

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 227-233 Hong Lijuan, Qian Ju, Cui Jifeng

227
Mathematical and Computer Modelling

Automated unit-level testing of java memory leaks

Lijuan Hong*, Ju Qian, Jifeng Cui

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received 15 December 2013; Accepted 29 August 2014, www.cmnt.lv

Abstract

Java programs may suffer from serious memory leak bugs. To resolve these bugs, various leak diagnosing and even fixing techniques

have been proposed. However, in literature, there is very few work, which focuses on memory leak testing. Without revealing leak

phenomenon by testing in advance, even excellent leak diagnosing and fixing techniques can be hard to work. In software testing, unit

testing is a technique to avoid faults at early stage of software development. This paper proposes an automated unit-level memory leak

testing approach to find potential leak bugs in Java methods. It firstly identifies the methods with high leaking risks. Then, strengthened

unit tests are generated accordingly to check whether those risky modules can really cause leaks. Cases studies show that our method

could be valuable for real programs.

Keywords: Java, memory leak, unit testing, test generation

1 Introduction

Even though with garbage collection supports, memory

leak still remains a problem for Java programs. The leaks

usually occur when a Java program unnecessarily

maintains references to objects that are no longer required.

Memory Leaks may degrade runtime performance and

even lead to crashes due to out of memory exceptions.

To resolve these leak bugs, various techniques have

been proposed [1-7], and there are also a lot of supporting

tools [11, 12]. The previous work mainly focuses on leak

diagnosing and fixing, which find out the causes of leaks

after memory leak phenomenon occur [1-7] and fix the

leaking code [8-10]. However, in literature, there is very

few work concerning on how to discover those potential

memory leak phenomenon. Without a discovered leak phe-

nomena, in most cases, it will be hard to trigger a diagnosis

process and eliminate the leak error.

Software testing is a promising technique to discover

potential failures. But approaches for testing memory leaks

are hard to see. In this paper, we present an automated

testing method to find memory leak phenomenon at unit

level. The approach firstly finds out the leak risky methods

and then generates normal unit tests for them. We then

strengthen these unit tests to detect memory leaks. By

testing leaks at unit-level, memory leaks can be avoided as

early as possible in the whole lifecycle of software.

In the work, we classify the leak risky modules into

three categories: modules directly creating and leaking

large number of objects, modules that accumulate new ob-

jects created by themselves and may lead to leaks after re-

peated calls to them, modules that absorb their arguments

and may lead to leaks after repeated calls. These modules

can be identified with dependency, points-to, and escape

information.

For those leak risky modules, we firstly use some ex-

isting approaches [13] to generate normal unit tests as start

points. Then, these tests are augmented with large input

*Corresponding author e-mail ljhong307@163.com

data, repeated calls, and other techniques to strengthen the

memory usage and monitor mechanisms to observe the

leak. Finally, we can get the leak revealing unit tests. We

studied usage of our approach on several already found

memory leak bugs from JDK bug database. The results

show that the approach is effective in revealing real leak-

ing modules. This indicates that it can be valuable for prac-

tical uses.

2 Technique backgrounds

2.1 DEPENDENCE ANALYSIS

Dependency between program statements can be

categorized into two types: control dependence caused by

control structures in the program and data dependence

caused by reads and writes of memory locations [14].

We can get control and data dependences between

nodes in control flow graph via dependence analysis [14].

In this paper, we need to know whether a loop’s control

condition is influenced by method parameters. By

dependence analysis, we can get the data dependence

relationships between program nodes, and then judge

whether the loop’s condition node directly or indirectly

depends on method parameter by checking whether there

is a path from the method parameter to the condition node.

If there exist such kinds of paths, it indicates that the loop’s

control condition is potentially influenced by method’s

parameters.

2.2 POINTER AND ESCAPE ANALYSIS

Pointer analysis determines all the possible memory loca-

tions that a pointer may point to at runtime. In Java, a

pointer is a variable of reference type and what it points to

is an object on the heap [15].

This paper uses a context-insensitive algorithm

implemented in Soot [17] to do the pointer analysis.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 227-233 Hong Lijuan, Qian Ju, Cui Jifeng

228
Mathematical and Computer Modelling

Escape analysis tracks the lifetime of objects and

determine whether it may escape from some given scopes.

An object can be directly created by a new instruction or

indirectly created by a wrapper method of some new

instruction. It is considered to possibly escape from the

scope of a method if a reference to the object is returned

from the method, or if a reference to the object is assigned

to a field of an external object [16].

This paper extends the escape analysis presented in [16]

to do risky method analysis. In addition to that in [16], the

extended analysis also adds loops as the analysed scopes.

We firstly identify all objects created in the loops. Then, a

constraint system is built according to the statements in the

relevant method following the constraint-based approach

in [16]. Finally, we can determine whether the objects in

the loop may escape loop scope by the extended escape

analysis.

3 Leak risky modules: a classification

As discussed in the introduction part, the leak risky

modules can be classified into three categories. We will

introduce them in more detail in this section.

3.1 MODULES DIRECTLY LEAKING OBJECTS

Modules directly creating and leaking objects have the

following characteristics:

1) Creating objects repeatedly in loops inside the

module;

2) The number of rounds that these loops can execute

is unbounded and determined by the module inputs;

3) The objects created by the loops cannot be released

on time. Such modules may directly consume large

memory when the inputs are large. The memory

requirement may be caused by improper object allocation

and release mechanism and is unnecessary. It may cause

memory leaks.

class Test1{

1 static Vector cache = new Vector();
2 public void foo(int n){

3 for(int i = 1; i < n; i ++){

4 Data d = new Data();
5 cache.add(d);

6 doSth(d);

7 }
8 }

}

FIGURE 1 An example of modules directly leaking objects

Figure 1 demonstrates an example for the modules that

directly creating and leaking objects. In Figure 1, method

foo may directly cause memory leaks. In foo, there is a

loop which creates new objects inside it. The execution

rounds of the loop are unbounded and determined by the

method’s input parameter n. During each round, object d

created in the loop is added into an external cache. The

cached objects are not freed on time. Given a very large

input, the method may directly consume too much memory

and lead to out of memory error.

3.2 MODULES ACCUMULATING NEWLY CREATED

OBJECTS

Modules that accumulate newly created objects and can

lead to memory leak usually have the following character-

istics:

1) Creating objects inside the module;

2) The objects escape from module’s scope and get

stored through a way other than the method return value

and parameters. It may unconsciously consume large

memory after repeated calls and thereby cause memory

leaks.

class Test2{

1 static Vector cache = new Vector();

2 public Data bar(){
3 Data d = new Data();

4 cache.add(d);

5 return d;

6 }

 }

FIGURE 2 An example of modules accumulating newly created objects

Figure 2 demonstrates an example for the modules of

the second category. In Figure 2, method bar creates a new

object d and accumulates it into container cache. If the

cache is not cleaned on time, after a large number of calls

to the bar() method, there will be too many Data objects

stored in the container cache, which may cause memory

leaks.

3.3 MODULES ABSORBING ARGUMENT OBJECTS

A module that absorbs argument objects and can lead to

memory leak usually has at least one of its parameter ob-

jects potentially escaping out of the module’s scope

through a way other than the method return value and pa-

rameters. The escaped parameter object can be long-termly

absorbed by the module. It may lead to memory leaks after

many calls to the module.

class Test3{
1 static Vector cache = new Vector();

2 public void zar(Data d){

3 cache.add(d);
4 doSth(d);

5 }

 }

FIGURE 3 An example of modules absorbing argument objects

Figure 3 shows an example for the modules of this

category. In Figure 3, a reference type parameter is passed

into method zar in line 2. In line 3, parameter d is absorbed

by method zar to an external cache. The method may

unconsciously absorb too many parameter objects after

repeated calls, which may causes leaks and finally lead to

out of memory error.

4 Identifying Leak Risky Modules

This section presents the methods for identifying three

kinds of leak risky modules, respectively.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 227-233 Hong Lijuan, Qian Ju, Cui Jifeng

229
Mathematical and Computer Modelling

4.1 IDENTIFYING MODULES DIRECTLY LEAKING

OBJECTS

We firstly search the loops that create new objects in a

method on the control flow graph. Then whether these

loops’ control conditions can be influenced by the method

inputs are determined. Finally, we use pointer and escape

analyses to determine whether the new objects’ created in

those loops can live beyond the loop scope. If the condition

of a loop that creates new objects is potentially influenced

by the method inputs and the created objects can live

beyond the loop scope, it indicates that the module has a

high risk in directly leaking huge memory.

Algorithm 1: Identifying modules that directly leaking objects

Input: m: Method

Output: Boolean

 Dependence analysis;

pointer and escape analyses;

let Lm be the set of all loops in m

foreach lLm do

 if hasNewInstruction(l) then

 if isInputDependent(l) then
if isNewObjectEscape(l) then

return true;

end
 end

 end

 end
return false;

The algorithm is shown in Algorithm 1. It returns a

Boolean value for each input method m to show whether

the method may cause leaks. The algorithm firstly collects

Lm, the set of all loops in m, by loop analysis. Then, each

loop l is processed. We firstly check whether loop l can

introduce new objects by predicate hasNewInstruction(l).

The new objects include the ones created directly by new

instructions and the ones created by other callee methods.

Then we determine whether loop l is input dependent on

the method’s parameters by predicate isInputDependent(l).

Finally, we use predicate isNewObjectEscape(l) to check

whether the newly introduced objects may escape from the

loop scope. When all the above conditions are satisfied, it

indicates that method m is a leak risky module.

For isInputDependent(l), we firstly obtain the

dependence node corresponding to the loop condition.

Starting from this node, we traverse the program

dependence graph to get a set of nodes that the loop

condition node depends on. If the set contains any node

corresponding to the method’s parameter, it indicates loop

l’s condition depends on method inputs.

For isNewObjectEscape(l), we firstly check whether

the objects created in the loop escape from the method

scope by existing escape analysis. If they escape, of course

the objects escape from the loop scope. Otherwise, we will

check whether the objects created by the loop may escape

from the loop scope by our extended escape analysis.

4.2 IDENTIFYING MODULES ACCUMULATING

NEWLY CREATED OBJECTS

We firstly obtain all the objects newly created in a module.

Then, pointer and escape analysis are used to determine

lifetime of these objects and whether they may escape from

the method scope via internal leak sources and thereby be

accumulated.

The algorithm is shown in Algorithm 2. It returns a

Boolean value for each input method m to show whether

the method may cause leaks after repeated calls. We firstly

obtain a collection of internal escape sources excluding the

return value and parameters by function

getInternalLeakSources(). If method m accumulates its

created objects, the new objects will escape from these

sources. With these special escape sources, we do escape

analysis for the method. Having got the escape information,

we check each newly created object in the method, and

finally determine whether there is any object escaping

from the method scope by predicate isEscape(o). If such

objects exist, the method may potentially cause memory

leaks.

Algorithm 2: Identifying modules that accumulating newly created
objects

Input: m:method

Output: Boolean

 escape_sources := getInternalLeakSources();

 pointer and escape analysis;

 newObjects := getAllNewObjects();

 foreach onewObjects do

 if isEscape(o) then

 return true;
 end

end

return false;

4.3 IDENTIFYING MODULES ABSORBING

ARGUMENT OBJECTS

We firstly check whether a module’s parameters are refer-

ence types and regard the reference typed parameters as

newly created objects in the modules. Then, pointer and

escape analyses can be used to find out the lifetime of these

objects and determine whether they may escape from

method scope.

Algorithm 3: Identifying modules that absorbing argument objects

Input: m:method
Output: Boolean

 newObjects := markParamsAsNewObject (m);

pointer and escape analyses;

foreach onewObjects then

if isEscape(o) then

return true;
 end

 end

return false;

The algorithm is shown in Algorithm 3. It is similar to

Algorithm 2. We firstly set method’s reference parameters

as newly created objects by markParamsAsNewObject(m).

With these special newObjects, we do pointer and escape

analyses for the method. Based on the escape information,

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 227-233 Hong Lijuan, Qian Ju, Cui Jifeng

230
Mathematical and Computer Modelling

we check each newly created object in the method to

determine whether there is any object escaping from

method scope by predicate isEscape(o). If such objects

exist, the method is a leak risky module.

5 Creating unit tests

For the leak risky modules, the users can pick up the mod-

ules that they believe should not cause continuously

memory growth to do the unit testing.

Our unit test generation approach firstly uses some

existing methods to generate normal unit tests. Then, we

use enlarged input data, repeated method calls, and other

techniques to strengthen their memory use, and insert

memory monitor mechanisms to observe the leaking

behaviors. Finally a collection of unit tests for memory

leak testing purpose can be obtained.

The approach creates JUnit format test cases. In the

current implementation, we use a tool named

CodeProAnalytix [13] to generate normal JUnit test cases

for the risky modules. The augmenting methods are

discussed below.

5.1 CREATING UNIT TESTS FOR MODULES

DIRECTLY LEAKING OBJECTS

For the modules that could directly cause leaks, we use

large input data to strengthen memory use and insert

memory growth assertions to determine whether the leaks

can really occur.

public class UnitTest1 {

1 @Before

2 public void setUp() throws Exception {
3 }

4 @Test

5 public void testFoo(){
6 Test1 test = new Test1();

7 int n = MemoryTester.LARGE_INT;

8 long memoryBefore = MemoryTester.getUsed-
Memory();

9 test.foo(n);

10 long memoryAfter =
MemoryTester.getUsedMemory();

11 MemoryTester.assertMemoryGrowth(memoryBefore,

memoryAfter, NO_SIGNIFICANT_GROWTH);
12 }

}

FIGURE 4 Unit testing with large input data and memory assertions

Figure 4 shows a unit test generated for the example in

Figure 1. The normal unit test generated by the existing

tools only contains the creation of Test1 object and a call

to its method foo. In the normal unit test, it passes a

random initial value to the tested method. To test memory

leaks, in statement 7, we set a large input data

MemoryTester.LARGE_INT for the tested method foo to

strengthen memory use. Our approach currently supports

several different types of large data, including the

primitive types, such as int, long, float, and so on, and

some object types, such as String. For the primitive types,

we just use some previously defined huge value. For String

type, we generate a pool of large strings and randomly

select one of them. We obtain the memory consummation

before and after foo by calls to method

MemoryTester.getUsedMemory() and determine whether

the method cause leaks by assertion

MemoryTester.assertMemoryGrowth(memoryBefore,

memoryAfter, NO_SIGNIFICANT_GROWTH). The

assertion checks whether the memory growth is in the

normal range. It uses a predefined value

NO_SIGNIFICANT_GROWTH to set the allowed growth

range. The constant means only small memory growth is

allowed. If the memory grows over the allowed value, we

consider the risky method really causes memory leaks.

With the above strengthen, the unit test can validate

whether the leak risky method actually lead to a noticeable

leak.

5.2 CREATING UNIT TESTS FOR MODULES

ACCUMULATING NEWLY CREATED OBJECTS

For the second kind of leak risky modules, we use repeated

method calls to strengthen the memory usage, and insert

memory growth assertions to check whether the leak risky

modules can really lead to leaks.

public class UnitTest2 {
1 @Before

2 public void setUp() throws Exception {
3 }

4 @Test

5 public void testBar(){
6 Test2 test = new Test2 ();

7 long memoryBefore = MemoryTester.getUsedMemory();

8 for(int i=0;i<MemoryTester.LARGE_LOOPNUM;i++){
9 test.bar();

10 }

11 long memoryAfter = MemoryTester.getUsedMemory();
12 MemoryTester.assertMemoryGrowth(memoryBefore,

 memoryAfter, NO_SIGNIFICANT_GROWTH);

13 }
}

FIGURE 5 Unit testing with repeated method calls and memory asser-

tions

Figure 5 shows a unit test for the example in Figure 2.

We use the existing tools to generate the normal unit test.

In the normal unit test, there only have the creation of

Test2 object and a call to method bar. We generate the test

code on the base of the normal unit test. Statement 8 puts

method bar into a loop and sets a large number for the loop

to strengthen memory use. Then, the memory growth

assertions checks whether the memory growth is normal.

If the growth is abnormal, it indicates the leak risky

method may be leaking the memory.

5.3 CREATING UNIT TESTS FOR MODULES

ABSORBING ARGUMENT OBJECTS

We use a weak reference based mechanism to determine

whether the third kind of leak risky modules can cause

problems.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 227-233 Hong Lijuan, Qian Ju, Cui Jifeng

231
Mathematical and Computer Modelling

public class UnitTest3{

1 @Before

2 public void setUp() throws Exception {

 }
 @Test

public void testZar(){
 Test3 test = new Test3();

 Object obj = new Data();

 WeakReference<Object> ref= MemoryTester.prepareArgu-
ment(obj);

 test.zar(obj);

 obj = null;
 MemoryTester.assertArgumentNotLeaked (ref);

}

}

FIGURE 6 Unit testing with weak reference based leak detection mech-
anism

Figure 6 shows a unit test generated for the example in

Figure 3. The paper firstly generates a normal unit test only

containing the instantiation of Test3, the creation of an

argument object, and a call to its method zar. Then, it

generates strengthened unit test based on weak reference

mechanism. A weak reference will be garbage collected

when its referee is disconnected from other references. By

checking whether a weak reference is broken, we can

know whether an object is hold by other references. In the

unit test, statement 8 uses

MemoryTester.prepareArgument (objs) to add a weak

reference ref to method zar’s argument obj. It sets

reference obj to null in statement 10. After that, if the

argument obj is not absorbed by method zar, then the weak

reference should be broken after some round of garbage

collections, since there is no other reference to the

argument object. Statement 11 does some GC and check

the referee of the weak reference ref to judge whether

object obj is absorbed and there can be leak source. By the

weak reference checking mechanism, the unit test can

determine whether the leak risky method may cause leaks.

6 Case studies

To validate the proposed approach, we implemented our

approach as an Eclipse plugin and conduct case studies on

several memory leak bugs in JDK which are typical

examples of the risky modules introduced in section 3.

6.1 MODULES DIRECTLY LEAKING OBJECTS

The modules directly leaking objects are a little hard to

find in the JDK memory leak bugs. But many existing bugs

can easily be turn into this kind. For example, in Figure 7,

we can easily get a representative directly leaking case

based on a real memory leak bug JDK-6942989. In the

case, there is a loop calling leaking method

getAnonymousLogger() (the body of

getAnonymousLogger() can be found in Figure 9). The

execution rounds of the loop are unbounded and

determined by the method’s input. In method

getAnonymousLogger(), the newly created Logger objects

are added into an external container. In other words, the

new objects escape from the loop scope. Therefore, the

case matches the characteristics of the first kind of leak

risky modules.

public class Worker {

 public static void doLoggedOperation(int n){
 for(int i = 0; i< n; i++){

 Logger logger = getAnonymousLogger();

 logger.log(record);
 doSth();

 }

}
}

FIGURE 7 A case for modules directly leaking objects

public class LoggerTest {

@Before
public void setUp() throws Exception {

}

@Test
public void testDoLoggedOperation () throws Exception{

Worker fixture = new Worker();

int n = MemoryTester.LARGE_INT;
long memoryBefore = MemoryTester.getUsedMemory();

fixture. doLoggedOperation(n);

long memoryAfter = MemoryTester.getUsedMemory();
 MemoryTester.assertMemoryGrowth(memoryBefore,

memoryAfter, NO_SIGNIFICANT_GROWTH);

}
}

FIGURE 8 Unit test for the case shows in Figure 7

Our approach firstly finds out the loop in method

doLoggedOperation. Then, it identifies the loop is input

dependent on method parameters. Finally, the approach

determines that the newly created objects escape from loop

scope. Therefore, the approach identifies the leak risky

method doLoggedOperation and then generates the unit

test. The unit test is shown in Figure 8. In the unit test, a

large input data MemoryTester.LARGE_INT is set for

tested method doLoggedOperation to strengthen memory

use. When running the unit test, the results show that

method doLoggedOperation consumes abnormal amount

of memory and hence causes memory leaks. The case in-

dicates our approach is effective in revealing the first kind

of leak risky modules.

6.2 MODULES ACCUMULATING NEWLY CREATED

OBJECTS

For this kind of leak risky modules, we use memory leak

bug JDK-6942989: Memory leak of

java.lang.ref.WeakReference objects as the studied case.

The bug affects JDK version 4.2u27, 5.0u25, and 6. Its rel-

evant code is briefly shown in Figure 9. In the case, a new

WeakReference object created in the method doSetParent

(indirectly called by method getAnonymousLogger()) is

added into external container kids. Although the weak ref-

erences are finally broken, there are still references from

the external container to the new WeakReference objects.

These objects in kids are not released on time. Therefore,

the case matches the characteristics of the second kind of

leak risky modules, and method getAnonymousLogger()

has risk in leaking memory.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 227-233 Hong Lijuan, Qian Ju, Cui Jifeng

232
Mathematical and Computer Modelling

public class Logger {

 private boolean anonymous;

 private static Object treeLock = new Object();

 private Logger parent;
private ArrayList<LogManager.LoggerWeakRef> kids;

public static Logger getAnonymousLogger() {
 return getAnonymousLogger(null);

}

public static synchronized Logger getAnonymousLogger(String re-
sourceBundleName) {

……;

Logger result = new Logger(null, resourceBundleName);
result.anonymous = true;

Logger root = manager.getLogger("");

result.doSetParent(root);
return result;

}

private void doSetParent(Logger newParent) {
 ……;

 if (parent != null) {

 for (Iterator iter = parent.kids.iterator(); iter.hasNext();) {

 WeakReference ref = (WeakReference) iter.next();

Logger kid = (Logger) ref.get();

 if (kid == this) {
 iter.remove();

 break;

}
 }

 }

parent = newParent;
……;

parent.kids.add(new WeakReference(this));

 updateEffectiveLevel();
}

}

FIGURE 9 Code relevant to bug JDK-6942989

In our approach, we firstly do escape analysis with the

escape sources in method getAnonymousLogger()

excluding the return value and the parameters by

Algorithm 2. Then, we can obtain all the escape objects.

Finally, it identifies that the escape objects contain the

newly created objects. Therefore, the approach considers

method getAnonymousLogger() as risky. The unit test

generated by our approach is shown in Figure 10. In the

test, we put method getAnonymousLogger() into a loop

and set a large upper bound for the loop to strengthen

memory use. When running the unit test, the results show

that the method getAnonymousLog-ger() can lead to

memory leaks and indicate our approach can identify this

kind of risky modules.

public class LoggerTest {

@Before
public void setUp() throws Exception {

}

@Test
public void testGetAnonymousLogger throws Exception (){

 long memoryBefore = MemoryTester.getUsedMemory();

 for(int i=0;i<MemoryTester.LARGE_LOOPNUM;i++)
Logger.getAnonymousLogger();

 long memoryAfter = MemoryTester.getUsedMemory();

 MemoryTester.assertMemoryGrowth(memoryBefore,
memoryAfter, NO_SIGNIFICANT_GROWTH);

 }

}

FIGURE 10 Unit test for case JDK-6942989

6.3 MODULES ABSORBING ARGUMENT OBJECTS

We use memory leak bug JDK-6525563: Memory leak in

ObjectOutputStream as the studied case for the third

category of risky modules. The bug affects JDK version 6.

Its relevant code is briefly shown in Figure 11. In the case,

a reference argument obj is passed to method writeObject0.

The parameter obj is then added into an external array field

objs of the receiver object in method insert which is

indirectly called by method writeUnshared. Finally, the

argument object will be absorbed inside method

writeUnshared. The case matches the characteristics of the

third kind of leak risky modules.

public class ObjectOutputStream{

private int size;

private int threshold;
private int[] spine;

private int[] next;

private Object[] objs;
public void writeUnshared(Object obj) throws IOException {

writeObject0(obj, true);

}
private void writeObject0(Object obj, boolean unshared) {

int h;

Object orig = obj;
Class cl = obj.getClass();

ObjectStreamClass desc = null;
writeOrdinaryObject(obj, desc, unshared);

}

private void writeOrdinaryObject(Object obj, ObjectStreamClass
desc, boolean unshared)

{

 assign(unshared ? null : obj);
}

int assign(Object obj) {

 insert(obj, size);
 return size++;

 }

private void insert(Object obj, int handle) {
 int index = hash(obj) % spine.length;

 objs[handle] = obj;

 next[handle] = spine[index];
 spine[index] = handle;

 }

private int hash(Object obj) {
 return System.identityHashCode(obj) & 0x7FFFFFFF;

 }

}

FIGURE 11 Code relevant to bug JDK-6525563

Our approach firstly marks the parameter object passed

to method writeUnshared(Object obj) as a special new

object by Algorithm 3. Then, we obtain all the escape

objects by escape analysis. Finally, it can be found that the

escape objects contain the special new object. In another

words, the parameter object escapes from the method

scope. Therefore, the approach recognizes method

writeUnshared(Object obj) as a leak risky module and then

gener-ates the final unit test for it (see Figure 12). In the

unit test, it uses MemoryTester.prepareArgument(obj) to

add a weak reference to the method’s reference parameter

and use MemoryTester.assertArgumentNotLeaked(ref) to

test whether the weak reference have been broken to check

memory leaks. While running the unit test, the results show

that the test method writeUnshared(Object obj) causes

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 227-233 Hong Lijuan, Qian Ju, Cui Jifeng

233
Mathematical and Computer Modelling

memory leaks. The case indicates our approach is able to

test memory leaks for the third category of risky modules.

public class ObjectOutputStreamTest {

@Before
public void setUp() throws Exception {

}

@Test(expected = java.io.NotSerializableException.class)
public void testwriteUnshared() throws Exception{

ObjectOutputStream fixture = new ObjectOutputStream(new ByteAr-

rayOutputStream());
Object obj = new Data();

WeakReference<Object> ref = MemoryTester.prepareArgument(obj);

fixture.writeUnshared(obj);
obj = null;

 MemoryTester.assertArgumentNotLeaked (ref);

}
}

FIGURE 12 Unit test for JDK-6525563

The above cases show that the approach can identify and

test three kinds of leak risky modules effectively. It can

reveal real leaking methods, which could be helpful for

practical use.

7 Conclusions

The paper proposes an approach for discovering memory

leak phenomenon from testing perspective. The approach

automatically generates unit tests to find potential memory

leaks in Java methods. It firstly identifies three kinds of

leak risky modules. Then, leak-oriented unit tests are

generated from normal unit tests to strengthen the ability

in finding leaks. We conduct case studies on real bugs. The

results show that the approach is effective in revealing real

leak modules. The paper focuses on unit testing. In the

future, we also plan to do leak testing at system level to

further support the discovering of memory leak bugs.

Reference

[1] Park J, Choi B 2012 Automated Memory Leakage Detection in An-

droid Based Systems International Journal of Control & Automation

5(2) 35-42

[2] Pienaar J A, Hundt R 2013 JSWhiz: Static analysis for JavaScript
memory leaks IEEE/ACM International Symposium on Code Genera-

tion and Optimization (CGO)

[3] Jump M, McKinley K S 2010 Detecting memory leaks in managed lan-
guages with Cork Software: Practice and Experience 40(1) 1-22

[4] Maxwell E K, Back G, Ramakrishnan N 2010 Diagnosing memory

leaks using graph mining on heap dumps Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data

mining (KDD) 115-24

[5] Aftandilian E E, Guyer S Z 2009 GC assertions: using the garbage col-
lector to check heap properties Proceedings of the 2009 ACM

SIGPLAN conference on programming language design and imple-

mentation (PLDI) 235-44

[6] Xu G, Bond M D, Qin F, Rountev A 2011 LeakChaser: helping pro-

grammers narrow down causes of memory leaks Proceedings of the

32nd ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI) 270-82

[7] Yan D, Xu G, Yang S, Rountev A 2014 LeakChecker: Practical Static

Memory Leak Detection for Managed Languages International Sym-
posium on Code Generation and Optimization (CGO)

[8] Qian J, Zhou X 2012 Inferring Weak References for Fixing Java

Memory Leaks The 28th IEEE International Conference on Software

Maintenance (ICSM) ERA Track 571-4

[9] Kim D, Nam J, Song J, Kim S 2013 Automatic patch generation

learned from human-written patches The 2013 International Confer-

ence on Software Engineering (ICSE)

[10] Zhang S, Lü H, Ernst M D 2013 Automatically repairing broken work-

flows for evolving GUI applications International Symposium on Soft-

ware Testing and Analysis (ISSTA)

[11] JProbe. http://www.quest.com/jprobe/

[12] O'Hair K 2004 HPROF: A Heap / CPU Profiling Tool in J2SE 5.0.

http://java.sun.com/developer/technicalArticles/Program-
ming/HPROF.html

[13] CodeProAnalytix. https://developers.google.com/java-dev-tools/code-

pro/doc/

[14] Xu B, Qian J, Zhang X, Wu Z, Chen L 2005 A brief survey of program

slicing ACM SIGSOFT Software Engineering Notes 30(2) 10-45

[15] Hind M 2001 Pointer analysis: Haven’t we solved this problem yet?
Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering

[16] Gay D, Steensgaard B 2000 Fast escape analysis and stack allocation
for object-based programs Proceedings of the 9th International Con-

ference on Compiler Construction 82-93.

[17] Vallée-Rai R, Co P, Gagnon E, Hendren L, Lam P, Sundaresan V 1999
Soot – a Java bytecode optimization framework Proceeding CASCON

'99 Proceedings of the 1999 conference of the Centre for Advanced

Studies on Collaborative research 13-23

Authors

Lijuan Hong, born in March, 1989, Hefei, China

University studies: MS degree in Computer Science and Technology at Nanjing University of Aeronautics and Astronautics, China, 2012.
Scientific interests: program analysis, program tests.

Ju Qian, born in 1981, Nanjing, China

Current position, grades: associate professor at Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China.
University studies: PhD degrees in Computer Science and Technology at Southeast University, China.
Scientific interests: program analysis, program tests, program diagnostics.
Publications: 4 papers.

Jifeng Cui, born on March 16, 1988, Nanjing, China

University studies: MS degree in Computer Science and Technology at Nanjing University of Aeronautics and Astronautics, China, 2011.
Scientific interests: data mining, big data analysis.
Publications: 3 papers.

http://www.quest.com/jprobe/

