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Abstract 

Fuzzy description logics (DLs for short) provide a convenient tool for dealing with inconsistency and uncertainty. People can infer 

with uncertain and incomplete information. According to the characteristics and requirement of the knowledge representation, fuzzy 

DLs can play an important role in the commonsense reasoning. Default rules express concise pieces of knowledge having implicit 

exceptions, which is appropriate for reasoning under incomplete information. Default assumption reasoning based on fuzzy DLs is 

proposed. Possibility theory is used for representing both uncertainty and defeasibility. Inference service is considered in the logic 
and algorithms are provided for it. 
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1 Introduction 

 

Description Logic provides a logical reconstruction of the 

frame-based knowledge representation languages [1]. It is 

a significant and expressive representation and based on 

sound and complete constraint propagation calculi for 

reasoning in it. It provides a logic foundation [2] of 

knowledge representation and reasoning for Semantic 

Web [3]. DL is one of the leading formalisms for storing 

and manipulating knowledge in the Semantic Web. DLs 

allow the representation of sophisticated relations 

between concepts and roles; the sophistication of these 

relations varies, depending on the DL at hand and 

determines the expressive power as well as the 

(algorithm) complexity of reasoning in this DL. 

Dealing with uncertainty has been recognized as an 

important problem in the recent decades. Two important 

classes of languages for representing uncertainty are 

probabilistic logic and possibilistic logic. Arguably, 

another important class of language for representing 

uncertainty is possibilistic theory [4]. Some approaches 

have been proposed to extend description logics with 

uncertainty reasoning such as reported in [5]. 

Typically, description logic is limited to dealing with 

crisp concepts. However, many useful concepts that are 

needed by an intelligent system do not have well defined 

boundaries. The need of expressing and reasoning with 

imprecise knowledge and the difficulties arising in 

classifying individuals with respect to an existing 

terminology is motivating research on nonclassical DL 

semantics, suited to these purposes. To cope with this 

problem, fuzzy description logics have been proposed 

that allow for imprecise concept description by using 

fuzzy sets and fuzzy relations. Umberto Straccia [6, 7] 

extends description logic to the fuzzy case. Fuzzy logic 

directly deals with the notion of vagueness and 

imprecision using fuzzy predicates. Therefore, it offers an 

appealing foundation for a generalization of description 

logic in order to dealing with such vague concepts. 

The process of human is reasoning decision is 

dynamic and uncertain. We can get the conclusion under 

the condition of fuzzy and incomplete information. 

Handling exceptions in a knowledge-based system has 

been considered as an important issue in many domains 

of applications. Reiter’s default logic [8] is one of the 

most popular formalisms for describing non-monotonic 

reasoning and has been extensively investigated by the 

community working on logical foundations of artificial 

intelligence. Default rules express concise pieces of 

knowledge having implicit exceptions, which is 

appropriate for reasoning under incomplete information. 

Handling uncertainty in a given complete information 

context is a need in various situations. For example, high 

level descriptions of dynamical systems often requires 

both the use of default rules expressing persistence and 

the processing of uncertainty due to the limitation of the 

available information. 

Reasoning under incomplete information by means of 

rules having exceptions, and reasoning under uncertainty 

are two important type of reasoning that artificial 

intelligence has studied at length and formalized in 

different ways in order to design inference systems able 

to draw conclusions from available information as it is. 

As already said, reasoning with default rules and under 

uncertainty are two important research trends that have 

been developed quite independently from each other in 

AI. They indeed address two distinct problems, 

respectively using symbolic and numerical approaches in 

general. 

In this paper, we extend fuzzy DLs by providing a 

framework for the default assumption reasoning. This 

paper outlines a joint handling of defaults and fuzzy DLs. 
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Default assumption reasoning based on fuzzy DLs is 

proposed. Inference service is considered in the logic and 

algorithm is provided for it. This is a continuous process 

of adjustment to the fuzzy DLs reasoning. However, the 

main novelty is that these adjustments are made to non-

monotonic reasoning, as defaults describe assumption 

which guide the reasoning process.  

The rest of this paper proceeds as follows. 

Preliminaries on fuzzy description logics are given in 

Section 2. Default assumption reasoning based on Fuzzy 

DLs is provided in Section 3. The inference services are 

also given. After that, we provide algorithms for 

implementing reasoning problems. And the last one is the 

conclusion and the future work.  

 

2 Preliminaries  

 

In this section, we introduce some background 

knowledge about fuzzy description logics. 

Description Logics are a well-known family of 

knowledge representation formalisms. They are based on 

the notions of concepts (unary predicates, classes) and 

roles (binary relations), and are mainly characterized by 

constructors that allow complex concepts and roles to be 

built from atomic ones. The expressive power of a DL 

system is determined by the constructs available for 

building concept descriptions, and by the way these 

descriptions can be used in the terminological (TBox) and 

assertional (ABox) components of the system.  

Straccia extends description logic to fuzzy description 

logic with fuzzy capabilities. Due to the limitation of 

space, we do not provide a detailed introduction of fuzzy 

DLs, but rather point the reader to [6]. 

 

2.1 SYNTAX AND SEMANTICS OF FUZZY DLS 

 

Similarly to crisp DL languages, fuzzy DLs concepts are 

defined by the following syntax rule: 

 

CRCR

DCDCCADC

.|.

|||||,



 
 

 

A fuzzy DL knowledge base consists of two finite and 

mutually disjoint sets. A TBox, which introduces the 

terminology, and ABox, which contains facts about 

particular objects in the application domain. 

A terminology, or TBox, is defined by a finite set of 

fuzzy concept inclusion axioms of the form CA   and 

fuzzy concept equalities of the form CA . 

Objects in the ABox are referred to by a finite number 

of individual names and these names may be used in two 

types of assertional statements: concept assertions of the 

type Ca :  and role assertions of the type   Rba :, , 

where C  is a concept description and R  is a role name, 

and ba,  are individual names. 

Let  ...,, cbaI    be a set of individual names. A 

fuzzy assertion is of the form nCa :  or   nRba :, , 

where   stands for  ,,, . Intuitively, a fuzzy 

assertion of the form nCa :  means that the 

membership degree of a  to the concept C  is at least 

equal to n . A finite set of fuzzy assertions defines a 

fuzzy ABox A . The concept of conjugated pairs of fuzzy 

assertions has been introduced, in order to represent pairs 

of assertions that form a contradiction. The possible 

conjugated pairs are defined in table 1, where   

represents a concept expression. 

 
TABLE 1Conjugated pairs of fuzzy assertions 

 m  m  

n  mn   mn   

n  mn   mn   

TABLE 2 SEMANTICS OF FUZZY CONCEPTS 

  1 aI
 

  0 aI
 

     aCaC II
 1  

        aDaCaDC III
,max  

        aDaCaDC III
,min  

         bCbaRInfaCR II

b

I
I ,,1max. 


 

         bCbaRSupaCR II

b

I
I ,,min.


  

 

A fuzzy set XC   is defined by its membership 

function ( C  ), which given an object of the universal set 

X  it returns the membership degree of that object to the 

fuzzy set. By using membership functions, we can extend 

the notion of an interpretation function to that of a fuzzy 

interpretation. A fuzzy interpretation I  consists of a pair 

 II  , , where I  is the domain of interpretation, as in 

the classical case, and 
I  is an interpretation function 

which maps concepts (roles) to a membership function 

 1,0I
 (  1,0 II

), which defines the fuzzy 

subset IC  ( IR ). The semantics of fuzzy DL are depicted 

in table 2. 

A fuzzy concept C  is satisfiable iff there exists some 

fuzzy interpretation I  for which there is some Ia   

such that   naC I  , and  1,0n . A fuzzy interpretation 

I  satisfies a TBox T iff    aDaAa III  , , for each 

DA , and    aDaAa III  , ,for each DA  . 

Fuzzy interpretations are also extended to interpret 

individual and assertions that appear in an ABox. For a 

fuzzy ABox, an interpretation maps, additionally, each 

individual Ia  to some element IIa  . An 
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interpretation I  satisfies a fuzzy assertion 

  naCiffnCa I : , 

    nbaRiffnRba III  ,:, . 

The satisfiability of fuzzy assertions with  ,,  is 

defined analogously. 

A fuzzy ABox A is consistent iff there exists an 

interpretation I  that satisfies each fuzzy assertion in the 

fuzzy ABox. We then say that I  is a model of A. 

 

2.2 A FUZZY TABLEAU FOR FUZZY DLs 

 

In the following, the fuzzy entailment problem is reduced 

to the unsatisfiability problem of a set of fuzzy assertions. 

A tableau algorithm is used to construct a fuzzy tableau 

for a fuzzy KB . Given a fuzzy ATKB , , let 

    nRbanCaS  :,:  . 

It follows that nCa  :  iff  nCaS  :  

not satisfiable. 

The calculus, determining whether a set S  of fuzzy 

assertions is satisfiable or not, is based on a set of fuzzy 

constraint propagation rules transforming a set S of fuzzy 

assertions into “simpler” model preserving sets iS  untile 

either all iS  contains a clash. 

A set of fuzzy assertions S contains a clash iff it 

contains either nw :  with 0n  or nw :   or 

0:w  or nw :  with 1n , or nw :   or  

1: w , or S contains a conjugated pair of fuzzy 

assertions. 

Given a fuzzy assertion  , with c  we indicate a 

conjugate of  . Concerning the rules, for each 

connective  ,,,, , there is a rule for each relation 

  ,,,rel . The rules for the case   ,rel  are 

quite similar. The rules are the following: 

  nCwnCw  1::  

  nCwnCw  1::  

 

nDw

nCwnDCw





:

,:: 
 

 

nDw

nCwnDCw





:

,:: 
 

 

nDw

nCwnDCw





:

|:: 
 

 

nDw

nCwnDCw





:

|:: 
 

 

  nRwwisif

nCwnCRw c





1:,

:,.:

21

21




 

 

  nRwwisif

nCwnCRw c





:,

:,.:

21

21




 

   

variable:

,:,.:

newaisxifnCx

nRxwnCRw




 

   

variable:

,1:,.:

newaisxifnCx

nRxwnCRw




 

A set of fuzzy assertions S is said to be complete if 

no rule is applicable to it. These rules are called 

monotonic rules. 

 

3 Default assumption reasoning 

 

Reasoning under incomplete information by means of 

rules having exceptions is a very important type of 

reasoning that artificial intelligence has studied at length 

and formalized in different ways in order to design 

inference system able to draw conclusions from available 

information as it is. It is useful especially for the 

knowledge representation, which is popular in framework 

reasoning, diagnostic reasoning, and natural language 

processing and so on. 

However, well-known results from the literature show 

that DLs have limitations: they do not allow for 

expressing default knowledge due to their inherent 

monotonic semantics. One needs nontrivial extensions to 

the semantics of description logics to express exceptional 

knowledge. 

Example 1. Take, as an example, a bird ontology 

expressed in the fuzzy DL knowledge base: 

ATKB , : 














NonFlierPengin

BirdPenginNonFlierFlier
T

1

11 ,,
 

  tweetyBirdA   

Intuitively, KB distinguishes between flying and non-

flying objects. We know that penguins, which are birds 

do not fly. Nevertheless, we cannot simply add the axiom 

FlierBird 1  to KB to specify the common view that 

“birds normally fly”, as this update will make KB 

inconsistent. From our bird ontology, we would like to 

conclude that tweety flies; and if we learn that tweety is a 

penguin, the opposite conclusion would be expected. 

Hence, the simple ontology KB from above cannot 

express exceptional knowledge, an extension of the 

semantics of terminological knowledge was given in [9], 

which is an early attempt to support default logic in the 

domain of description logics. 

Several other attempts to extend DLs with 

nonmonotonic features have been made based on default 

logics [10, 11]. 

In fuzzy DLs, the concept descriptions are interpreted 

as universal statements, which means, unlike frame 

languages, they do not allow for exceptions. One needs a 

formalism that can handle default assumptions, but does 
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not destroy the definitional character of concept 

description. Default rules are useful in order to express 

general behaviours concisely, without referring to 

exceptional cases. Moreover, they only require general 

information to be fired, which agrees with the situations 

of incomplete information. With the aim to offer a user-

friendly reasoned over ontologies, we consider default 

reasoning on top of ontologies based on fuzzy DLs, 

which integrate default rules and ontologies. 

The process of human is reasoning decision under 

incomplete information can be abstracted as follows: 

firstly, make an assumption; secondly, reason with the 

assumptions and draw the conclusions in the case of 

default assumptions; thirdly, make an evaluation of the 

result. If the conclusion based on default assumptions is 

satisfied or consistent with current knowledge base, it is 

accepted and continues to make further decision 

reasoning. Otherwise, the assumption is denied, either 

given up or reassumed. 

 
FIGURE 1 The process of default assumption reasoning 

According to the process, we consider the default 

assumption reasoning of fuzzy DLs. First of all, the 

default assumption rule base is made under the 

incomplete information from which we can draw 

conclusions. Secondly, evaluation system is established. 

The conclusion is evaluated according to the decision 

goal. Finally, if the conclusion is inconsistent with the 

growing information, we can go back to the previous 

hypothesis. 

 

3.1 THE FRAMEWORK OF DEFAULT ASSUMPTION 

REASONING 

 

In the inference system based on fuzzy DLs, the rule base 

is divided into two parts: one is the general rule base and 

the other one is default assumption rule base. Both rule 

bases including knowledge base work together to draw a 

conclusion. The framework of reasoning is shown in 

figure 2. 

 

 
FIGURE 1 The framework of default assumption reasoning 

Each part of figure 2 is defined as follows: 

KB: a knowledge base of the form AT , .  

RDB: a rule base including the reasoning rules based on 

fuzzy DLs, which are described in section 2.2 

DRDB: a default assumption rule base 

CKB: a current knowledge base contains current 

information, which is used during the reasoning process 

EVA: the evaluation mechanism, which needs a trigger 

CM: the inference control mechanism, which controls the 

reasoning process 

The basic idea and the process are described as follows: 

(1) The current knowledge base CKB submits to the 

inference control mechanism CM the current knowledge 

(fuzzy assertions); 

(2) Inference control mechanism CM will search for 

the information in the current knowledge base CKB and 

the rule base RDB. If there are rules matched, the 

inference is triggered by the reasoning mechanism. 

Otherwise, if there are no rules or knowledge matched in 

CKB and RDB, we will check the default assumption rule 

base DRDB. If there are some default assumption rules 

matched in DRDB, we will go on the hypothesis 

reasoning and get the conclusion. At the same time, we 

mark the conclusion and prepare for the tracing back. 

(3) The conclusion directly reasoned by the rule 

base RDB will be put in the current knowledge base 

CKB. If it is drawn by the default assumption rule base 

DRDB, it needs the evaluation mechanism EVA to check 

it. If it is inconsistent with the current knowledge of 

CKB, the conclusion reasoned by default assumption is 

considered to be not plausible and abandon, and we will 

go back to the previous hypothesis state. 

(4) For the fuzzy assertion of the form nCx : , if 

we cannot check the satisfiability of its negative form 

nCx  1: , then the default assumption rule base 

DRDB is called. We assume that nCx :  be 

satisfiable and reason with it. Following the hypothesis 

we get the conclusion. After that, we call the evaluation 

mechanism EVA to check it. 

 

 

KB 

RDB 

DRDB 

EVA 
CM 

CKB 

Incomplete information 

Make an assumption 

Evaluation of the 

conclusion 

Deny 

Accept 
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3.2 UNCERTAIN DEFAULT RULES 

 

A default rule is an expression ba ~  where a  and b  

are formulas and ~> is a new symbol. ba ~  Translates, 

in the possibility theory framework, into the constraint 

   baba  , which expresses that having b  

true is strictly more possible than having it false when a  

is true. 

The use of default rules has two main interests. First, 

it simplifies the writing: it allows us to express a rule 

without mentioning every exception to it. Second, it 

allows us to reason with incomplete descriptions of the 

world: if nothing is known about the exceptional 

character of the situation, it is assumed to be normal, and 

reasoning can be completed. 

In order to have more expressive representation 

formalism, we now introduce the notion of uncertain 

default rule. 

Definition 1 An uncertain default rule is a pair 

 ,~ ba   where a  and b  are concepts or roles of DLs, 

and   is the certainty level of the rule, the symbol ~  is 

a non classical connective encoding a non-monotonic 

consequence relation between a  and b .  

The intuitive meaning of  ,~ ba   is “by default” if 

is true then has a certainty level at least equal to  . For 

instance,  1,~ fliesbird   means that a bird generally 

flies with certainty 1 . It is a default rule since it admits 

exceptions mentioned in other rules: for instance, 

 2,~ fliesyoungbird  : young birds generally do 

not fly. But it is also an uncertain rule since all we know 

is that we are in presence of a bird, the certainty level 1  

is attached to the provisional conclusion that it flies. 

Thus, the ' s provide an additional information with 

respect to the default rule. 

The core of the treatment of uncertain default rules 

proposed in this paper is based on the idea of translating 

them into a set of uncertain rules.  

Roughly speaking, default reasoning amounts to apply 

a set of default rules to the knowledge base describing a 

context. 

The core of the treatment of uncertain default rules 

proposed in this paper is based on the idea of translating 

them into a set of uncertain (non defeasible) rules. 

Definition 2 Let   nibaD iii ...2,1,,~    be an 

uncertain default rules set. Suppose kjj ...2,1,   are all 

distinct weights appearing in D  such that 

k  ...21 . Let  kD SSS ,..., 21 , where 

  llllllli DbabaS   ,,~: . 

Since possibilistic inference suffers from the 

drowning problem, we consider a drowning-free variant 

of possibilistic inference, called linear order inference. 

Uncertain default rules are stratified by the weights. 

Reasoning from a set of exception-tolerent default rules 

in presence of incomplete knowledge first amounts to 

select default rules. The selected set of rules should focus 

on the current context describing the particular 

incomplete information situation that is considered, and 

then this set of rules can be applied to this information 

situation in order to draw plausible conclusions. When 

new information is available on the current situation, 

these conclusions may be revised at the light of more 

appropriate default rules. The selection problem is solved 

in practices by rank-ordering the default rules in such a 

way that most specific rules whose conclusion may 

conflict with the conclusion of more general defaults, 

receive a higher level of priority. Clearly, the level of 

priority of a particular rule depends on the whole set of 

default rules which are considered. 

 

3.3 ALGORITHMS FOR INFERENCE IN THE 

FRAMEWORK 

 

We give algorithms for the inference in the framework 

based on fuzzy DLs. 

(1) Algorithm 1 computes the fuzzy membership 

degree n  of the fuzzy assertion nCx : . .i  of the 

algorithm 1 is the fuzzy membership degree of the 

prequisite of the default rule. 

Algorithm 1. Function FMA 

Data: ATKB , ; a DL concept  nCa :  

Result: The membership degree n  associated with a 

query  aC  

begin 

Foreach r   in RDB and DRDB do 

 if  nCa :  matching  r .rule 

      if  r .rule is default rule in DRDB 

     then flag=1    

else flag=0 

     if flag==1 then  

           if 1. r  then  .rn    

           else  1n   

else according to the RDB to compute n  

end 

(2) Algorithm 2 of the inference control mechanism 

FCM 

  of the algorithm 2 is the threshold. 

Algorithm 2 Function FCM 

Data:   kiCKB iii ,...,1,1,0:,   , where k  

is the number of fuzzy assertions in the current 

knowledge base CKB ; a fuzzy DL concept nCa :  

Result: The update of knowledge base KB   

begin  

if mCa :  exists in CKB  then 

       add   nmCa ,min:   to knowledge base KB  

else FMA( nCa : ) 

if n  then 

if flag==1 then EVA( nCa : ) 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 69-75 Zhang Min 

74 
Mathematical and Computer Modelling 

 

    else add nCa :  to knowledge base KB  

end  

(3) Algorithm 3 of the evaluation mechanism EVA 

Alogrithm 3 Function EVA( nCa : ) 

Data: ATKB , ; a fuzzy DL concept nCa :  

Result: The update of knowledge base KB  

begin 

check nCa :  in knowledge base KB  

if it is consistent then add it to knowledge base 

else give up the result 

end 

 

3.4 DISSUCTIONS ON THE CONSISTENCY 

 

If the conclusion is drawn from the default assumption 

rule or part 4 of section 3.1, we will mark a sign in the 

algorithm FMA and FCM. When the conclusions tagged 

are inconsistent with ones from EVA, we will delete the 

tagged conclusions to make assure the consistency of the 

knowledge base. 

To get a sense of how representations work within 

this formalism consider the following example. 

Example 2. Suppose we have a knowledge base 

ATKB ,
 














birdPenguinbirdSparrow

flyOstrichflyPenguin
T

11

8.08.0

,

,,

 
A    

 
 
  
























6.0,~

,8.0,~

,8.0,~

flybird

flyOstrichbird

flyPenguinbird

DRDB

 
Now the query is “Can Sparrow fly?”, which means 

that we should judge the entailment problem of the 

concept “Sparrow” and “fly”, namely 

 1,0,  nflySparrow n . At first, we change T  and A  

into the form of fuzzy constraint system: 



































1:

,1:

,8.0:

,8.0:

birdPenguinx

birdSparrowx

flyOstrichx

flyPenguinx

S









; 

By the definition 2, the uncertain default rules of 
DRDB  are stratified:  21,SSDRDB  , where 

 
  













8.0,~

,8.0,~
'1

flyOstrichbird

flyPenguinbird
S  

  6.0,~'2 flybirdS   

For simplicity, we translate them directly into a set of 

uncertain rules: 

 
  













8.0,

,8.0,
1

flyOstrichbird

flyPenguinbird
S  

  6.0,2 flybirdS   

Secondly, the problem is changed into the fuzzy assertion 

satisfiability or default assumption satisfiability check. 

We add  nflySparrowx :  to the fuzzy constraint 

system S, the propagation rules of RDB  are applied as 

follows: 

(1) nflySparrowx :  

(2) nSparrowx :                        

(3) nflyx :                    

(4) 1:  birdSparrowx    

(5) 1: Sparrowx               

(6)  clash               (2) and (5) 

(7) 1: birdx                    

(8) 6.0: flyx         the rule of 2S   

(9) clash if 6.0n         (3) and (8) 

It follows that flySparrow n  if 6.0n . Therefore, if 

the threshold of   is set 5.0 , we can draw a conclusion 

that “Sparrow can fly in general”. 

 

4 Related work 

 

There have been some works in fuzzy DLs, such as the 

work reported in [12-16]. But there has been very few 

works handling both defeasibility and uncertainty. Our 

main goal is to provide a framework for fuzzy default 

reasoning. The formalism used in this paper is an 

extension of fuzzy DLs as introduced by Straccia.  

In [17] a technique is described for assigning a 

preference semantics for defaults in terminological logics, 

which uses exceptions and therefore has some similarities 

to our work. They draw a distinction between strict 

inclusions (TBox statements of the form) and defaults, 

which is interpreted as “soft” inclusions. We also make 

use of the notion of the stratification of default theories 

studied in detail by Choleuinski [18]. In our framework, 

the uncertain default rules are stratified by membership 

degree.  

Using an uncertain framework in order to describe an 

evolving system has been done by many authors, for 

instance in a probabilistic setting. But reasoning in this 

setting implies to dispose of many priori probabilities; 

this is why using defeasibility may help to reduce the size 

of information for representing the system. In this sense 

our framework is more expressive. However, the use of 

default rules requires more complex approach. The 

computation of extensions is difficult and we do not have 

to take account for it. 

An altogether different approach is the explicit 

introduction of nonmonotonicity into DLs, usually some 

variant of default logic. See [19] for an overview. But this 

extension is limited to classical description logics, fuzzy 

characteristic is not considered. 

Nicolas, Garcia and Stephan [20] also present an 

approach that deals with defeasibility and uncertainty in a 

possibilistic framework. But, they combine possibilistic 
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logic with Answer Set Programming rather than using the 

same setting for default and uncertainty handling. Dupin 

[21] has introduced a new rewriting algorithm in 

applications to handle uncertain default rules. This work 

is different from the work [22] on extending fuzzy DLs 

with default rules, where classical default rules are 

directly attached with the tableau algorithm. The classical 

default rules are more complex while the use of default 

assumption rule allows us to express a rule without 

mentioning every exception to it. 

 

5 Conclusions and future work 

 

Based on the fuzzy description logic with default 

reasoning, we construct a knowledge base system that 

incorporates TBox, ABox and default rules. We have 

proposed a default assumption extension for fuzzy 

description logics and provided corresponding algorithms 

in this paper. We provide a theoretical framework 

allowing us to study the feasibility of applying default 

assumption in fuzzy DLs. The model described here 

shows an efficient way to use uncertain default reasoning 

as a tool for fuzzy DLs. This topic is interesting because 

the problem of dealing with uncertainty is closely related 

to the problem of nonmonotonic reasoning and possibility 

theory has been widely accepted as an important 

formalism to deal with uncertainty. 

We have shown how the structure of fuzzy DL 

languages can be exploited to define basic knowledge 

base. Our focus was on the formal semantics of 

knowledge representation, although we also provided 

high-level decision procedures. The next step is the 

development of tableaux-based algorithms for 

implementing the strategies outlined in the paper. The 

combination of default assumption rules and fuzzy DLs 

enable us to capture knowledge about vagueness and 

defeasibility. Furthermore, the incorporation of default 

assumption allows us to encode and reason under 

incomplete information. Stratification strategy is 

considered in the uncertain default rule set which is more 

convenient for default reasoning. We have not considered 

the complexity analysis of algorithms but leave them as 

future work. 

An obvious question to consider is whether any 

additional structure, such as the specification of role 

hierarchies, can be exploited further to modify the 

knowledge representation in appropriate ways. Finally, 

the management of other notions of incoherence, such as 

concept unsatisfiability, is currently the topic of further 

investigation. 
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