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Abstract 

In this paper, the output regulation problem is investigated, which consists of building a controller to asymptotically steer the output 

of a saturated linear systems to a given reference signal despite external disturbances. Particularly, for saturated systems subject to 

periodically time-dependent exosytem, a K-step asymptotically regulatable region was characterized by a set of all the initial states of 

the plant and the exosytem. Improved internal model principles were constructed on the balance between the state convergence rate 

and the control of all the initial state. Finally, a state feedback controller was designed to ensure exponential output regulation in the 

regulatable region with disturbance rejection. Simulation examples were given to illustrate the effectiveness of proposed method. The 
results show these systems can go into stable rapidly and periodically. 

Keywords: saturation constraint, output regulation, internal model principles, feedback controller 

 

                                                           
* Corresponding author e-mail: hw@hdu.edu.cn 

1 Introduction 

 

Reference signals tracking is an important subject in 

systems theory. Regulation theory provides a framework 

that allows the analysis and design of controllers capable 

of achieving the tracking of references, even in the 

presence of disturbances.  

Saturation constraint is a kind of nonlinear constraint 

in many practical conditions. This addresses the problem 

of designing a feedback controller for an uncertain plant 

so that the closed loop system is internally stable and the 

output of the closed-loop system can asymptotically track 

a class of reference inputs in the presence of a class of 

disturbances. Francis and Wonham [1, 2] proposed the 

internal mode principle, which aims to convert the output 

regulation problem of a given plant into a stabilization 

problem of an augmented system composed of the given 

plant and a well defined dynamic compensator.   

For the cases where the exogenous signals are 

constant, Francis [2] designed a linear robust regulator 

based on the linear approximation of the plant can solve 

the local structurally stable output regulation problem for 

the nonlinear plant. Huang and Rugh [3] made a further 

work and put the solution to nonlinear plant under normal 

disturbance. Self-Adaptive method and optimal feedback 

control [4-7] were used in solving the problem of globe 

robust output regulation for nonlinear system disturbed 

by uncertain exogenous signals. Disturbance suppression 

of a class of nonlinear systems was studied in [8-10]. 

However, it should be pointed that most of the studies are 

carried with semi-stable exosystem, the problem of 

output regulation for saturated systems under the action 

of nonlinear exosystem has received relatively less 

attention. The few works motivate our current research 

are [11-14]. In [11], robust adaptive constrained motion 

tracking control methodology was derived for bounded 

nonlinear effects and external disturbance within the 

closed-loop system. Output regulation for periodic signal 

of constrained MIMO system subject to actuators 

saturated is studied in [12]. To exact output regulation for 

Takagi-Sugeno (T–S) fuzzy models, [13] considered the 

fuzzy model as a special class of linear time-varying 

systems, existence conditions are rigorously derived.  

In the nonlinear case, the inclusion of an internal 

model was proved to be a necessary condition to 

guarantee robustness with respect to parameter variations. 

This internal model is obtained as an immersion of the 

exosystem into a dynamical system which generates all 

the possible steady-state inputs for any admissible 

parameter variation [14].  

The steady-state zero-error manifold is a centre 

manifold, which becomes invariant by the effect of the 

steady-state input. Therefore, the regulation process can 

be understood as follows: 1) The stabilizer is responsible 

for taking the states of the plant toward the steady-state 

zero-error manifold, reducing this way the tracking error; 

2) the steady-state input keeps the states of the plant on 

the steady-state zero-error manifold, this way achieving 

the exact tracking of the reference signals. Then, regu-

lation problem consists in finding both the steady state 

zero-error manifold and the steady-state input [15]. See 

Figure 1 for the graphical representation of the nonlinear 

regulation problems. 

In this paper we consider the regulation problem of 

linear system subject to actuator saturation under the 

action of nonlinear exosystem. Based on our earlier 

results mentioned in [16], a simple feedback controller 

was achieved by a stabilizing law for output regulation of 

linear system with input constrains. 
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FIGURE 1 Regulation scheme for nonlinear systems 

Under the action of a nonlinear exosystem action, the 

problem to be addressed in this paper is the following: (1) 

Characterize of the regulatable region. The first task of 

this paper is to characterize the set of initial conditions 

for which there exist admissible controls to keep the state 

bounded and to drive the tracking error to 0 

asymptotically. (2) Design of constrained state feedback 

controller. Find a state feedback law and construct the 

state controller. 

 

2 Problem statement and preliminaries 

 

Consider the system 

( 1) ( ) ( ) ( )

( ) ( ) ( )

( 1) ( )

x k Ax k Bu k P k

e k Cx k Q k

k S k





 

   


 
  

, (1) 

where AR
n×n

, BR
n×m

, PR
n×r

, CR
p×n

, QR
p×r

. The 

first plant describes a plant, with state 
nRx , input 

mRu  and u 1, subject to the effect of disturbance 

represented by  kP . The error between the actual 

output  kCx  and a reference signal  kQ  is defined as 

 ke  by the second equation. The third equation describes 

the exosystem with state 
rR  and SR

r×r
. 

Due to the constraint input, it’s well known that the 

initial state of the plant and exosystem can not be in the 

whole space. We should characterize the set of all initial 

states (x0, ω0)R
n
+r, on which the problem of 

constrained output regulation is solvable. This set is 

called regulatable region. If we can construct a state 

feedback law, u= (x, ω),  (x, ω) 1 and  (0, 0) =0, 

by which following conditions are satisfied: 

A. Plant x(k+1)=Ax(k)+B  (x,0) is asymptotically 

stable on the equilibrium point x=0. 

B. For all initial states (x0, ω0)R
n+r

 in regulatable 

region, the close-loop system has limk→∞e(k)=0. 

To begin with, some necessary assumptions are made: 

A1. The pair (A, B) is stabilizable. 

A2. S has all its eigenvalues on the unit circle and 

diagonalizable. 

A3.  ,
0

A P
C Q

S

  
   

  
 is measurable. 

A4. There exist matrices Π and Γ solve the linear 

matrix equation 

0

S A B P

C Q

   


  
, (2) 

In this paper, we focus on two kinds of nonlinear 

external disturbance: the square wave and triangle wave. 

The square wave is discontinuous and underivable, can be 

described as ω(k+1)=Sω(k), S is an unit matrix.  

Let ω(0)=[m m]’, when k=nT/2 (n=0, 1, 2 …), 

ω(k)=(-1)
n
ω(0). There are two step signals of different 

amplitude in one cycle, and the step signal is linear. If the 

period T is long enough, the action of exosystem can be 

viewed as tow constant disturbance that works 

alternatively. Review our earlier works in [16], it is 

possible to design an easily implementable state 

controller to make the close loop system stable 

asymptotically, simulation results are shown in section 5. 

Detailed study on output regulation problem is focus on 

the influence of periodic triangle wave. 

 

3 The regulatable region 

 

The triangle wave is continuous but underivable. Triangle 

with period T and amplitude m is described as follows, 

where (0) 0  : 

 
 

   

2
1 0,1, 2, 3

2 1

k a nT k nT T
k n

k a nT T k n T






    
  

    

 (3) 

at the equilibrium point, let     Gakku   , 

   x k k . 

By (1) 

          0e k Cx k Q k C k Q k        . (4) 

If B has full row rank, then G exists made: 

 

2
0,1, 2, 3

2 1

BG nT k nT T
n

BG nT T k n T

    


      

, (5) 
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       

       

 

2

0,1, 2, 3

2 1

k A k B k P k

nT k nT T

n

k A k B k P k

nT T k n T

   

   

     


  




     

    

 (6) 

Due to   0k  , by (3), (6), the internal mode of 

triangle wave action is represents as (7): 

0

A B P

C Q

   


  
, (7) 

Consider system (1), a control signal u is said to be 

admissible if u(k) 1. 

Definition 3.1: For some K>0,(x0, ω0)R
n
×R

r
 is said 

to be K-step  regulatable if there exists an admissible u 

makes (1) satisfy e(K)=0. The set of all regulatable pair 

(x0, ω0) is K-step regulatable region, denoted by Rg(K).  

According to classical regulation theory, there exists 

matrix ΠR
n×r

 and matrix ΓR
m×r

 makes the equation (7) 

solvable, meanwhile, (7) is a zero-state equation which 

describes the equilibrium point as 

   u k k Ga   ,    x k k , (8) 

where e=0. Due to the restriction that u(k) 1, e(k) 

will go to zero asymptotically at the equilibrium point 

only if   

0

sup
k

Γω(k)+Ga 1. (9) 

Thus, the exosystem initial conditions corresponding to 

this equilibrium point are restricted in the compact set 

W0={ω0R
r
: ΓaT/2+Ga  1, k0}. (10) 

Definition 3.2: For some K>0, a state 0x  is said to be 

null controllable if there exists an admissible u makes the 

system state transforms from   00x x  and satisfies 

 lim 0k x k  . The set of all the null controllable 

region x0 is null controllable region, denoted by  ,C A B . 

Specially, the set of null controllable region is called K-

step null controllable region when   0x K  , denoted by 

 ,KC A B . 

By similarity transformation, we may assume 

1 2 1 2 1 2
1 1( ) ( ) ( )

2 2

0
,

0

n n n n n n m
A B

A R B R
A B

       
      
    , where 

A1 has all eigenvalues inside or on the unit circle and A2 

has all eigenvalues outside the unit circle. So, the null 

controllable region C(A, B)= 1n
R C(A2, B2). We consider 

the condition about all the eigenvalues of A are outside 

the unit circle. Generally, if K  is large enough (i.e. 

K=10~30),  ,KC A B  is fairly approximate to  ,C A B . 

Correspondingly, let 

1 1 1

2 2 2

, ,
x P Q

x P Q
x P Q

     
       
     

. 

Now, we will describe the regulatable region Rg in 

terms of  ,KC A B  and W0. 

Lemma 1 [17]. Let 2

0

n rV R 
  be the unique solution 

to the linear matrix equation V0 S- A2V0=P2.  Then the K-

step regulatable region Rg(K) is given by  

 

    1 2

10 20 0 0 20 0 2 2, , : ,

g

n n

K

R K

x x R R W x V C A B 



     . (11) 

For the first semi-cycle of triangle wave, let 1 2T T , 

by carrying out a similarity transformation 

     1 11 1 1
1 11 1

1 0 0 0

T TT T i T i

i i
x T A x A Bu i A P i

    

 
     (12) 

we get 

 

 

   

   

1 1 1 1 1 1

2 1 2 1 2 1

e T Cx T Q T

e T Cx T Q T





   
   

      

 (13) 

Since  2 1Q T  is bounded for all k and 2

KA →∞ when 

k→ 1T ,  
1

lim 0k T e k   stands on 

 1 11 1

20 2 2 2 20 0
0

T Ti i

i i
x A B u i A P ia   

 
    . (14) 

Denote 
1 1

0 2 20

T i

i
V A P i 


  , V0 satisfies V0-A2V0= 

(A-I)
-1

P2. Let (A-I) =D, then D(V0-A2V0)=P2. 

For the second semi-cycle of triangle wave, which can 

be viewed as the result of half a cycle parallel translation 

towards the right direction on the time axis 

      11 , 0k k a aT      . 

The regulator equation  

0

A B P

C Q

BG

     


  
  

. (15) 

Similarly, let  1 1

0 2 120

T i

i
V A P T i 


   , -(A-I)=D, 

we get D(V0-A2V0)=P2. 
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4 State feedback controller design  

 

In this section, we will construct a state feedback con-

troller for above system.  

Lemma 2 [18]. Let λ(0, 1), for any initial condition 

0
~x Cλ=C(λ

-1
A2, λ

-1
B2), there exists a state feedback law 

u(k)=h[x(k)] such the solution of x(k+1)=A2x(k)+B2u(k) 

satisfies x(k)λ
k
ρcλ(x0)Cλ and the control signal u(k) 

λ
k
ρcλ(x0) λ

k
 

Lemma 2 gives a balance between the state con-

vergence rate and the control of all the initial state in C , 

denoted by λ
k
. The construction of this state feedback 

controller constructed in [16], based on which, we will 

construct a revised controller law for regulation problem 

in this paper. 

Theorem 2. Assume there exists a matrix V0 that 

satisfies D(V0-AV0)=P2, for every initial pair (x0, ω0) in 

the regulatable region, under the following controller, 

u(k)=h[x(k)-λ
k
 V2ω(k)-(1-λ

k
)Π2ω(k)]+ (1-λ

k
)(Γω(k)+Ga) 

the closed-loop system satisfies limk→∞e(k)=0. 

Proof. Corresponding to (8), we can divide system (1) 

in to two subsystems 

       

       

1 1 1 1

2 2 2 2

1

1

x k A x k B u k P k

x k A x k B u k P k





   

   
. (16) 

Denote  

         1 , 1, 2k k

i i i ix k x k V k k i         . (17) 

By Lemma 1, for i =1, 2, we get 

     

     

1 ( ) ( 1)

1

k

i i i i i

k k k

i i i

x k A x k B u k B k

I D P k V a a

 

   

     

     
. (18) 

Based on the controller defined in Lemma2, the state 

feedback controller can be constructed as:  

        2 1 ku k h x k k Ga        . (19) 

Apply it to the two subsystems 

         

         

1 1 1 1 2 1 1

2 2 2 2 2 2 2

1

1

k k

k k

x k A x k B h x k I D P k V a

x k A x k B h x k I D P k V a

  

  

       

       

. (20) 

Then we can get    
1

1
2 2lim 0, [ k

k T T
x k h x k     

by Lemma 2. Since A1 is semi-stable and 

 
1

2[ k

T
h x k  ,  1x k  also convergences to the origin. 

        
1 1

2 1 1k

T T
u k h x k k Ga         . (21) 

The closed-loop system satisfies  
1

lim 0k T e k  . Si-

milar controller can be constructed for the second semi-

cycle of a triangle cycle. 

 

5 Numerical Examples 

 

Example 1. A semi-stable system as follows under the 

action of square signal (T/2=1000) 

   

 

     

1.4 0 1 0 0.1 0
1 ( ) ( )

0.2 1.2 0 1 0 0.1

1 0
1 ( )

0 1

1 0 1 0

0 1 0 1

x k x k u k k

k k

e k x k k



 



     
        

     

 
   

 

   
    
   

. (22) 

With x0=[-1.5 -0.8]
T
, ω(0)=[1.5 1.5]

T
, the regulation 

equation has solutions 
1 0

0 1

 
   

 
, 

0.5 0

0.2 0.3
S A P

 
      

  
, 

0.25 0

0.25 0.5
V

 
  

 
. 

Applying the controller provided in [16] u(k)=h[x(k)-

0.97
k
Vω(k)-(1-0.97

k
)Πω(k)]+ (1-0.97

k
)Γω(k)  

 
FIGURE 2 closed-loop state tracking under the square signal 

disturbance 

The closed-loop state tracking is shown in Figure 2. 

Example 2. The following system under the action of 

triangle signal (T=1000) 

   

     

1.4 0 1 0 0.1 0
1 ( ) ( )

0.2 1.2 0 1 0 0.1

1 0 1 0

0 1 0 1

x k x k u k k

e k x k k





     
        

     

   
    
   

. (23)  

In the first semi-cycle, x0=[-0.1 -0.01]
T
, ω0=[0 0]

T
, 

a=[0.003 0.004]
T
. The regulation equation has solutions 
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1 0

0 1

 
   

 
, 

0.5 0

0.2 0.3
S A P

 
      

  
, 

1 0

0 1
G

 
  
 

. 

D(V-AV)=P has a unique solution 

0.625 0

1.875 2.5
V

 
  

 
. 

The state feedback controller u(k)=h[x(k)-0.95
k
Vω(k)-

(1-0.95
k
)Πω(k)] + (1-0.95

k
)(Γω(k)+Ga). 

The closed-loop state tracking are plotted in Figure 3. 

 
FIGURE 3 Closed-loop state tracking in first semi-cycle in Example 2

 During the last semi-cycle, x0=[1.5 2.0]
T
, ω0=[1.5 

2.0]
T
, a=[0.003 0.004]

T
. 

1 0

0 1

 
   

 
, 

0.5 0

0.2 0.3
S A P

 
      

  
, 

1 0

0 1
G

 
  

 
. 

There exists the unique solution to D(V-AV)=P 

0.625 0

1.875 2.5
V

 
  

 
. 

The state feedback controller u(k)=h[x(k)-0.95
k
Vω(k)-

(1-0.95
k
)Πω(k)]+ (1-0.95

k
)(Γω(k)+Ga). The closed-loop 

state trackings are plotted in Figure 4. 

In each cycle period, two different internal mode pr-

inciples are applied for a semi-cycle respectively, thus G 

and V are got and the state-feedback controller u(k) are 

constructed. State tracking in two cycles are shown in 

Figure 5, with x0=[-0.1 -0.01]
T
, ω0=[0 0]

T
, a=[0.003 

0.004]
T
. 

FIGURE 4 closed-loop state tracking in last semi-cycle in Example 2 

 
FIGURE 5 State tracking in two cycles in Example 2 

 

6 Conclusions 

 

In this brief, we studied the output regulation problem of 

saturated linear system under the action of nonlinear 

exosystem. At the equilibrium point, initial state of the 

plant and exosystems are restricted in a compact set W0. 

The K-Step asymptotically regualatable region Rg(K) is 

described by W0 and K-Step null controllable region 

 ,KC A B . Segmented control strategies are applied to 

external disturbances in the case of square signal and 

triangle signal. The internal principles for each semi-

cycle of the exosystem are given. Controller is 

constructed based on the state feedback laws proposed. 

Examples has demonstrated the effectiveness of the 

proposed control methodology. 
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