value of a 

and b can be obtained: 
* *

7, 17a b    is a 
trapezoidal fuzzy variable (5, 7,17,35)  then the prior 
membership is 

5
, 5 7

2

1, 7 17
( )

35
, 17 35

18

0,

if

if

if

otherwise





 
 




 

 



 









  (15) 

According to equation (1), the posterior membership of
  is 

( )

2
2 { }

1 !
1

2
sup( { } )

1 !

2 35 29
9.885 10 ) 1, 5 35

0,

x

xi
Cr e

t xi
xi

Cr e
t xi

e

otherwise

 



 


 




 


  


 


  



 
   



 
 
 
 
 
 
 





  (16) 

The figure for the posterior membership of can be 
depicted as FIGURE 1. 

 

FIGURE 1 The posterior membership function of  

5 Fuzzy simulation for posterior mean [ ]E   of the  

By the fuzzy simulations technique we can calculate [ ]E  ,

[ ]E  , then posterior mean [ ]E   of the  ¸ is exploited as 

the fuzzy point estimation.  
For simplicity, A fuzzy simulation will be designed to 

estimate [ ]E   by the following procedure. 
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1) Set 0e  . 

2) Randomly generate ( )k  from the -level set of   

and write ( )k x


    for 1,2, ,k N , where   the 

membership of function of  . 

3) Set ( ) ( )
1

a N      , ( ) ( )
1

b N       

4) Uniformly generate r from [a,b].  

Set { }e e Cr r   , where 

1
Cr{ }= (1 ( ) ( )).sup sup

2
x x

cx x
     

  
  

   
5) Repeat the fourth step for N times. 

6) Compute [ ] 0 0 ( ) /E a b e b a N        , then 

output [ ]E  [ ]E  . 

By fuzzy simulation technique, we can take the poste-

rior mean [ ]E   of  , as fuzzy point estimation of   is 

18.0635, to amplitude the result by 100 times fuzzy  point 

estimation of  is 1806. Then density function of fre-

quencies in operational risk losses is 

1806 1806
( ) , 0,1,

!

m

m e m
m

 


    (17) 

6 Conclusions 

In this article, by introducing novel estimation approach 
we have substantially extended the range of models admis-
sible for parameters of loss frequency under the LDA 
operational risk modeling framework. We strongly advo-
cate that fuzzy point estimation approaches to operational 
risk modeling should be considered as a serious alternative 
for practitioners in banks and financial institutions, as it 
provides a mathematically rigorous paradigm in which to 
combine observed data and expert opinion. We hope that 
the presented method provides an attractive and feasible 
approach in which to realize these models. The proposed 
measuring method allows using the banks collective losses 
data and expert opinions to improve the correctness of 
estimates value. It is flexible and robust technique to ade-
quately model the operational loss frequency and severity. 
Financially, we simulate posterior mean of loss frequency 
of the operational risk .The method presented in this paper 
performs better than the other mentioned methods when a 
few data are available. 

Acknowledgments 

This work was supported  by Doctoral Foundation of 
Hebei Normal University of Science & Technology 
No.YB2012001, Hebei Province Department of Education 
of Youth Foundation N0.SQ131023, Qinhuangdao 
Administration of Science & Technology Project 
N0.SQ201302a256.The natural science foundation of 
Hebei Province N0. G2015407089. 

 
References  

[1] Alderweireld, T., J. Garcia and L. Leonard (2006) A practical 
operational risk scenario analysis quantification. Risk Magazine ,  
93-95. 

[2]  Alexander J and Saladin T (2003) Developing scenarios for future 
extreme losses using the pot method. in extremes and integrated risk 
management, edited by Embrechts PME, published by RISK books, 
London, 50-97. 

[3]  Bee M.( 2006) Estimating and simulating loss distributions with 
incomplete data. Oprisk and Compliance, 7, 38-41. 

[4]  BÄuhlmann H., Shevchenko P.V. andWÄuthrich M. V.( 2008) A toy 
model for operational risk quantificationusing credibility theory. the 
Journal of Operational Risk. 

[5]  BIS. Basel II (2005): International Convergence of Capital 
Measurement and Capital Standards: a revised framework. Bank for 
International Settlements (BIS), www.bis.org. 

[6]  BIS. Basel II (2006) BCBS international convergence of capital 
measurement and capital standards. www.bis.org. 

[7] Chavez-Demoulin V, Embrechts P and NeÄslehova J. ( 2006) 
Quantitative models for operational risk: exetremes, dependence and 
aggregation. Jounral of Banking & Finance, 30, 2635-2658. 

[8] Degen M, Embrechts P and Lambrigger D.(2007) The quantitative 
modeling of operational risk: between g-and-h and evt. Preprint, 
ASTIN Bulletin 

[9] Dubois, D. and Prade, H.,(1998) Possibility Theory: An Approach to 
Computerized Processing of Uncertainty, New York: Plenum. 

[10] Dubois, D. and Prade, H., (1988) Fuzzy numbers: An overview. 
Analysis of Fuzzy information, 2, 3-39. 

[11] Duncan and Wilson. (1995) VAR in operation. Risk, 12, 5-12. 
[12] Dutta K and Perry J. (2007) A tale of tails: an empirical analysis of 

loss distribution models for estimating operational risk capital. 
Federal Reserve Bank of Boston, Working Paper, 6-13. 

[13] Embrechts, P. and Puccetti, G. (2006) Aggregating risk capital, with 
an application to operational risk.The Geneva Risk and Insurance 
Review, 31, 71-90. 

[14]   Embrechts, P., Nesehova, J. and Wuthrich, M. V. (2007) Additivity 
properties for Value-at-Risk under archimedean dependence and 
heavy-tailedness. Preprint, 

[15] Fontnouvelle De and Rosengren E. (2004) Implications of Alternative 
Operational Risk Modeling Tech-niques. Working Paper, Federal 
Reserve Bank of Boston. 

[16]  Fontnouvelle De (2003) Virginia Dejesus-Rue®, John Jordan and 
Eric Rosengren. Capital and Risk: New Evidence on Implications of 
Large Operational Losses. Working Paper, Federal Reserve Bank of 
Boston. 

[17] ETH Zurich.(2003) Evidence on Implications of Large Operational 
Losses. Working Paper, Federal Reserve Bank of Boston, 2003. 

[18]  Lambrigger D.D., Shevchenko P.V. and WÄuthrich M.V. (2007) 
The quantification of operational risk usinginternal data, relevant 
external data and expert opinions. The Journal of Operational Risk , 
2, 3-27. 

[19] Liu B and Liu Y.(2002) Expected value of fuzzy variable and fuzzy 
expected value models. IEEE Trans-actions on Fuzzy Systems, 10, 
445-450. 

[20] Liu B.(2006) A survey of credibility theory. Fuzzy Optimization and 
Decision Making, 5, 387-408. 

[21] Li X, and Liu B, (2009)Chance measure for hybrid events with 
fuzziness and randomness, Soft Computing, Soft Computing, 13( 2), 
105-115. 

[22] Li X, and Liu B.(2007) Conditional chance measure for hybrid 
events, Technical Report. 

[23] Luo X., Shevchenko P.V. and Donnelly J(2007). Addressing impact 
of truncation and parameter uncertainty on operational risk estimates. 
The Journal of Operational Risk, 2, 3-26. 

[24] Mark Lawrence (2003). The LDA-based ddvanced measurement for 
operational risk-current and in progress practice. RMG conference.  3, 
6-12. 

[25] Medova E (2002). Extreme value theory: Extreme values and the 
measurement of operational risk. Oprational Risk, 1(7), 11-15. 

[26] Nahmias, S(1978) Fuzzy variables, Fuzzy Sets and Systems, 1, 97-
110. 

[27] Moscadelli M. (2004) The Modeling of Operational Risk: the 
Experience from the Analysis of the DataCollected by the Risk 
Management Group of the Basel Committee. Working Paper. 

[28] Peters G and Sisson S (2006). Bayesian inference, monte carlo 
sampling and operational risk. Journal of Operational Risk, 1, 27-50. 



COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 577-581 Liu Shuxia, Mi Haijie 

581 
 

[29] Ramamurthy S., H. Arora and A. Ghosh (2005). Operational risk and 
probabilistic networks-An application to corporate actions processing.  
Infosys White Paper. 

[30] Rosenberg J and Schuermann T (2006). A general approach to 
integrated risk management with skewed,fat-tailed risks. Journal of 
Financial Economics, 79, 569-614. 

[31] [32] Shevchenko P and WÄuthrich M. The structural modelling of 
operational risk via bayesian inference: combining loss data with 
expert opinions. Journal of operational risk, 2006, 1, 3-26. 

[32] Shevchenko P.V(2008). Estimation of operational risk capital charge 
under parameter uncertainty,Journal of Operational Risk, 3(1),51-63. 

[33] Tang W., Wang C., Zhao R., Fuzzy Parametric Statistical Inference, 
Information: An International Interdisciplinary Journal, 2011,14, 17-
27. 

[34]  Maryam Pirouz, Maziar Salahi (2013) Modeling Truncated Loss 
Data of Operational Risk in E-banking, IJITCS, l5(12), 64-69. 

[35] Fengge Yao,Hongmei Wen, Jiaqi Luan (2013) CVaR measurement 
and operational risk management in commercial, banks according to 

the peak value method of extreme value theory, Mathematical and 
Computer Modelling, 58, 15–27. 

[36] Younès, M., and Adlouni, S., et al. (2011) Mixed Distributions for 
Loss Severity Modelling with Zeros in the Operational Risk Losses. 
International Journal of Applied Mathematics & Statistics, 21, 11-17.  

[37] Cunbin L.,Gefu Q. et al. (2013) Operational Risk Assessment of 
Distribution Network Equipment Based on Rough Set and D-S 
Evidence Theory. Journal of Applied Mathematics, Article ID 
263905, 7 pages. 

[38] Ahmed B., Khaled H (2013) Bank governance, regulation, 
supervision, and risk reporting: Evidence from perational risk 
disclosures in European banks, International Review of Financial 
Analysis, 30, 254-273. 

[39] Pjotrs Dorogovsa, Irina Solovjovab, Andrejs Romanovsc(2013) New 
tendencies of management and control of operational risk in financial 
institutions, Procedia-Social and Behavioral Sciences, 99, 911- 918. 

 

Authors  

 

ShuXia Liu, 27. 12. 1974, China 

ShuXia Liu received the Ph.D. degree in management  from tianjin University, China in 2010. Currently, she is a researcher at, Hebei Normal 
University of Science & Technology of School of Business Administration, China. His research interests include information management 
andsystem,risk management. 

 

HaiJie Mi, 1983, China 

Haijie Mi received the master  degree in management  from Tianjin University, China in 2008. Her research interests include risk management 
and statistics Research, Mathematical finance financial engineering. A few papers published in various journals. 

 

http://www.hindawi.com/43078905/
http://www.hindawi.com/70154292/

