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Abstract 

The application of extended Kalman filter algorithm to ultrasonic positioning systems has difficulty in meeting the requirements of 
precision positioning because the algorithm produces a new calculation error when the system is linearized. Modal optimization of the 
extended Kalman filter algorithm is thus investigated. The received ultrasonic signal is first decomposed by empirical mode decomposition, 
the intrinsic mode functions that best represent the original signal are then selected to restructure the waveform, and the transition time is 
finally corrected. Meanwhile, the ultrasonic wave velocity can be corrected. Traditional ultrasonic positioning can also be improved by 
combining with a radio-frequency module. It is experimentally shown that the proposed method limits positioning error to within ±5 cm 
and within ±1 cm after multiple recursions. 

Keywords: ultrasonic location, extended Kalman filter algorithm, modal optimization, intrinsic mode function, transition time 

 

1 Introduction  

With the development of the Internet of Things, information 

services based on the process of location (i.e., positioning) 

have become increasingly available [1]. Services such as 

intelligent parking lots, intelligent storage and other indoor 

services require positioning to be highly accurate. 

Furthermore, positioning using the Global Positioning 

System (GPS) is often affected by buildings shielding the 

satellite signal and is subject to error, making it particularly 

difficult to position accurately indoors[2-3]. Wireless local 

area network (WLAN) positioning is a mature indoor 

location technology but its positioning mode is strongly 

affected by the environment and its reliability is difficult to 

ensure. In addition, IEEE 802.11 specifications do not 

provide accurate measurement and control models of 

transmission power, making it difficult to make 

measurements with higher accuracy. 

Compared with GPS and WLAN positioning, posi-

tioning with an ultrasonic wave has advantages in indoor 

locations, including its simple system structure, inexpensive 

hardware, high accuracy, and feasible algorithm [4]. 

However, because an ultrasonic wave can be disturbed by 

uncertain factors such as temperature, the shape of the 

detected object changes and noise and error perturbations 

are generated during positioning [5], which can reduce the 

accuracy and reliability of the positioning. As technologies 

and methods proposed in the literature [6, 7] are unable to 
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control the error, the positioning accuracy reduces. 

Adopting empirical mode decomposition (EMD) to 

optimize the extended Kalman filter algorithm, this paper 

effectively controls the error of transition time, thus 

realizing highly accurate indoor positioning [8]. This modal 

optimization method first decomposes the ultrasonic signal 

obtained from the receiving system of the ultrasonic wave 

by EMD and then removes a large proportion of the noise 

while retaining the original characteristics of the signal. The 

envelope of the signal is then obtained employing EMD 

again to obtain the time that the ultrasonic wave signal 

arrives accurately, and the Kalman filter algorithm finally 

corrects the transition time, thus providing highly accurate 

positioning results. 

2 Shortcomings of the extended Kalman filter 

algorithm in eliminating error 

2.1 ORIGIN AND ELIMINATION OF TRANSITION 

TIME ERROR 

Ultrasonic positioning involves receiving ultrasonic waves 

launched at different fixed positions to estimate an object’s 

position. Its principle is described in Figure 1, in which A 

and B are ultrasonic wave launchers at fixed positions, and 

C is an ultrasonic wave receiver installed on the detected 

object. A correlation model is adopted between the launcher 

and receiver. 
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FIGURE 1 Basic structure of the ultrasonic-wave ranging system 

The sound velocity of the ultrasonic wave is denoted v , 

the transition time of the ultrasonic wave from A and B to C 

is denoted t , and the lengths 
1d  and 

2d  of AC and BC 

respectively can be determined using the formula d vt . 

The coordinates of the detected object can then be obtained 

through triangulation. However, the formula d vt  is 

inaccurate to some extent and should be presented as 

  d v v t t    , where v  is the error in the sound 

velocity and t is the error in transition time. Therefore, the 

premise of highly accurate positioning is to eliminate the 

errors in the sound velocity and transition time. 

The main method of eliminating error in the sound 

velocity is temperature compensation. Sound velocity v of 

an ultrasonic wave depends on the pressure, density and 

other features of the propagation medium, but especially on 

temperature; changes in temperature are one of the main 

sources of error in ranging with ultrasonic waves. The 

relation between the propagation velocity of an ultrasonic 

wave and temperature is 0 01V v T T  , where 0v  is the 

sound velocity at normal temperature ( 0v  = 331.45 m/s), T  

is the environmental temperature, and 0T  = 273.16 C. The 

error in the sound velocity generated by a temperature 

change can be effectively eliminated by temperature 

compensation. 

There are many processing methods of eliminating the 

error in transition time, such as amplification via automatic 

generation control to reduce the trigger error before the 

signal enters the control chip, and adjusting the threshold 

value for different measuring distances; using a dual 

comparator shaping circuit to determine the time that the 

forward edge of the echo arrives, and designing a circuit 

whose threshold voltage reduces with time; making multiple 

measurements and taking the average to eliminate the error 

in a single measurement; adopting an ill-conditioned 

mathematical method to match the relationship between the 

measured value and true value; and using a back-

propagation neural network to carry out nonlinear correction. 

All the methods mentioned play a part in correcting the error 

in transition time, but the requirements of highly accurate 

positioning are difficult to meet owing to the characteristics 

of the digital circuit and the shortcomings of the above 

algorithms. This paper employs the extended Kalman filter 

algorithm for modal optimization, thus effectively 

eliminating the error in transition time. 

2.2 EXTENDED KALMAN FILTER ALGORITHM 

The extended Kalman filter algorithm is an improvement on 

the Kalman filter algorithm. The Kalman filter algorithm 

can only be applied to linear systems, and thus a linear 

approximation needs to be made for a nonlinear system and 

then the Kalman filter algorithm applied to the linearization 

model. The Kalman filter is an optimal recursive data 

processing algorithm that estimates the minimum variance 

of the signal to be processed using the system state equation 

and observed relation. 

The ultrasonic location system can be described as 

hollows: 

k 1 k 1(X ,W )kX f   , (1) 

k 1Z (X ,V )k kh  , (2) 

where 
kX  is the system state variable and 

kZ  is the system 

observation variable, while 
1kW 
 and 

1kV 
 are the system 

noise and observation noise respectively. The system model 

is linearized using a Taylor expansion and the Kalman filter 

is then applied. The recursive process of the Kalman filter 

algorithm is shown in Fig. 2. 
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FIGURE 2 Recursive process of the Kalman filter algorithm 

The extended Kalman filter algorithm can perfectly 
handle a dynamical system with noise, and it is widely used 
in ultrasonic positioning. Furthermore, the Kalman filter 
algorithm and extended Kalman filter algorithm were 
adopted in Ref. [9] and Ref. [10] to good effect. However, 
the two algorithms have some limitations: the Kalman filter 
algorithm can only be applied to a linear model while 
theextended Kalman filter algorithm uses a Taylor 
expansion in transforming a nonlinear model to a linear 
model and abandons all high-order components, leading to 
inestimable error [11]. The results obtained with the 
extended Kalman filter depend on the statistical 
characteristics of the state noise and observation noise, and 
if the evaluation of covariance matrices of the two types of 
noise is not sufficiently accurate, cumulative errors are 
generated. The existence of the Jacobian matrix and the 
complexity of the calculation are also factors of unreliability. 

The evaluation of the transition time relies critically on 
the selection of the time that the ultrasonic wave arrives. As 
a result of the effect of noise and other factors, the waveform 
signal becomes complicated when the ultrasonic wave 
arrives at the receiver, which can impair the determination 
of the arrival time of the ultrasonic wave by the receiver 

detection circuit and prevent the measurement of the arrival 
time when the ultrasonic wave first arrives at the pulse edge. 
Therefore, directly applying the extended Kalman filter 
algorithm to the ultrasonic signal model from the receiving 
edge will cause inestimable error. 

On the basis of the above discussion, modal optimization 
of the extended Kalman filter algorithm will be carried out. 
Replacing the Taylor expansion with EMD can effectively 
eliminate the problems discussed above. 

3. Extended Kalman filter algorithm after modal 
optimization  

3.1 PROCESS OF MODAL OPTIMIZATION 

This paper applies modal optimization to the extended 
Kalman filter algorithm using the EMD algorithm, whose 
basic method is first to decompose the received ultrasonic 
signal (t)x  by EMD to obtain intrinsic mode functions 
(IMFs) and then to obtain a pure ultrasonic signal with most 
noise filtered out through the screening and recombination 
of IMFs. The process of modal optimization is shown in 
Figure 3. 
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FIGURE 3 Process of modal optimization 

According to the local characteristic time scale of the 
signal, the EMD method decomposes the signal into a finite 
number of IMFs whose frequencies range from high to low, 
and then obtains 

1

(t)
n

i n

i

x c r


  , where 
ic  is an IMF and 

nr  
is the residual term. A low-order IMF represents a high-
frequency component of the signal and mainly contains 
sharp parts of the noise and signal, while a high-order IMF 
represents a low-frequency component of the signal and 
mainly contains the signal and little noise. There must 
therefore be a k th IMF component, either side of which the 
energy of the noise and signal suddenly change, meaning 
that the first k IMFs are oriented toward the noise while the 
remaining IMFs are guided by the signal. Therefore, the key 
to performing the modal optimization of the extended 
Kalman filter algorithm is to seek out the IMF for which 

there is a sudden change in energy. This paper employs the 
successive mean-square error method: 

   
2

1

1

1
,

N

k k k i

i

CMSE x x IMF t
N





      1 1, ,n 1k    . (3) 

The k th IMF corresponding to a sudden energy change 
can then be found. The definition of k  is 

 1
1

argmin , 1k k
k N

k CMSE x x 
 

    . (4) 

That is to say, the IMF whose energy is the global 
minimum is regarded as the boundary point of the abrupt 
change in energy. In the case of a low signal-to-noise ratio, 
the energy of an IMF dominated by certain signals is lower 
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than that dominated by noise, and k  corresponding to the 
global minimum is defined as 

 1
1

argfirstlocalmin , 1k k
k N

k CMSE x x 
 

    . (5) 

After finding the k th IMF corresponding to the abrupt 
energy change employing this method, the signal is 
reconstructed from the 1k  th IMF to the final IMF, and the 
ultrasonic signal  x t  with the vast majority of noise 
removed can then be obtained: 

   
1

N

i

i k

x t imf t
 

  . (6) 

The extended Kalman filter algorithm can thus be used 
to estimate the transition time. 

3.2 OPTIMIZED EXTENDED KALMAN FILTER 
ALGORITHM 

The optimized extended Kalman filter algorithm adopts EMD 
to replace the Taylor expansion, which is conducive to 
obtaining an ultrasonic signal with most noise removed and 
its enveloped empirical model. Employing this model, the 
arrival time of the ultrasonic wave can be obtained. The 
Kalman filter algorithm is then used to estimate the arrival 
time of the ultrasonic wave, and finally, the transition time 
of the ultrasonic wave is accurately obtained. 

From the discussions in sections 2.2 and 3.1, the basic 

steps of the optimized extended Kalman filter algorithm can 
be summarized as follows. 

Step 1: Decompose the ultrasonic signal obtained from 
the ultrasonic receiver by EMD, and then obtain the IMF 
components and residual term. 

Step 2: Search for the energy breakpoint k  according to 
the distribution of the IMF components, recombine the IMF 
components from the 1k  th component to the final 
component, and thus obtain the ultrasonic signal with most 
noise removed. 

Step 3: Employ EMD to extract the upper envelope of 
the signal according to the result of step 2, and then output 
the envelop signal. 

Step 4: Apply the envelop signal from step 3 to the 
rectification, and obtain the arrival time of the ultrasonic wave. 

Step 5: Keep the position of the detected object obtained 
from multiple measurements, and process the arriving 
ultrasonic wave successively using steps 1–4, thus obtaining 
a set of results. Establish an array to store the data. 

Step 6: Predict the next state of the array from step 5 as 
the state value of the system, and forecast the covariance of 
the state. 

Step 7: Calculate the Kalman gain, update the state value 
in accordance with the measured value, and update the 
covariance of the error. Output the optimal estimated value. 

Step 8: Put the obtained transition time and revised 
sound velocity into the locating calculation formula, and 
obtain the location coordinates of the detected object. 

The process of the algorithm is shown in Figure 4. 
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FIGURE 4 Process of the optimized extended Kalman filter algorithm 

4 System design and experimental analysis 

4.1 SYSTEM DESIGN 

Positioning a target object on a plane requires a coordinate 

system to be established and the transmitting probe of the 

ultrasonic wave to be defined. To measure the planar 

coordinates, which are two unknown numbers, at least two 

relations referring to object coordinates are needed. 
The deployment of the system is presented in Figure 5. 

Two probes transmitting ultrasonic waves are installed at 
fixed positions with known coordinates, and the receiver is 
mounted on the detected object, thus establishing a ranging 

system consisting of two satellites (i.e., the probes). The two 
satellites comprise three parts: the micro controller unit, 
ultrasonic ranging module and radio-frequency module. The 
two satellites transmit ultrasonic waves from different 
positions and measure the distance to the target object 
separately, and the coordinates of the object can thus be 
determined from the distance relationship between the target 
object and two ultrasonic launchers. If the detected object is 
R(x,y) and the ultrasonic receiver is installed on R, then the 
two satellites have a master–slave relationship, in which the 
primary component is T1(X1,Y1) while the subordinate 
component is T2(X2,Y2), and the positions of the two 
satellites are known. H denotes the terrain clearance and 1d  
and 

2d  denote the straight-line distances to R, respectively. 
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FIGURE 5 Ultrasonic ranging system 

The primary component T1 and subordinate component 
T2 are transmitters, and the detected objected R is the 
receiver. The workflows of the transmitter and receiver are 
shown in Figure 6. 
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value with the serial port

 
a) Workflow of the receiver 

Boot
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Y

Initialization

 Discontinue the detection of

 synchronizing signal

Transmit the ultrasonic signal

 
b) Workflow of the transmitters 

FIGURE 6 Workflows of the receiver and transmitters 

The receiver initiates the positioning event. The receiver 
first transmits a radio-frequency signal to the transmitters 
that it is ready to receive ultrasonic waves. Upon receiving 
the radio-frequency signal, T1 and T2 immediately transmit 

ultrasonic waves; the delay time is approximately 1 ms. The 
receiver takes turns in synchronizing with T1 and T2, while 
each transmitter receives an interrupted synchronizing 
signal.  

The design of the system not only reduces the processing 
load but also reduces the receiver’s reaction delay and 
system delay. The receiver transfers the received ultrasonic 
signal to the upper computer, which uses the optimized 
extended Kalman filter algorithm for processing and returns 
the calculated transition time to the receiver. The receiver 
determines the propagation distances of ultrasonic waves 

1d and 
2d according to the transition times. From the 

coordinate relationships among T1, T2 and R, it follows that:  

   
2 2 2 2

1 1 1x X y Y H d     , (7) 

   
2 2 2 2

2 2 2x X y Y H d     . (8) 

Thus, 2 2 2 2

1 (Y y)x d H     and the coordinates of 
the detected object can be determined. This system can also 
be applied to simultaneously locate multiple detected objects. 

4.2 EXPERIMENTAL ANALYSIS 

To study the performance of the optimized extended 
Kalman filter algorithm in the estimation of the transition 
time, an experiment was conducted for a ranging system 
comprising a primary component T1 and detected object R 
as shown in Figure 5. The experiment involves measuring 
the distance between T1 and R. The distance

1d between the 
primary component T1 and the detected object R is a fixed 
value of 4 m, which will contrast with experimental data 
presented later.  

Because the recursion of the algorithm is reasonably 
rapid, 80 measurements of 1d  were made using T1 to get 
sufficient measurement data for calculation. The operation 
of the extended Kalman Filter algorithm requires an initial 
value of state of 1d  to be inputted; this value is randomly set 
as X0|0 = 3.8 m. After the initial value is inputted, the 
extended Kalman filter algorithm and T1 begin to work 
cooperatively, and data analysis is carried out after 80 
calculations. 

Two sets of measurements were made to highlight the 
effect of modal optimization. The first set of measurements 
directly applies the extended Kalman filter to the received 
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ultrasonic signal instead of modal optimization; the obtained 
distance data are shown in Figure 7. The second set of 
measurements applies the extended Kalman filter algorithm 

with modal optimization; the obtained distance data are 
shown in Figure 8. Figure 9 shows the convergence 
tendency of the error. 
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FIGURE 7 Distance data for the first set of measurements 
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FIGURE 8 Distance data for the second set of measurements 
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FIGURE 9 Convergence of the error in the second set of measurements 

In Figure 7, the red line represents the measurement of

1d by the positioning system, the green line represents the 
value amended by the extended Kalman filter algorithm, and 
the blue line is the actual value. It is clear that the error 
greatly decreases and the correction value is much closer to 
the actual value when using extended Kalman filter 

algorithm. However, much error remains, with more than 70% 
of the data points having errors exceeding ±5 cm and 50% 
of the data points having errors in excess of ±15 cm. 

In Figure 8, the green line shows the results optimized 
and processed by the extended Kalman filter algorithm with 
modal optimization, the red line shows the measured values, 
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and the blue line shows the actual values. The revised value 
after modal optimization is seen to closely approach the 
actual value. After the first 10 recursions, the error is 
basically controlled within ±5 cm, and the effect of 
optimization is thus clear. Figure 9 shows the convergence 
of the error in the second set of measurements; after 50 
recursions, the error remains within ±1 cm. Modal 
optimization of the extended Kalman filter algorithm thus 
improves the measurement accuracy, with the error 
effectively controlled within ±5 cm, or even ±1 cm after 
many recursive calculations, which meets the requirements 
of highly accurate positioning indoors. 

5 Summary 

Ranging systems are established by adopting advanced 
modules, yet the requirements of high accuracy measure-
ments have not been met. There are many factors resulting 
in ranging error, including changes in the characteristics of 
ultrasonic media, environmental noise and the limits of 
hardware circuits. This paper greatly avoided error due to 
the limits of hardware through improvement of the work-
flow of the location system, temperature compensation in 

accurately obtaining the ultrasonic sound velocity, and im-
provement of the extended Kalman filter algorithm using 
EMD in accurately obtaining the transition time. The posi-
tioning error was thus limited within ±1 cm and meets the 
required accuracy of millimeter-level positioning. However, 
significant positioning error remains. Although this paper 
improved the performance of system hardware and impro-
ved waveform restructuring by introducing EMD, how to 
select the IMFs that best represent the original waveform by 
eliminating the most noise remains as future work. 
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