
COMPUTER MODELLING & NEW TECHNOLOGIES 2013 17(5A) 21-24 Wang Xiaoyan, Sun Rui

21
Mathematical and Computer Mxodelling

Research on the adaptive weighted mean algorithm for
lightweight scheme of database encryption

Xiaoyan Wang1, Rui Sun2

1 Henan Polytechnic, Department of Information Engineering, Zhengzhou, 450046, China

2 Henan Polytechnic, Department of Information Engineering, Zhengzhou, 450046, China

*Corresponding author’s e-mail: wangxiaoyanhp@163.com

Received 11 January 2013, www.cmnt.lv

Abstract

Database security is very important in an information system. Most database management systems (DBMS) use access control to protect
database. But access control can't resist bypass threats. Database encryption can resist these threats well. Encrypting data can exist on
different positions in a DBMS. This paper compares four database encryption schemes in DBMS and proposes six design criteria for
database encryptions. According to these criteria, we implement a prototype in Postgre SQL compliance with the fourth scheme. Our
design hasn't impact on other database functions and makes no changes on DBMS structure. So it is a good way to enhance database
security especially existing DBMS. Finally, we compare performance of database between with encryption and without encryption. The
downgrade of performance is little and tolerable.

Keywords: database encryption; key management: secure storage; adaptive weighted mean algorithm.

1 Introduction

With the development and popularization of computer tech-
nology, especially broad applications in important branches
of national economy, the problem of computer security has
been standing out in the information society.

Information is usually stored and managed in database
system, so how to guarantee and strengthen the security and
secrecy of database system has been the exigent problem.
The security of database system lies on two layers: one is
measure of user name/password identification, view, per-
mission control and audit from database system itself, large
database systems, such as Oracle, SQL server have these
functions. The other is that application systems provide.
Generally, basic secure technology from database system is
adaptive in generic applications. For applications in impor-
tant branches and sensitive fields, the above measures are
not enough. Some users, especially interior ones can also
obtain user name and password illegally, use other methods
to enter database exceeding their authority and get or modify
information. So it's necessary to encrypt important data in
database system.

When more and more information systems are con-
structed in different application areas, the security of these
systems becomes a very important aspect concerned espe-
cially in some critical systems. Database is center of most of
these systems [1]. Database stores not only the permanent
data, such as privacy data, person's credit card numbers, but
also some important control data, such as some critical task
states. So database becomes the hacker's main target and the
main protection object in information systems [2-3]. But
most information protection mechanisms are aimed to
protect the perimeter of the network and to control the
access to database [4]. In complicated real application envi-
ronments, hackers can easily bypass the protection mecha-
nisms of perimeter of the network and the DBMS to attack
the underlying operating system (e.g. inside attacks). When
hackers break into the underlying operation system, the

datum stored in database would be accessed directly through
the operating system's file management service [5]. In some
circumstances, thefts maybe steal physical hard disks to get
critical data. In front of these threats, defense of network
perimeter and access control of DBMS are not enough to
protect these sensitive datum stored in database [6-7].

Database encryption may occur in OS, DBMS and client.
E. Goh etc. has proposed an architecture that used to encrypt
P2P file systems [8]. They assume the network storage is un-
trusted. All the encrypting and encrypting operations are did
in client. One of challenges on database encryption is that
typical indexing techniques can't be used on encrypted data.
Ernesto Damiani etc. [9] proposed an architecture in which
the indexing information is stored in client. That requires
change the client application. In some circumstances, it is not
easy. Rakesh Agrawal etc. [10] proposed a new encryption
scheme that could preserve the ordering for numeric data.
Traditional indexing techniques can be used. But the
encryption scheme only ensures numeric data comparison
operations can be directly applied on encrypted data. Hakan
etc. [12] proposed architecture to execute SQL over encrypted
data. In Hakam's scheme, the query is partitioned two parts.
One part is executed in and another is executed in client. This
scheme is also a client mode. The indexing and changing
client database service provider problems remains. Umesh
Maheshwari etc. [13] propose to use a small amount of trusted
storage in trusted platform to protect a scalable amount of un-
trusted storage. The scheme is based on trusted platform. In
most systems, it is not applicable.

2 Adaptive weighted mean algorithm

System design should satisfy the following design criteria.
Criteria one: Adding encryption function into DBMS

doesn't affect the DBMS structure.
Criteria two: Adding encryption function doesn't

influence DBMS function, such as index.
Criteria three: Encryption is transparent to client.

COMPUTER MODELLING & NEW TECHNOLOGIES 2013 17(5A) 21-24 Wang Xiaoyan, Sun Rui

22
Mathematical and Computer Mxodelling

Criteria four: Data manager can select one database to
encrypt entirely or select one table of a database to encrypt.

Criteria five: System should provide multiple encryption
algorithms.

Criteria six: Extending as little as possible SQL com-
mands to providing encryption service and the encryption
service don't change the standard SQL command specifi-
cations.

We add following SQL commands to provide encryp-
tion services:

(1) ENCRYPT ALL WITH ALGORITHM "crypto-
algorithm" KEYLENGTYH klen BLOCKLENGTH blen

(2) ENCRYPT SELECTED WITH ALGORITHM
"crypto-algorithm" KEYLENGTYH klen
BLOCKLENGTH blen

(3) ENCRYPT TABLE tablename
(4) ENCRYPT KEYUPDATE
(I) encrypts the whole database. (2) sets the database par-

tially encryption flag, then (3) encrypts a table. (4) Updates
current user key. During encryption or decryption procedure,
the system may break down for some reasons such as power
fail. Prototype system provides a mechanism to recover the
process when the encryption and decryption procedure is
broken. The recovery process is automatic and needn't any
people intervention.

The detected impulses will be removed by adaptive
weighted mean algorithm. Let

,i jf  be the value of the noise
image at pixel location (i,j). For the corrupted pixel (i, j), the
filtering window of size (2 1) (2 1)f fL L   is used.
Starting with fL =1, this filtering window iteratively
extends outward by one pixel in its four sides until the
number of noise-free pixels (denoted by

,i jP) within this
window is not less than 1. Let

,i jW  denote the values of
noise-free pixels in the filtering window, i.e.,

, , , ,{ | 0, 1,

(,) (0,0), , }

i j i s j t i s j t i j

f f

W f b b

s t L s t L

   
   

   
. (1)

The weighted mean value ,i jg of the pixel values in

,i jW  is defined as:

, ,

, ,

, ,

,

,

i s j t i j

i s j t i j

i s j t i s j t

f W

i j

i s j t

f W

w f

g
w

 

 

   



 










, (2)

where ,i s j tw   means the weight of ,i s j tf  
 . Let

,i jm be the
median value of

,i jW  . Because the median value has the least
probability to be the value of the corrupted pixels [1],

,i jm is
utilized to determine ,i s j tw   . It is easy to understand that the
smaller the absolute difference between ,i s j tf  

 and ,i jm , the
larger the weight ,i s j tw   should be to strengthen the
influence of ,i s j tf  

 on ,i jg . Based on extensive simulations
which indicate that ...

1Q

2Q

kQ

1CF 2CF

kCF

is dependant on both above
absolute difference and noise ratio, ,i s j tw   is chosen as:

,

, ,

max min

, ,

max min

| |

(1)
| |

1

i s j t

i s j t i j

i s j t i j

R
w

f m

f f
R R

f m

f f

 

 

 


 

 
 

 


 

, (3)

where
maxf  and

minf  denote the maximum pixel value and
the minimum one in the noise image, respectively.

The output of the DAWM filter is obtained by:

, , , , ,(1)i j i j i j i j i jh b g b f     . (4)

3 Implementation

We implement a prototype based on PostgreSQL 7.4.2. In
this section, we will not describe PostgreSQL but mainly
point out the changes to PostgreSQL0.

In the prototype, we add a shared relation pg_dbcrypt to
record database encryption state and encryption parameters,
pg_dbcrypt = (oid, mode, encrypt, decrypt, klen, blen,
dbkey), where oid is the database oid (unique identifier of
database), mode describes the database encryption mode,
mode=A means the database is encrypted entirely, mode=s
means the database is encrypted partially, mode=N means
the database isn't encrypted. Klen records the length of key.
Blen records the length of encryption block. Dbkey records
the encrypted database key.

We add a field, isecnrypt, in pg_class relation to describe
if the relation is encrypted. If isencrypt is true, the relation
is encrypted. Otherwise it is not encrypted. When a user
login, a postgres backend is started. Each postgres backend
has a shared memory (PGPROC) to record some critical
information about the database. We add several members
into PGPROC structure to record the encryption parameters.
When a postgres backend is started, the encryption para-
meters of database are head from pg_dbcrypt and filled into
PGPROC. The database key is decrypted first then filled
into PRPROC.

In our prototype, the database key is generated according
to the DS password (DSP). DBMS generate the database
encryption key (DBK) according to DSP, DBK = [HASH
(DSP || RANDOM)]klen. DBK is encrypted and stoned in
database, EDBK=EDSPHV(DBK), DSPHV=HASH (DSP) .
The encryption algorithm is 3DES. Encryption key is same
as decryption key, decryption key DBK=DDSPHV (EDBK)=
DDSPHV (EDSPHV))=DBK.

In PostgreSQL, postmaster is the database service back-
end. Postmaster receives connecting request when authenti-
cation passes, postmaster generates a backend (postgres) for
this connection. Postgres will process the user commands
later. In precedent postmaster start, user need not input pass-
word. We add some code to prompt DS input start password
and verify it. If the password is right, DSP is stoned in
shared memory. During the initial of postgres, the encryp-
tion parameters is read from pg_dbcrypt and stored in
PRPROC, the database key is decrypted and stored in
PGPROC and check if the encryption or decryption proce-
dure is crashed. If the last encryption or decryption is not
integrity, it will redo the encryption or decryption procedure.

When postgres receives encryption database SQL com-

COMPUTER MODELLING & NEW TECHNOLOGIES 2013 17(5A) 21-24 Wang Xiaoyan, Sun Rui

23
Mathematical and Computer Mxodelling

mand, call Encrypt DB function. Database encryption pro-
cess constructs a failover file; the encryption operation is
doing according to the failover file. Failover file head record
the new secure parameters, the number of relations, and the
number of relations that have been transformed. Failover
file body records the array of relations and the encryption
operations. Failover file head structure is {New Encryption
Algorithm, New Decryption Algorithm, Key Length, Block
Length, Command Type, New State, Redo, Completed
Relation numbers, total relations, New Key}. Failover body
is constructed by an array of relation node which structure
is {relation, whether encrypt this relation (E), whether
decrypt this relation (D)}. Database encryption according to
the old secure parameters and the database encryption
command construct failover file.

After constructing the failover file, database encryption
will encrypt or decrypt according the records of failover file.
The transform function first read failover file, find the "com-
pleted relation numbers"(CRIB, CRN+1 point to the next
transform node. Transform function read next node then
transform the node.

When database encrypt state is "encrypt partially", data
manager can select a table to encrypt through executing "en-
crypt table table-name" SQL command. Table encryption
procedure will first judge whether the table in command is
a valid table. Valid means that the table is a table stored in
disk, corresponds to a disk file, is not a view and the table is
not encrypted. If the table is a valid table, encrypt the table
with the database secure parameters.

In above describing, encrypting relations operation is
did on files directly. It bypasses the DBMS storage manager.
In standard query command executions, DBMS read or wri-
te data through storage manager. Storage manager provides
two interfaces to read and write data form disk, which are
md_read and md_write. Md_read and md_write functions
have the same arguments, which are relation, block number
and buffer pointer. Block number means operation on which
block of the relation. Buffer pointer means memory address
which data will read to or write from. In precedent md_read
function, data block is read from relation file to buffer
directly. In our prototype, data block is read from relation
file, and then the block is decrypted with the secure para-
meters stored in PGPROC structure. After decryption ope-
ration, decrypted block is saved to buffer. In precedent md_
write function, block in buffer is written to disk file directly.
In our prototype block in buffer is encrypted firstly with
secure parameters in PGPROC structure, then write the
encrypted block to the relation's disk file.

In postgreSQL, there are two other storage interfaces
and blind write and md_extend. In our portotype, the chan-
ges of and blindwrite and and extend are same as and write.
In our prototype, we get the secure parameters from
PGPROC not from pg-dbcrypt relation because we cannot
access table in storage manager level through table access
interfaces which will cause dead lock. So we must extend
PGRPOC structure to store secure parameters for storage
manager getting secure parameters.

When data manager think the database key is not secure
and want to change the database key, he/she execute "en-
crypt key update" SQL command to update the database key.
We encrypt the key stored in pg_dbcrypt with new key as
following:

' ()DSPHV HASH DSP

  '

'_ . _ .
DSPHV DSPHV

pg dbcrypy key E D pg dbcrypy key

where pg_dbcrypt.key is the encrypted database key with
DSP.

4 Experimental results

In this section, we test encryption and decryption effects on
database performance. We insert 10 topples, 50 topples, 100
topples, 500 topples, 1000 topples, 5000 topples, 10000 topp-
les respectively and continually into a relation which is not
encrypted and record the used time. Then clear the test table
and insert same content into a relation which is encrypted and
record the used time. Compare the two groups of times.

Rc5 is a fast symmetric block cipher suitable for hard or
software implementations. Rc5 is word-oriented; it has a va-
riable word size, a variable number of rounds, and a variab-
le-length secret key. A novel feature of Rc5 is the heavy use
of data-dependent rotations-the amount of rotation perfor-
med is dependent on the input data, and is not pre-deter-
mined. While no practical attack on RCS has been found,
the studies provide some interesting theoretical attacks, ge-
nerally based on the fact that the "rotation amounts" in Rc5
do not depend on all of the bits in a register.

Rc6 was designed to thwart such attacks, and indeed to
thwart all known attacks. Rc6 is an evolutionary improve-
ment of Rc5, designed to meet the requirements of the AES.
New features of RC6 include the use of four working regis-
ters instead of two, and the inclusion of integer multipli-
cation as an additional primitive operation. The use of multi-
plication greatly increases the diffusion achieved per round,
allowing for greater security, fewer rounds, and increased
throughput.

According to the characteristics and restriction of the
database encryption technology, the author puts forward a
new block cipher suitable for database encryption which is
named R encryption algorithm. R algorithm expansion rou-
tine of RCS, but the encryption algorithm of RC5 modified
from RCS, RC6. It inherited key is modified. R inherits the
data-dependent rotations of RCS, and also inherits integer
multiplication of RC6, but it has only two working registers.
The merits of RCS, RC6 are integrated in R algorithm, and
small block is kept, so it is fit for database encryption. The
security of R algorithm is higher than RCS, DES; exhaustive
search for encryption key can be resisted due to the chan-
geability of the length of key. The R encryption speed is
faster. For R-32/16/16 on a 200MHz Pentium, a preliminary
C++ implementation is compiled with the Borland C++
compiler, the encryption speed is 4.9M bytes/sec. It can
fulfill the need of database encryption.

The comparison of adaptive weighted mean algorithm
and RC5 can be seen from figure 1. The result shows that in
the same decoding time, the adaptive weighted mean algo-
rithm achieves better performance than RC5 in encryption
complication.

COMPUTER MODELLING & NEW TECHNOLOGIES 2013 17(5A) 21-24 Wang Xiaoyan, Sun Rui

24
Mathematical and Computer Mxodelling

FIGURE 1 The comparison of adaptive weighted mean algorithm and

RC5

The comparison of adaptive weighted mean algorithm
and RC6 can be seen from figure 2. The result shows that in
the same decoding time, the adaptive weighted mean algo-
rithm achieves better performance than RC6 in encryption
complication.

FIGURE 2 The comparison of adaptive weighted mean algorithm and

RC6

The comparison of adaptive weighted mean algorithm
and RCS can be seen from figure 2. The result shows that in

the same decoding time, the adaptive weighted mean algo-
rithm achieves better performance than RCS in encryption
complication.

FIGURE 3 The comparison of adaptive weighted mean algorithm and

RCS

5 Conclusions

Data protection plays an important role in computer security.
The protection of database becomes very important in most
information systems. Access control implemented in DBMS
can resist most of threats on database except bypass threats.
Data encryption can resist bypass threats well. Database
encryption can be implanted into DBMS on different
positions. Different schemes have advantages and disadvan-
tages. We implement a prototype which implements encryp-
tion and decryption operations in a very low level of DBMS.
This scheme has little effects on DBMS structure and per-
formance. But in our prototype, the smallest encryption gra-
nularity is relation. The length of input block of cryptogra-
phic algorithm is the same as the length of output length.
The encrypted blocks is independent each other. In future
works, the prototype will be improved.

References

[1] Dorothy Elizabeth Robling Denning 1982 Cryptography and Data

Security ADDISON-WESLEY Publishing Company 164-7

[32] Pitas I, Venetsanopou A 1990 Nonlinear Digital Filters: Principles

and Application Norwell, MA: Kluwer 277-9

[33] Huang T S, Yang G J, Tang G Y 1979 Fast two-dimensional median

filtering algorithm IEEE Trans Acoust Speech Signal Process 1 8–13

[34] Umesh Maheshwari, Radek Vmgrdlek, Bill Shapiro 2000 How to

Build a Trusted Database on Untrusted Storage USENIX Symposium

on QAerating Systems Design and Implementation 32 532–41

[35] Sun T, Neuvo Y 1994 Detail-preserving median based filters in image

processing Pattern Recognit Lett 15 341–7

[36] Wang Z, Zhang D 1999 Progressive switching median filter for the

removal of impulse noise from highly corrupted images IEEE Trans

Circuits Syst-II: Analog Digital Signal Process 46 78–80

[37] Chen T, Ma K, Chen L 1999 Tri-state median filter for image

denoising IEEE Trans Image Process 8 1834–8

[38] Chen T, Wu H R 2001 Space variant median filters for the restoration

of impulse noise corrupted images IEEE Trans Circuits Syst-

II:Analog Digital Signal Process 48 784–9

[39] Goh E, Shacham H, Modadugu N, Boneh D 2003 SiRiUS: Securing

Remote Untrusted Storage In Proceedings of the Internet Society

(ISOC) Network and Distributed Systems Security (NDSS)

Symposium 133-45

[40] Eng H L, Ma K K 2001 Noise adaptive soft-switching median filter

IEEE Trans Image Process 10 242–51

[41] Rakesh Agrawal, Jeny Kiernan, Ramakrishnan Srikant, Yirong Xu

2004 Oider-Preserving Encryption for Numeric Data SIGMOD

Conference 563-74

[42] Oprea and M Reiter 2005 Space efficient Block Storage Integrity

Proceedings of ISOC Network and Distributed System Security 162-9.

Authors

Xiaoyan Wang, 1977.2.11, Shanghai

Current position, grades: Henan Zhengzhou, Master
University studies: computer science and its application
Scientific interest: Database technology
Publications: Numerous journal
Experience: For many years engaged in the work of computer teaching in University

Rui Sun, 1978.10.23, Hebi

Current position, grades: Henan Zhengzhou, Master
University studies: computer science and its application
Scientific interest: Database technology
Publications: Numerous journal
Experience: For many years engaged in the work of computer teaching in University

