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Abstract 

Java programs may suffer from serious memory leak bugs. To resolve these bugs, various leak diagnosing and even fixing techniques 

have been proposed. However, in literature, there is very few work, which focuses on memory leak testing. Without revealing leak 

phenomenon by testing in advance, even excellent leak diagnosing and fixing techniques can be hard to work. In software testing, unit 

testing is a technique to avoid faults at early stage of software development. This paper proposes an automated unit-level memory leak 

testing approach to find potential leak bugs in Java methods. It firstly identifies the methods with high leaking risks. Then, strengthened 

unit tests are generated accordingly to check whether those risky modules can really cause leaks. Cases studies show that our method 

could be valuable for real programs. 
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1 Introduction 
 

Even though with garbage collection supports, memory 

leak still remains a problem for Java programs. The leaks 

usually occur when a Java program unnecessarily 

maintains references to objects that are no longer required. 

Memory Leaks may degrade runtime performance and 

even lead to crashes due to out of memory exceptions. 

To resolve these leak bugs, various techniques have 

been proposed [1-7], and there are also a lot of supporting 

tools [11, 12]. The previous work mainly focuses on leak 

diagnosing and fixing, which find out the causes of leaks 

after memory leak phenomenon occur [1-7] and fix the 

leaking code [8-10]. However, in literature, there is very 

few work concerning on how to discover those potential 

memory leak phenomenon. Without a discovered leak phe-

nomena, in most cases, it will be hard to trigger a diagnosis 

process and eliminate the leak error. 

Software testing is a promising technique to discover 

potential failures. But approaches for testing memory leaks 

are hard to see. In this paper, we present an automated 

testing method to find memory leak phenomenon at unit 

level. The approach firstly finds out the leak risky methods 

and then generates normal unit tests for them. We then 

strengthen these unit tests to detect memory leaks. By 

testing leaks at unit-level, memory leaks can be avoided as 

early as possible in the whole lifecycle of software. 

In the work, we classify the leak risky modules into 

three categories: modules directly creating and leaking 

large number of objects, modules that accumulate new ob-

jects created by themselves and may lead to leaks after re-

peated calls to them, modules that absorb their arguments 

and may lead to leaks after repeated calls. These modules 

can be identified with dependency, points-to, and escape 

information. 

For those leak risky modules, we firstly use some ex-

isting approaches [13] to generate normal unit tests as start 

points. Then, these tests are augmented with large input 
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data, repeated calls, and other techniques to strengthen the 

memory usage and monitor mechanisms to observe the 

leak. Finally, we can get the leak revealing unit tests. We 

studied usage of our approach on several already found 

memory leak bugs from JDK bug database. The results 

show that the approach is effective in revealing real leak-

ing modules. This indicates that it can be valuable for prac-

tical uses. 
 

2 Technique backgrounds 
 

2.1 DEPENDENCE ANALYSIS 
 

Dependency between program statements can be 

categorized into two types: control dependence caused by 

control structures in the program and data dependence 

caused by reads and writes of memory locations [14]. 

We can get control and data dependences between 

nodes in control flow graph via dependence analysis [14]. 

In this paper, we need to know whether a loop’s control 

condition is influenced by method parameters. By 

dependence analysis, we can get the data dependence 

relationships between program nodes, and then judge 

whether the loop’s condition node directly or indirectly 

depends on method parameter by checking whether there 

is a path from the method parameter to the condition node. 

If there exist such kinds of paths, it indicates that the loop’s 

control condition is potentially influenced by method’s 

parameters. 
 

2.2 POINTER AND ESCAPE ANALYSIS 
 

Pointer analysis determines all the possible memory loca-

tions that a pointer may point to at runtime. In Java, a 

pointer is a variable of reference type and what it points to 

is an object on the heap [15]. 

This paper uses a context-insensitive algorithm 

implemented in Soot [17] to do the pointer analysis. 
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Escape analysis tracks the lifetime of objects and 

determine whether it may escape from some given scopes. 

An object can be directly created by a new instruction or 

indirectly created by a wrapper method of some new 

instruction. It is considered to possibly escape from the 

scope of a method if a reference to the object is returned 

from the method, or if a reference to the object is assigned 

to a field of an external object [16]. 

This paper extends the escape analysis presented in [16] 

to do risky method analysis. In addition to that in [16], the 

extended analysis also adds loops as the analysed scopes. 

We firstly identify all objects created in the loops. Then, a 

constraint system is built according to the statements in the 

relevant method following the constraint-based approach 

in [16]. Finally, we can determine whether the objects in 

the loop may escape loop scope by the extended escape 

analysis. 

 

3 Leak risky modules: a classification 

 

As discussed in the introduction part, the leak risky 

modules can be classified into three categories. We will 

introduce them in more detail in this section. 
 

3.1 MODULES DIRECTLY LEAKING OBJECTS 

 

Modules directly creating and leaking objects have the 

following characteristics: 

1) Creating objects repeatedly in loops inside the 

module; 

2) The number of rounds that these loops can execute 

is unbounded and determined by the module inputs; 

3) The objects created by the loops cannot be released 

on time. Such modules may directly consume large 

memory when the inputs are large. The memory 

requirement may be caused by improper object allocation 

and release mechanism and is unnecessary. It may cause 

memory leaks. 

class Test1{ 

1     static Vector cache = new Vector(); 
2     public void foo(int n){ 

3        for( int i = 1; i < n; i ++ ){ 

4           Data d = new Data(); 
5           cache.add(d); 

6           doSth(d); 

7        } 
8    } 

} 

FIGURE 1 An example of modules directly leaking objects 

Figure 1 demonstrates an example for the modules that 

directly creating and leaking objects. In Figure 1, method 

foo may directly cause memory leaks. In foo, there is a 

loop which creates new objects inside it. The execution 

rounds of the loop are unbounded and determined by the 

method’s input parameter n. During each round, object d 

created in the loop is added into an external cache. The 

cached objects are not freed on time. Given a very large 

input, the method may directly consume too much memory 

and lead to out of memory error. 

 

3.2 MODULES ACCUMULATING NEWLY CREATED 

OBJECTS 

 

Modules that accumulate newly created objects and can 

lead to memory leak usually have the following character-

istics: 

1) Creating objects inside the module; 

2) The objects escape from module’s scope and get 

stored through a way other than the method return value 

and parameters. It may unconsciously consume large 

memory after repeated calls and thereby cause memory 

leaks. 

class Test2{ 

1     static Vector cache = new Vector(); 

2     public Data bar(){ 
3        Data d = new Data(); 

4        cache.add(d); 

5        return d; 

6     } 

   } 

FIGURE 2 An example of modules accumulating newly created objects 

 

Figure 2 demonstrates an example for the modules of 

the second category. In Figure 2, method bar creates a new 

object d and accumulates it into container cache. If the 

cache is not cleaned on time, after a large number of calls 

to the bar() method, there will be too many Data objects 

stored in the container cache, which may cause memory 

leaks. 

 

3.3 MODULES ABSORBING ARGUMENT OBJECTS 

 

A module that absorbs argument objects and can lead to 

memory leak usually has at least one of its parameter ob-

jects potentially escaping out of the module’s scope 

through a way other than the method return value and pa-

rameters. The escaped parameter object can be long-termly 

absorbed by the module. It may lead to memory leaks after 

many calls to the module. 

class Test3{ 
1     static Vector cache = new Vector(); 

2     public void zar(Data d){ 

3        cache.add(d); 
4        doSth(d); 

5     } 

   }   

FIGURE 3 An example of modules absorbing argument objects 

Figure 3 shows an example for the modules of this 

category. In Figure 3, a reference type parameter is passed 

into method zar in line 2. In line 3, parameter d is absorbed 

by method zar to an external cache. The method may 

unconsciously absorb too many parameter objects after 

repeated calls, which may causes leaks and finally lead to 

out of memory error. 

 

4 Identifying Leak Risky Modules 

 

This section presents the methods for identifying three 

kinds of leak risky modules, respectively. 
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4.1 IDENTIFYING MODULES DIRECTLY LEAKING 

OBJECTS 

 

We firstly search the loops that create new objects in a 

method on the control flow graph. Then whether these 

loops’ control conditions can be influenced by the method 

inputs are determined. Finally, we use pointer and escape 

analyses to determine whether the new objects’ created in 

those loops can live beyond the loop scope. If the condition 

of a loop that creates new objects is potentially influenced 

by the method inputs and the created objects can live 

beyond the loop scope, it indicates that the module has a 

high risk in directly leaking huge memory. 

Algorithm 1: Identifying modules that directly leaking objects 

Input: m: Method 

Output: Boolean 

    Dependence analysis; 

pointer and escape analyses; 

let Lm be the set of all loops in m 

foreach lLm do 

      if hasNewInstruction(l) then 

       if isInputDependent(l) then 
if isNewObjectEscape(l) then 

return true; 

end 
          end 

     end 

  end 
return false; 

The algorithm is shown in Algorithm 1. It returns a 

Boolean value for each input method m to show whether 

the method may cause leaks. The algorithm firstly collects 

Lm, the set of all loops in m, by loop analysis. Then, each 

loop l is processed. We firstly check whether loop l can 

introduce new objects by predicate hasNewInstruction(l). 

The new objects include the ones created directly by new 

instructions and the ones created by other callee methods. 

Then we determine whether loop l is input dependent on 

the method’s parameters by predicate isInputDependent(l). 

Finally, we use predicate isNewObjectEscape(l) to check 

whether the newly introduced objects may escape from the 

loop scope. When all the above conditions are satisfied, it 

indicates that method m is a leak risky module. 

For isInputDependent(l), we firstly obtain the 

dependence node corresponding to the loop condition. 

Starting from this node, we traverse the program 

dependence graph to get a set of nodes that the loop 

condition node depends on. If the set contains any node 

corresponding to the method’s parameter, it indicates loop 

l’s condition depends on method inputs. 

For isNewObjectEscape(l), we firstly check whether 

the objects created in the loop escape from the method 

scope by existing escape analysis. If they escape, of course 

the objects escape from the loop scope. Otherwise, we will 

check whether the objects created by the loop may escape 

from the loop scope by our extended escape analysis. 

 

 

 

4.2 IDENTIFYING MODULES ACCUMULATING 

NEWLY CREATED OBJECTS 

 

We firstly obtain all the objects newly created in a module. 

Then, pointer and escape analysis are used to determine 

lifetime of these objects and whether they may escape from 

the method scope via internal leak sources and thereby be 

accumulated. 

The algorithm is shown in Algorithm 2. It returns a 

Boolean value for each input method m to show whether 

the method may cause leaks after repeated calls. We firstly 

obtain a collection of internal escape sources excluding the 

return value and parameters by function 

getInternalLeakSources(). If method m accumulates its 

created objects, the new objects will escape from these 

sources. With these special escape sources, we do escape 

analysis for the method. Having got the escape information, 

we check each newly created object in the method, and 

finally determine whether there is any object escaping 

from the method scope by predicate isEscape(o). If such 

objects exist, the method may potentially cause memory 

leaks. 

Algorithm 2: Identifying modules that accumulating newly created 
objects 

Input: m:method 

Output: Boolean 

    escape_sources := getInternalLeakSources(); 

    pointer and escape analysis;  

    newObjects := getAllNewObjects(); 

    foreach onewObjects do 

       if isEscape(o)  then 

           return true; 
     end 

end 

return false; 

 

4.3 IDENTIFYING MODULES ABSORBING 

ARGUMENT OBJECTS 

 

We firstly check whether a module’s parameters are refer-

ence types and regard the reference typed parameters as 

newly created objects in the modules. Then, pointer and 

escape analyses can be used to find out the lifetime of these 

objects and determine whether they may escape from 

method scope. 

Algorithm 3: Identifying modules that absorbing argument objects 

Input: m:method 
Output: Boolean 

      newObjects := markParamsAsNewObject (m); 

pointer and escape analyses; 

foreach onewObjects then 

if isEscape(o) then 

return true; 
              end 

      end 

return false; 

The algorithm is shown in Algorithm 3. It is similar to 

Algorithm 2. We firstly set method’s reference parameters 

as newly created objects by markParamsAsNewObject(m). 

With these special newObjects, we do pointer and escape 

analyses for the method. Based on the escape information, 
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we check each newly created object in the method to 

determine whether there is any object escaping from 

method scope by predicate isEscape(o). If such objects 

exist, the method is a leak risky module. 

 

5 Creating unit tests 

 

For the leak risky modules, the users can pick up the mod-

ules that they believe should not cause continuously 

memory growth to do the unit testing.   

Our unit test generation approach firstly uses some 

existing methods to generate normal unit tests. Then, we 

use enlarged input data, repeated method calls, and other 

techniques to strengthen their memory use, and insert 

memory monitor mechanisms to observe the leaking 

behaviors. Finally a collection of unit tests for memory 

leak testing purpose can be obtained. 

The approach creates JUnit format test cases. In the 

current implementation, we use a tool named 

CodeProAnalytix [13] to generate normal JUnit test cases 

for the risky modules. The augmenting methods are 

discussed below. 

 

5.1 CREATING UNIT TESTS FOR MODULES 

DIRECTLY LEAKING OBJECTS 

 

For the modules that could directly cause leaks, we use 

large input data to strengthen memory use and insert 

memory growth assertions to determine whether the leaks 

can really occur. 

public class UnitTest1 { 

1        @Before 

2        public void setUp() throws Exception { 
3        } 

4        @Test 

5        public void testFoo(){ 
6              Test1 test = new Test1(); 

7              int n = MemoryTester.LARGE_INT; 

8              long memoryBefore = MemoryTester.getUsed-
Memory(); 

9              test.foo(n); 

10           long memoryAfter = 
MemoryTester.getUsedMemory(); 

11         MemoryTester.assertMemoryGrowth(memoryBefore, 

memoryAfter, NO_SIGNIFICANT_GROWTH); 
12    } 

} 

FIGURE 4 Unit testing with large input data and memory assertions 

Figure 4 shows a unit test generated for the example in 

Figure 1. The normal unit test generated by the existing 

tools only contains the creation of Test1 object and a call 

to its method foo. In the normal unit test, it passes a 

random initial value to the tested method. To test memory 

leaks, in statement 7, we set a large input data 

MemoryTester.LARGE_INT for the tested method foo to 

strengthen memory use. Our approach currently supports 

several different types of large data, including the 

primitive types, such as int, long, float, and so on, and 

some object types, such as String. For the primitive types, 

we just use some previously defined huge value. For String 

type, we generate a pool of large strings and randomly 

select one of them. We obtain the memory consummation 

before and after foo by calls to method 

MemoryTester.getUsedMemory() and determine whether 

the method cause leaks by assertion 

MemoryTester.assertMemoryGrowth(memoryBefore, 

memoryAfter, NO_SIGNIFICANT_GROWTH). The 

assertion checks whether the memory growth is in the 

normal range. It uses a predefined value 

NO_SIGNIFICANT_GROWTH to set the allowed growth 

range. The constant means only small memory growth is 

allowed. If the memory grows over the allowed value, we 

consider the risky method really causes memory leaks. 

With the above strengthen, the unit test can validate 

whether the leak risky method actually lead to a noticeable 

leak. 

 

5.2 CREATING UNIT TESTS FOR MODULES 

ACCUMULATING NEWLY CREATED OBJECTS 

 

For the second kind of leak risky modules, we use repeated 

method calls to strengthen the memory usage, and insert 

memory growth assertions to check whether the leak risky 

modules can really lead to leaks. 

public class UnitTest2 { 
1        @Before 

2        public void setUp() throws Exception { 
3        } 

4        @Test 

5        public void testBar(){ 
6               Test2 test = new Test2 (); 

7               long memoryBefore = MemoryTester.getUsedMemory(); 

8               for(int i=0;i<MemoryTester.LARGE_LOOPNUM;i++){ 
9     test.bar(); 

10             } 

11             long memoryAfter = MemoryTester.getUsedMemory(); 
12            MemoryTester.assertMemoryGrowth(memoryBefore, 

 memoryAfter, NO_SIGNIFICANT_GROWTH); 

13       } 
} 

FIGURE 5 Unit testing with repeated method calls and memory asser-

tions 

Figure 5 shows a unit test for the example in Figure 2. 

We use the existing tools to generate the normal unit test. 

In the normal unit test, there only have the creation of 

Test2 object and a call to method bar. We generate the test 

code on the base of the normal unit test. Statement 8 puts 

method bar into a loop and sets a large number for the loop 

to strengthen memory use. Then, the memory growth 

assertions checks whether the memory growth is normal. 

If the growth is abnormal, it indicates the leak risky 

method may be leaking the memory. 

 

5.3 CREATING UNIT TESTS FOR MODULES 

ABSORBING ARGUMENT OBJECTS 

 

We use a weak reference based mechanism to determine 

whether the third kind of leak risky modules can cause 

problems. 
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public class UnitTest3{ 

1    @Before 

2    public void setUp() throws Exception { 

   } 
   @Test 

public void testZar(){ 
    Test3 test = new Test3(); 

    Object obj = new Data(); 

    WeakReference<Object>  ref= MemoryTester.prepareArgu-
ment(obj); 

    test.zar(obj); 

    obj = null; 
    MemoryTester.assertArgumentNotLeaked (ref); 

} 

} 

FIGURE 6 Unit testing with weak reference based leak detection mech-
anism 

Figure 6 shows a unit test generated for the example in 

Figure 3. The paper firstly generates a normal unit test only 

containing the instantiation of Test3, the creation of an 

argument object, and a call to its method zar. Then, it 

generates strengthened unit test based on weak reference 

mechanism. A weak reference will be garbage collected 

when its referee is disconnected from other references. By 

checking whether a weak reference is broken, we can 

know whether an object is hold by other references. In the 

unit test, statement 8 uses 

MemoryTester.prepareArgument (objs) to add a weak 

reference ref to method zar’s argument obj. It sets 

reference obj to null in statement 10. After that, if the 

argument obj is not absorbed by method zar, then the weak 

reference should be broken after some round of garbage 

collections, since there is no other reference to the 

argument object. Statement 11 does some GC and check 

the referee of the weak reference ref to judge whether 

object obj is absorbed and there can be leak source. By the 

weak reference checking mechanism, the unit test can 

determine whether the leak risky method may cause leaks. 

 

6 Case studies 

 

To validate the proposed approach, we implemented our 

approach as an Eclipse plugin and conduct case studies on 

several memory leak bugs in JDK which are typical 

examples of the risky modules introduced in section 3. 

 

6.1 MODULES DIRECTLY LEAKING OBJECTS 

 

The modules directly leaking objects are a little hard to 

find in the JDK memory leak bugs. But many existing bugs 

can easily be turn into this kind. For example, in Figure 7, 

we can easily get a representative directly leaking case 

based on a real memory leak bug JDK-6942989. In the 

case, there is a loop calling leaking method 

getAnonymousLogger() (the body of 

getAnonymousLogger() can be found in Figure 9). The 

execution rounds of the loop are unbounded and 

determined by the method’s input. In method 

getAnonymousLogger(), the newly created Logger objects 

are added into an external container. In other words, the 

new objects escape from the loop scope. Therefore, the 

case matches the characteristics of the first kind of leak 

risky modules. 

public class Worker { 

 public static void doLoggedOperation(int n){ 
   for(int i = 0; i< n; i++){ 

          Logger logger = getAnonymousLogger();  

          logger.log(record); 
          doSth(); 

   } 

} 
} 

FIGURE 7 A case for modules directly leaking objects 

public class LoggerTest { 

@Before 
public void setUp() throws Exception { 

} 

@Test 
public void testDoLoggedOperation () throws Exception{ 

Worker fixture = new Worker(); 

int n = MemoryTester.LARGE_INT; 
long memoryBefore = MemoryTester.getUsedMemory(); 

fixture. doLoggedOperation(n); 

long memoryAfter = MemoryTester.getUsedMemory(); 
               MemoryTester.assertMemoryGrowth(memoryBefore, 

memoryAfter, NO_SIGNIFICANT_GROWTH); 

} 
} 

FIGURE 8 Unit test for the case shows in Figure 7 

Our approach firstly finds out the loop in method 

doLoggedOperation. Then, it identifies the loop is input 

dependent on method parameters. Finally, the approach 

determines that the newly created objects escape from loop 

scope. Therefore, the approach identifies the leak risky 

method doLoggedOperation and then generates the unit 

test. The unit test is shown in Figure 8. In the unit test, a 

large input data MemoryTester.LARGE_INT is set for 

tested method doLoggedOperation to strengthen memory 

use. When running the unit test, the results show that 

method doLoggedOperation consumes abnormal amount 

of memory and hence causes memory leaks. The case in-

dicates our approach is effective in revealing the first kind 

of leak risky modules. 

 

6.2 MODULES ACCUMULATING NEWLY CREATED 

OBJECTS 

 

For this kind of leak risky modules, we use memory leak 

bug JDK-6942989: Memory leak of 

java.lang.ref.WeakReference objects as the studied case. 

The bug affects JDK version 4.2u27, 5.0u25, and 6. Its rel-

evant code is briefly shown in Figure 9. In the case, a new 

WeakReference object created in the method doSetParent 

(indirectly called by method getAnonymousLogger()) is 

added into external container kids. Although the weak ref-

erences are finally broken, there are still references from 

the external container to the new WeakReference objects. 

These objects in kids are not released on time. Therefore, 

the case matches the characteristics of the second kind of 

leak risky modules, and method getAnonymousLogger() 

has risk in leaking memory. 
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public class Logger { 

    private boolean anonymous;      

    private static Object treeLock = new Object();  

    private Logger parent;  
private ArrayList<LogManager.LoggerWeakRef> kids;   

public static Logger getAnonymousLogger() { 
   return getAnonymousLogger(null); 

} 

public static synchronized Logger getAnonymousLogger(String re-
sourceBundleName) { 

……; 

Logger result = new Logger(null, resourceBundleName); 
result.anonymous = true; 

Logger root = manager.getLogger(""); 

result.doSetParent(root); 
return result; 

} 

private void doSetParent(Logger newParent) { 
     ……; 

     if (parent != null) { 

 for (Iterator iter = parent.kids.iterator(); iter.hasNext(); ) { 

    WeakReference ref = (WeakReference) iter.next(); 

Logger kid = (Logger) ref.get(); 

    if (kid == this) { 
           iter.remove(); 

           break; 

} 
 } 

  } 

parent = newParent; 
……; 

parent.kids.add(new WeakReference(this)); 

    updateEffectiveLevel(); 
}  

} 

FIGURE 9 Code relevant to bug JDK-6942989 

In our approach, we firstly do escape analysis with the 

escape sources in method getAnonymousLogger() 

excluding the return value and the parameters by 

Algorithm 2. Then, we can obtain all the escape objects. 

Finally, it identifies that the escape objects contain the 

newly created objects. Therefore, the approach considers 

method getAnonymousLogger() as risky. The unit test 

generated by our approach is shown in Figure 10. In the 

test, we put method getAnonymousLogger() into a loop 

and set a large upper bound for the loop to strengthen 

memory use. When running the unit test, the results show 

that the method getAnonymousLog-ger() can lead to 

memory leaks and indicate our approach can identify this 

kind of risky modules. 

public class LoggerTest { 

@Before 
public void setUp() throws Exception { 

} 

@Test 
public void testGetAnonymousLogger throws Exception (){ 

             long memoryBefore = MemoryTester.getUsedMemory(); 

             for(int i=0;i<MemoryTester.LARGE_LOOPNUM;i++) 
Logger.getAnonymousLogger(); 

             long memoryAfter = MemoryTester.getUsedMemory(); 

             MemoryTester.assertMemoryGrowth(memoryBefore, 
memoryAfter, NO_SIGNIFICANT_GROWTH); 

        } 

} 

FIGURE 10 Unit test for case JDK-6942989 

 

 

6.3 MODULES ABSORBING ARGUMENT OBJECTS 

 

We use memory leak bug JDK-6525563: Memory leak in 

ObjectOutputStream as the studied case for the third 

category of risky modules. The bug affects JDK version 6. 

Its relevant code is briefly shown in Figure 11. In the case, 

a reference argument obj is passed to method writeObject0. 

The parameter obj is then added into an external array field 

objs of the receiver object in method insert which is 

indirectly called by method writeUnshared. Finally, the 

argument object will be absorbed inside method 

writeUnshared. The case matches the characteristics of the 

third kind of leak risky modules. 

public class ObjectOutputStream{ 

private int size; 

private int threshold; 
private int[] spine; 

private int[] next; 

private Object[] objs;   
public void writeUnshared(Object obj) throws IOException { 

writeObject0(obj, true); 

} 
private void writeObject0(Object obj, boolean unshared) { 

int h; 

Object orig = obj; 
Class cl = obj.getClass(); 

ObjectStreamClass desc = null; 
writeOrdinaryObject(obj, desc, unshared); 

} 

private void writeOrdinaryObject(Object obj,  ObjectStreamClass 
desc,  boolean unshared)  

{ 

            assign(unshared ? null : obj); 
} 

int assign(Object obj) { 

            insert(obj, size); 
            return size++; 

      } 

private void insert(Object obj, int handle) { 
            int index = hash(obj) % spine.length; 

            objs[handle] = obj; 

            next[handle] = spine[index]; 
            spine[index] = handle; 

      } 

private int hash(Object obj) { 
            return System.identityHashCode(obj) & 0x7FFFFFFF; 

      } 

} 

FIGURE 11 Code relevant to bug JDK-6525563 

Our approach firstly marks the parameter object passed 

to method writeUnshared(Object obj) as a special new 

object by Algorithm 3. Then, we obtain all the escape 

objects by escape analysis. Finally, it can be found that the 

escape objects contain the special new object. In another 

words, the parameter object escapes from the method 

scope. Therefore, the approach recognizes method 

writeUnshared(Object obj) as a leak risky module and then 

gener-ates the final unit test for it (see Figure 12). In the 

unit test, it uses MemoryTester.prepareArgument(obj) to 

add a weak reference to the method’s reference parameter 

and use MemoryTester.assertArgumentNotLeaked(ref) to 

test whether the weak reference have been broken to check 

memory leaks. While running the unit test, the results show 

that the test method writeUnshared(Object obj) causes 
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memory leaks. The case indicates our approach is able to 

test memory leaks for the third category of risky modules. 

 
public class ObjectOutputStreamTest { 

@Before 
public void setUp() throws Exception { 

} 

@Test(expected = java.io.NotSerializableException.class) 
public void testwriteUnshared() throws Exception{ 

ObjectOutputStream fixture = new ObjectOutputStream(new ByteAr-

rayOutputStream()); 
Object obj = new Data(); 

WeakReference<Object> ref = MemoryTester.prepareArgument(obj); 

fixture.writeUnshared(obj); 
obj = null; 

      MemoryTester.assertArgumentNotLeaked (ref); 

} 
} 

FIGURE 12 Unit test for JDK-6525563 

The above cases show that the approach can identify and 

test three kinds of leak risky modules effectively. It can 

reveal real leaking methods, which could be helpful for 

practical use. 

 

7 Conclusions 

 

The paper proposes an approach for discovering memory 

leak phenomenon from testing perspective. The approach 

automatically generates unit tests to find potential memory 

leaks in Java methods. It firstly identifies three kinds of 

leak risky modules. Then, leak-oriented unit tests are 

generated from normal unit tests to strengthen the ability 

in finding leaks. We conduct case studies on real bugs. The 

results show that the approach is effective in revealing real 

leak modules. The paper focuses on unit testing. In the 

future, we also plan to do leak testing at system level to 

further support the discovering of memory leak bugs. 
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