

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 438-444 Hu Luokai, Liang Chao, Lu Ying, Zeng Yan

438

A defeasible policy based access control approach for semantic
web services composition

Luokai Hu1,2*, Chao Liang1, Ying Lu2, Yan Zeng2
1Lenovo Mobile Communication Technology Co. Ltd., Xiamen China

2 Hubei Co-innovation Center of IT Service for Basic Education, Hubei University of Education, Wuhan China

Abstract

Semantic Web services have brought great convenience to service-oriented software development. However, during the semantic

Web service composition because the component Web services and licensing issues often require repeated dynamic binding,

which greatly affect the efficiency of the service execution. To address this problem, we propose a defeasible policy based a ccess

control approach for semantic Web service composition. Firstly, before the semantic service is bound to a component of Web

services, static analysis can avoid unnecessary service binding in the semantic Web service composition and execution time. Then

we give the access control enforcement process in composition and execution time. Finally, the feasibility of this method has been
verified through experiments. Our approach can increase the efficiency and successful rate of semantic Web service compositio n.

Keywords: defeasible logic, access control, semantic web services composition

1 Introduction

In recent years, research in semantic Web services mainly
focus on the topics of discovery, composition and
execution of Web services. However, with the increasing
and deepening study in semantic Web services, its security
gradually became one of the key problems. If not treated
appropriately, potential security risk can hamper the large
scale applications of semantic Web services. Particularly,
among the security issues of semantic Web service, access
control is a basic and core problem, which has been
attracting wide attention from academia and industry.

The autonomy member providers of composite Web
service are independent entities. They have full control to
their own resources [1]. Policy based access control
approach for Web service enables the separation of
description and implementation mechanism and also
makes cross-domain integration of distributed entities
secure access rules possible. Composite Web services are
built on an open dynamic environment. There is no direct
trust relationship among component services, the
interdependence between the component services in a
coordinated manner. Even if the policy of each component
service has correct provision, it may still lead to conflicts
among diversification regional policies [2]. It will affect
quality and robustness of service composition and reduce
user satisfaction. Effective realization of consistent
dynamic coupling of component service access control
policy for composite Web services in a multi-domain
collaborative environment has been a hot issue of the
research in Web service security [3].

One of the advantages of using semantic Web service
is making service composition more convenient. During
the semantic Web service composition, developers do not

* Corresponding author’s e-mail: luokaihu@gmail.com

need to know every composition paths and semantic Web
service will automatically bind a component Web service.
However, compared to the access control for Web service
composition, access control for composition of semantic
Web service is more complex. Because, there are often
more than one component Web services which were found
in the service discovery process. In the entire service
composition path, the combination of component Web
services which are most likely to have the right able to be
executed is an important factor affecting the efficiency of
the semantic Web service composition. In this paper,
before the semantic Web service binding, through the
static analysis of the composition path, the path which
cannot be able to be executed will be removed before the
execution. It avoids repeatedly meaningless service
dynamic binding during the execution period of the
semantic Web service composition because of without
authority.

2 Background

2.1 DEFEASIBLE LOGIC

Defeasible logic is a type of non-monotonic logic. It is
proposed by Donald Nute in 1987 which is used for
formalizing the defeasible reasoning [4]. The vast majority
of non-monotonic logics are not linear complexity, but
defeasible logic is an exception [5]. Since defeasible logic
has good computational complexity and easy to
implement, it has aroused wide spread concern in recent
years. For example, if we know that XiaoHu is an associate
Professor, it is reasonable to assume that he can teach
class. However, if we later find out that XiaoHu is sick we
may want to retract our previous assumption about Sam’s

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 438-444 Hu Luokai, Liang Chao, Lu Ying, Zeng Yan

439

ability to teach class.
A defeasible logic is composed of three parts: facts,

rules, and superiority relationship. Facts are indisputable
statements such as AssociateProfessor(XiaoHu), which
states that “XiaoHu is an associate professor.” Defeasible
logic has three types of rules: strict rules, defeasible rules
and defeater rules. Strict rules are rules in the classical
sense, such as “Associate Professors are teachers”
Formally: AssociatePorfessor(x)→Teacher(x).
Defeasible Rules are used to draw conclusions that may
later be retracted. A defeasible rule “Associate professors
typically teach class” can be formally written as:
AssociatePorfessor(x)teachClass(x).
Defeater Rules provide contrary evidence to defeasible
rules. A defeater rules “if an associate professor is sick, it
will not be able to teach class.” is formally written as:
sick(x)¬teachClass(x).

It is important to note that defeater rules cannot be used
to draw conclusions, they simply prevent conclusions. An
associate professor being sick is not sufficient evidence to
prove that he/she cannot teach class, however we do not
want to ignore to the conclusion that it indeed can teach
class.

2.2 SACPL

The Semantic Access Control Policy Language
(SACPL)[6,7] in which the necessary syntax elements and
appropriate semantic annotation are added is designed on
the basis of language such as XACML [8], in order to meet
a variety of network and database security needs. SACPL
is composed by three parts that is rule, policy and policy
set. In the distributed computing environment, the access
control method has changed from the centralized
management into a distributed management approach.
There has been policy markup language, such as XACML,
to support description and management of distributed
policies. In the semantic Web service composition, the
issue of interoperability among policies is more important
than ever before. Specifically, subject, object, action and
attribute variables as the basic semantic element are
annotated by ontology. The more detail of SACPL can
refer to [6,7].

3 Static analysis of semantic web service composition

path

In a semantic Web service composition path, if a semantic

Web service, at current time, only one component Web

service can be discovered, that component Web service is

called key service, denoted as KCWS. If more than one

component web service can be discovered, the set of those

component Web services is called non-key service set

denoted as NCWSSet. Even if the access control policy of

the key service is not compatible with other policies of

services in the composition path, it cannot be replaced. If

the access control policy of non-key service and other

service policies in the composition path are not

compatible, it can be replaced. Moreover, during the static

analysis of semantic Web service composition path, the

selection of the candidate component web service from

NCWSSet follows the order of QoS priority.

In addition, before the static analysis of semantic Web

service composition path, the composition service (engine)

must have trust relationship with component Web service.

Otherwise, the component Web service cannot disclose its

access control policy to the composition service. In that

case, the service discovery procedure will not bind this

component service to its semantic service. Research on the

relationship of trust between services is beyond the scope

of this study, we suppose that the trust relationship has

established, otherwise, it is deemed not found the

candidate component service. Besides, static analysis of

semantic Web service composition path cannot be suited

for all situations. It only can be used for the static path

analysis. The definition of static path is as follows. Before

the definition of static path, we give the definition of static

and dynamic policy first.

Definition 3.1 (Static Policy and Dynamic Policy).

Static Policy is a policy which has only static variables.

Static variable is a variable which is not changed by any

operations in the whole Web service composition path.

That is ∀v ∈ P.V, v is static variable. Otherwise, Dynamic

Policy is a policy which has at least one dynamic variable.

Dynamic variable is a variable which may be changed by

execution operations. That is ∃v ∈ P.V, such that v is

dynamic variable. Obviously, any policy is either static or

dynamic policy.

Definition 3.2 (Static Path and Dynamic Path). Static

Path is a path which has only static policies or has dynamic

policies such that all execution operations are “behind” the

operations belongs to the dynamic policies. The term

“behind” means front operations will never pass

parameters to the rear operations in the Web service

composition path. That is ∀p ∈ Path.ACPS, p is static

policy or if ∃p ∈ Path.ACPS such that p is dynamic policy,

then ∀eop ∈ SP.EOP, eop.out ∩ p.op.in= in the Web

service composition path. Otherwise, if a path is not a

static path, it must be a dynamic path.

From the perspective of whether the static analysis of

composition path can be done, a composition path can be

divided into static and dynamic path. On the other hand,

from the view of whether the path can run through all the

access control policy, the semantic Web service

composition path SWSC has three types: inaccessible path,

executable path and possible path. Inaccessible

composition path is a static path in which there is

confliction among access control policies. Executable

composition path is the static path in which there is not

confliction among access control policies. Possible

composition path is a dynamic path in which there is not

confliction among all static access control policies. This

article focuses on the static analysis of executable

composition path (shown as Algorithm 1). Because if a

static path is not an executable composition path, it is must

be an inaccessible composition path. The static analysis of

possible composition path is equals to the static analysis of

all the static access control policies.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 438-444 Hu Luokai, Liang Chao, Lu Ying, Zeng Yan

440

Algorithm 1: Static Analysis of Executable Composition Path

PCPSet getExecutablePath(SWSCP swscp)// This algorithm will
return all the executable path of a semantic Web service composition

path.

Input: Semantic Web Service Composition Path(SWSCP) swscp//
The path is a static path.

Output: Web Service Composition Path Set(PCPSet) pcps //possible

Web service composition path set

Parameters:

int n; //the number of Semantic Web services in the independent

composition path
Component Web Service(CWS) kcws; //key component Web

services of semantic service path

Component Web Service Set(CWSSet) kcwss, ncwsset;
Linked List of Component Web Service Sets(CWSSetList) ncwssl;

PolicySet ps;

Linked List of PolicySet psl;

// All candidate component Web services have trust relationship with
composition service.

(1) Run the service discovery procedure to find all candidate

component Web services;
(2) Add m key component Web services into key component Web

service set kcwss;

kcwss = {kcwsi|1im}

(3) Add non-key component Web services into each non-key

component Web service set (NCWSSet) respectively. Add k non-key

component Web service sets into ncwssl;

ncwssl = {ncwsseti|1ik} such that n== m+k

(4) Add all rules of composition service as a policy into ps;
(5) Add all rules of kcwsi in kcwss as a policy into ps;

(6) if(confliction(ps)) return pcps=null;

//that is convert each policy p in pst1 to a policy set

(7) Make the policy set pst1 of ncwsset1 to a Linked List of PolicySet

psltemp;

(8) for (i=2; i<=k; i++)
psltemp = GetNonConflictPolicySetLink(psltemp, psti);//psti is

the policy set of ncwsseti

(9) psltemp = GetNonConflictPolicySetLink(psltemp, ps);
(10) Get each non-conflict policy set ncps from psltemp;

(11) Get each Web service set wss of ncps;

(12) Convert each wss to a Web Service Composition Path wscp;
(13) Add all wscp into pcps;

(14)Add all key component Web services into each executable Web

service composition path of pcps;
(15) return pcps;

The algorithm 2 will get policy set link without con-

fliction from a policy set.

Algorithm 2: Get Non-Conflict Policy Set Link.

PolicySetLink getNonConflictPolicySetLink(PolicySetLink psli,

PolicySet ps)

Input: PolicySetLink psli; PolicySet ps; //A policy set link is a

linked list of policy sets.

Output: PolicySetLink pslo; //the Policy Set Link without
confliction

(1) foreach(psl[i] in psli)

(2) foreach(pi in ps)
(3) add pi into psl[i];

(4) if(!confliction(psl[i])) add psl[i] into pslo;

(5) return pslo;

4 Static analysis of access control policy set

In an access control policy set PS for semantic Web service
composition, all rules Pi.r of policy Pi (PiPS, 1≤i≤|PS|)
can be divided into two kinds of rule: permit and deny

which can be denoted as Pi.rp and Pi.rd respectively. We
can construct a new rule set R using defeasible logic, where
the consequent con(Pi.rp) of each Pi.rp can be rewritten as
“PERMIT” while each condition(or precondition)
pre(Pi.rp) remains unchanged. Similarly, the consequent
con(Pi.rd) of each Pi.rd can be rewritten as “DENY” while
each pre(Pi.rd) remains unchanged.

Because XACML is a typical access control language
policy of Web services, the static analysis access control
policy set will take XACML as an example. The main idea
of this access control policy set static confliction detection
algorithm is to first deal with each policy in policy set, to
convert them to defeasible logic rules. Secondly, the
confliction can be detected for all these defeasible logic
rules. Reference [9] described a conflict detection method
of defeasible logic rules. Typically, XACML has four
types of policy combination algorithms. They are Deny-
overrides, Permit-overrides, First-applicable and Only-
one-applicable. The mapping of XACML to defeasible
logic is discussed in these four cases. In the Deny-
overrides algorithm, if any rule evaluates to Deny, then the
final decision is also Deny. So if r is a deny rule, then r is
a strict rule. If r is a permit rule, then r is a defeasible rule.
In the Permit-overrides algorithm, if any rule evaluates to
Permit, then the final decision is also Permit. So if r is a
permit rule, then r is a strict rule. If r is a deny rule, then r
is a defeasible rule. In the First-applicable algorithm, the
effect of the first rule that applies is the decision of the
policy. The rules must be evaluated in the order that they
are listed. In the Only-one-applicable algorithm, if more
than one rule is applicable, return Indeterminate.
Otherwise return the access decision of the applicable rule.

Algorithm 3: Static Analysis of Conflict Policy Set.

Boolean confliction(PolicySet ps)

Input: PolicySet ps; //all the
Output: Boolean conflict;

(1) foreach(Policy p in ps)

(2) if(p.combineAlg equals Deny-overrides)

(3) foreach(Rule r in p)
(4) if (con(r) equals Deny) construct r as a strict rule;//note all r

s.t. con(r) equals Deny as rd

(5) else construct r as a defeasible rule;//note all r s.t. con(r)
equals Permit as rp

(6) if(pre(rd)  pre(rp))  ) construct defeat rule: pre(rd) 

pre(rp)  ¬Permit

(7) if(p.combineAlg equals Permit-overrides)

(8) foreach(r in p)
(9) if (con(r) equals Permit) construct r as a defeasible rule;

(10) else construct r as a defeasible rule;

(11) if(pre(rd) ∩ pre(rp))  ) construct defeat rule: pre(rd) ∩

pre(rp)  ¬Deny

(12) if(p.combineAlg equals First-applicable)

(13) if(con(r) equals Deny) construct r1 as strict rule;

(14) else construct r1 as defeasible rule;
(15) for(i=1;i<n;i++)

(16) if(con(r i+1) equals Deny) construct strict rule: pre(ri+1) /

pre(ri)  Deny;

(17) else construct strict rule: pre(ri+1) / pre(ri)  Permit;

(18) if(p.combineAlg equals Only-one-applicable)

(19) if (p.num equals 1)

(19) if(con(r i) equals Deny) construct r i as a strict rule;

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 438-444 Hu Luokai, Liang Chao, Lu Ying, Zeng Yan

441

(20) else construct ri as defeasible rule;

(21) Add all the rules above into a Policy po;
(22) conflict = checkConfliction(po);// Calls the functions of

Reference [9].

(23) return conflict;

5 The access control enforcement in execution time

If a client requires an access to a composite semantic Web

service, the composition execution engine needs to

evaluate access control policy of composite Semantic Web

Services "before execution" according to the valid access

attribute and select a Web service composition path to bind

corresponding component Web service to each semantic

Web service.

And during the execution of the composite Web

service, the composition execution engine also needs to

dynamically evaluate the request on the operation

according to "execution time" attributes. If access is

denied, looking for other Web services to rebind is needed

until no other candidate Web services or access is

successful.

Existing policy description language (such as

XACML) can only express access control policies in the

syntax layer, in order to meet the needs of access control

for semantic Web service, we propose SACPL (Semantic

Access Control Policy Language)[6, 7] as a policy

description language. Based on XACML, SACPL

Language adds semantic annotation and corresponding

auxiliary mechanisms. This article uses SACPL as access

control policy description language for composition

semantic Web services. The realization project of SACPL

can be rapidly achieved through the extension of XACML

from open source projects (such as Sun's XACML). With

the limitation of space, more details about SACPL could

refer to [6, 7]. Since SACPL is an extension language of

XACML, some terms of XACML is integrated to describe

the architecture of access control for semantic Web

services composition in Figure 1. The interaction among

modules of this architecture could be described in detail.

Composite Semantic

Web ServiceClient
1

Component Service

PEP PDP PAP

OAPPIP
2

3

6

7

4

5

8

PolicyBase

PCP

6.1 6.2

6.3 6.4

6.5Execution Engine

Component Service

PEP PDP PAP

OAPPIP

PolicyBase

Component Service

PEP PDP PAP

OAPPIP

PolicyBase

S

Component Service

PEP PDP PAP

OAPPIP

PolicyBase

Component Service

PEP PDP PAP

OAPPIP

PolicyBase

Semantic Service

Semantic Service

Semantic Service

FIGURE 1 Enforcement process of access control for semantic web

service composition

1) The Subject S wishes to visit a Composite Semantic

Web service (object) CSWS. S sends a SOAP message with

a key Ks to CSWS. The SOAP message is received by

CSWS and decided by PDP of CSWS using its own access

control policy written with SACPL. If the result is Permit,

then the SOAP is forwarded to the Web service WSi which

is a Web service in the composite path. Otherwise the visit

will be denied.

2) The SOAP message is intercepted by the security

agent PEPi of WSi.

3) PEPi issues an inquiry to the CSWS to ask about all

known attributes of S.

4) CSWS forwards the inquiry to the authentication

center ACs of S to ask about all known attributes of S.

5) Authentication center ACs first confirms the validity

of Key Ks. If the answer is yes, then ACs sends a request to

the Policy Information Point PIPs to query attribute,

otherwise refusing the request. PIPs queries all the known

attributes As of Subject S from the attribute database. PIPs

sends As as input to the semantic reasoning module to

derive more valuable attribute information A's of subject S.

PIPs returns the query results (As+A's) to the authentication

center ACs. ACs sends the query results to the context

handler CHs. The query results will be encapsulated into

the format of SACPL Request by context handler CHs and

sent to CSWS.

6) CSWS forwards the query results (As+A's) to PEPi.

(6.1) PEPi sends the SACPL Request to the policy decision

point PDPi of WSi. (6.2) PDPi parses the SACPL Request

and queries the related policy (written in SACPL) with the

Target token as an index from the policy administration

point PAPi. (6.3) PDPi sends an attribute query request to

policy information point PIPi. PIPi converts (As+A's) to Ai

which can be understood by domain of WSi with the help

of domain ontology of WSi. PIPi queries all the attributes

Awsi of Web service WSi to which S wants to access from

Attribute Database. (6.4) PIPi gathers all environment

attributes Ae. PIPi returns all the attribute information

(Ai+Awsi+Ae) to policy decision point PDPi. (6.5) PDPi

generates an access decision which will be sent to the

context handler CHi. CHi encapsulates the access control

decision into the SACPL Response format and sends it to

security agent PEPi.

7) According to the result in SACPL response, security

agent PEPi could perform the corresponding Permit or

Deny action for this visit. If the decision is Permit, request

operation will run and PEPi will return the operation result

to the CSWS. CSWS will call the next semantic Web

service in its composition path. Otherwise, PEPi will

return access Deny to the CSWS. In that case, composition

engine will choose another component Web service in the

candidate service list until the list is empty. If no

component Web service can be access return Deny to the

CSWS.

8) The operation result or the access Deny returned to

the client S.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 438-444 Hu Luokai, Liang Chao, Lu Ying, Zeng Yan

442

6 Performance evaluation

To validate the effectiveness and evaluate the performance

of the defeasible logic based semantic Web service

composition access control approach, we design a set of

experiments which is set up in a simulation system to

simulate the semantic Web service composition path.

The simulation system includes 300 concrete Web

services. We use IBM Rational Application Developer

[10] to simulate Web services. Firstly, 12 graduate

students designed different access control policy for 240

Web services respectively using XACML. Each Web

service access control policy has 3-10 rules. The other 60

Web services do not have access control policy and can be

freely accessed. Then, five semantic Web service

composition paths were designed, each path containing 5-

20 semantic Web services. Thus the generating

composition Web services were designed five access

control policy by the author using SACPL. Each policy has

rules ranging from 5-10. Next, these five semantic Web

service composition paths will be executed in both

situations with and without the use of static analysis

(situation 1 and situation 2) and get the number of its

dynamic binding services, composition and execution time

and other experimental data. Static analysis time itself will

also be measured. The experiment result is shown as

Figure 2 and Figure 3.

FIGURE 2 Composition and execution time

FIGURE 3 Number of rebinding

7 Related work

Currently, some research work focused on the access

control for single Web service. But there has not been a

good solution for the problem of access control for Web

service composition especially semantic Web service

composition. Access control for the semantic Web service

composition problem has gradually become one of the hot

research fields among semantic Web service security [11].

The attribute-based access control (ABAC) has been

introduced to access control Web services [12, 13]. It

realized the access control for a single Web service, but

did not consider the access control for Web service

composition. C. Ardagna et al. consider the credential

based access control with the abstraction of complex

concepts such as set disjunction/conjunction and so on,

into a single concept in policy specification [14]. M.

Srivatsa et al proposed the access control system for

service composition which meets the security needs of a

dynamic web service environment [15]. But it did not

involve its application in the semantic Web service

composition Access Control. E. Bertino introduced role-

based access control (RBAc) model to BPEL (Web

Service Business Process Execution Language) and

proposed access control architecture known as RBAC-

WS-BPEL [16]. But there are limitations in terms of

dynamics and control granularity of access control since it

is based on RBAC model. F. Satoh studied the

combination method of security policy using predicate

logic and proposed auto security policy generation

mechanisms for service composition [17]. But it did not

solve the problem of policy conflict in service composition

path. F. Paci et al. presented the controlled dissemination

of policy information to users in conversational web

service [18].

In the semantic Web access control research, S.

Agarwal pointed out that access control policy of semantic

Web service composition in general was combined with all

access control policies of component services produced

[19]. But it just described the combination process of

access control policy for service composition without

detailed policy combination approach. G. Bayer et al.

presented a personal file sharing architecture based on

ABAC and semantic web technology [20]. They suggest a

harvesting mechanism to capture the user data from the

social and professional network sites, thus extends the

attribute ontology with new rules and relationships. T.

Chowdhury and J. Noll proposed a semantic aware role

based identity management mechanism which provided

secure access to enterprise content management system

[21]. T. Priebe et al. extended the ABAC with semantic

web technology for highly open system like the Internet

[22]. Specifically, they extended XACML language with

the inference engine and ontology administration point

(OAP).

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 438-444 Hu Luokai, Liang Chao, Lu Ying, Zeng Yan

443

8 Conclusion

We have developed a defeasible policy based semantic

Web service composition approach. Before service

composition, all the rules in policies of composition

semantic Web service, semantic Web services and

component Web service will be modeled as strict rule,

defeasible rule and defeat rule of defeasible logic. And

then all the policies in the composition path in which the

composition semantic Web service and the component

Web service have trust relationship will be analyzed. After

the static analysis, the impossible path will be removed. In

the composition and execution time, the composition

engine only checked the Web service in the list of

candidate component service. In that case, the composition

time will be reduced and successful rate increased. The

experiment result proved such above conclusion.

Our approach can greatly reduce the potential access

deny and increase composition efficiency. However, our

approach only considered the access control policy of

semantic Web service and component Web service, but did

not include the access control of external data resource.

The access deny of data resource will also reduce the

successful rate of composition. Therefore, the data access

control in the semantic Web service composition will be a

research direction in our future work.

9 Conflict of interest

CONFLICT OF INTEREST: Financial contributions to

the work being reported should be clearly acknowledged,

as should any potential conflict of interest.

Acknowledgments

This work was supported by a grant from the Hubei

Provincial Department of Education scientific research

programs for Youth project (No. Q20133003) and the

natural science foundation of Hubei Province (No.

2014CFB568).

References

[1] Demian D, Ananthanarayana S 2010 Dynamic Web Service

Composition Based on Operation Flow Semantics International

Journal of Computer Applications 26(1) 4-14
[2] Kim K, Choi W, et al. 2008 A Collaborative Access Control Based

on XACML in Pervasive Environments Proc. of 2008 IEEE

Conference on Hybrid Information Technology 7-13

[3] Yannick C, Mohamed M 2008 Automatic Composition of Services

with Security Policies Proc. of 2008 IEEE Congress on Services 529-

38
[4] Nute D 1987 Defeasible Logic in Handbook of Logic in Artificial

Intelligence and Logic Programming. Oxford University Press 353-

95
[5] Maher M J 2001 Propositional defeasible logic has linear complexity

Theory and Practice of Logic Programming 1(6) 691-711

[6] Hu L, Ying S, et al. 2009 Towards an Approach of Semantic Access
Control for Cloud Computing Proc. of the 1st International

Conference on Could Computing, Beijing China Springer

[7] Hu L, Ying S, et al. 2010 A Semantics Based Approach for Cross
Domain Access Control Journal of Internet Technology 11(2)

[8] OASIS, Extensible Access Control Markup Language (XACML),

[Online]
[9] http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-

core-spec-os.pdf

[10] Hu L, Qiu C, Shi Y 2012 A defeasible description logic based
semantic security policy conflict detection approach International

Journal of Security and its applications

[11] IBM, Rational Application Developer, [Online]
[12] http://www.ibm.com/developerworks/downloads/r/rad/?S_CMP=rn

av
[13] Brown K, Capretz M 2013 ODEP-DPS: Ontology-Driven

Engineering Process for the Collaborative Development of Semantic

Data Providing Services Information and Software Technology 55(9)
1563-79

[14] Hebig R N, Meinel C, Menzel M, et al 2009 A Web Service

Architecture for Decentralised Identity- and Attribute-Based Access
Control Proc. of IEEE International Conference on Web Services

551-8

[15] Yuan E, Tong J 2005 Attribute based Access Control for Web

Services Proc. of the 2005 IEEE International Conference on Web
Services, IEEE Computer Society 561-9

[16] Ardagna C, Vimercati S, Paraboschi S, et al 2011 Expressive and

Deployable Access Control in Open Web Service Applications IEEE
Trans. Services Computing 4(2) 96-109

[17] Srivatsa M, Ivengar A, Mikalsen A, et al 2007 An Access Control

System for Web Service Compositions Proc. of the 2007 IEEE
International Conference on Web Services, IEEE Computer Society

1-8

[18] Bertino E, Cramptou J, Paci F 2006 Access Control and
Authorization constrains for WS-BPEL Proc. of the 2006 IEEE

International Conference on Web Services IEEE Computer Society

275-84
[19] Satoh F, Tokuda T 2008 Security Policy Composition for Composite

services Proc. of the 2008 IEEE International Conference on Web

Engineering IEEE Computer Society 86-97
[20] Paci F, Mecella M, Ouzzani M, et al 2011 ACCONV - An Access

Control Model for Conversational Web Services ACM Trans. Web

5(3) article 13
[21] Agarwal S, Sprick B 2004 Access control for Semantic Web Services

Proc. of the 2008 IEEE International Conference on Web Services

IEEE Computer Society 770-3
[22] Bayer G, Sengupta D, Wang T, et al PrplAc: Attribute-based Access

Control in PRPL for Fine Grained Information Sharing using

Semantic Web Technical Report,
http://senguptas.org/Documents/cs343-PrplAc.pdf

[23] Chowdhury M, Noll J 2007 Access Control and Privacy
Enhancement through Role-based Identity Management

Telektronikk (Norwegian Telecommunications Journal published by

Telenor AS.) 103(3/4) 161-70
[24] Priebe T, Dobmeier W, Schläger C, et al 2007 Supporting Attribute-

based Access Control in Authorization and Authentication

Infrastructures with Ontologies Journal of Software 2(1) 27-38

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 438-444 Hu Luokai, Liang Chao, Lu Ying, Zeng Yan

444

Authors

Hu Luokai, born in October, 1981, Wuhan P.R. China.

Current position, grades: postdoctor of Lenovo Mobile Communication Technology Co. Ltd. Associate Professor of Hubei University of
Education.
University studies: PhD from Wuhan University, 2011, in China.
Scientific interest: semantic computing, mobile computing.
Publications: more than 20 papers.

Experience: 5 years of experience in semantic Web, software engineering and mobile computing, 3 scientific research projects.

Chao Liang, born in June, 1972, Hunan P.R. China.

Current position, grades: senior engineer of Lenovo Mobile Communication Technology Co. Ltd.
University studies: PhD from Chinese Academy of Sciences Institute of Computing Technology, 1999, in China.
Scientific interest: mobile computing and communication technology.
Publications: more than 8 papers.
Experience: 15 years of experience in mobile computing and communication technology, 20 scientific research projects.

Ying Lu, born in March, 1994, Wuhan P.R. China.

Current position, grades: undergraduate students of Hubei University of Education.
University studies: undergraduate students from Hubei University of Education, 2016, in China.
Scientific interest: semantic computing.
Publications: 1 paper.
Experience: participation in 1 scientific research project.

Yan Zeng, born in March, 1993, Wuhan P.R. China.

Current position, grades: undergraduate students of Hubei University of Education.
University studies: undergraduate students from Hubei University of Education, 2016, in China.
Scientific interest: semantic computing.
Publications: 1 paper.
Experience: participation in 1 scientific research project.

