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Abstract 

Two models have been proposed in the literature to describe anthrax progression - the first is referred to as Compartment-B model, 

which has 22 states, and the other is called Incubation–Prodromal–Fulminant (IPF) model, which has 9 states. How do these two 

models differ from each other in terms of the indicators considered important by policy or decision makers? Does one always 

outperform the other based on key performance measures? This paper describes our experience of aligning these two models in the 

context of anthrax attack. We first develop two simulation models using system dynamics to integrate the key indicators of 

emergency response, such as treatment rate, detection time, and treatment capacity. We then propose the process of model alignment 

and examine a large number of numerical examples to see whether the number of deaths, the stabilization time, and the demand for 

medicine produced by the two models will be reasonably equivalent. This study indicates that it is important for policy makers to 

understand the differences and similarities between the two models before making decisions. Furthermore, this research provides 

insights for scholars that rely on simulation tools for investigating bioterrorism attacks and for policy/decision makers that use these 
tools.  
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1 Introduction 

 
Recently, the world has grown increasingly concerned 

about the threats posed by bio-terrorists. In various 

bioterrorism attacks, anthrax is often chosen for use [1], 

and was selected by former Soviet Union and the USA as 

a core microbe for weaponisation [2]. When a large-scale 

bioterrorist attack (such as anthrax) happens, it is 

essential to know the diffusion characteristics in order to 

improve the ability to handle it [3]. Gregory [4] 

developed a compartment model that has 21 

compartments. Chen [5] established a simple Incubation–

Prodromal–Fulminant (IPF) model, which has only 9 

states. The simple IPF model is a simpler and well-

understood model, while the compartment model is 

complex one, and is difficult to apply in the actual cases. 

As a result, whether the IPF model can describe the 

anthrax diffusion rule and whether it can replace the 

compartment model in coping with an anthrax attack is a 

research problem and has not been addressed in the 

literature. 

Model alignment [6-7], also referred to as 

“docking”, is the comparison of two computational 

models to see if they can produce equivalent results. 

System dynamics (SD) is an analytical modelling 

approach [8-10], and it deals with the broad behaviour of 

the system and how it influences its own evolution into 

the future. We modify the compartment model to include 

22 compartments, which are referred to as the 

“compartment-B model” (B), and we rework the IPF 

model as “simple IPF model” (IPF). In this paper, our 

purpose is to demonstrate how to examine the general 

equivalence between the compartment model and the 

simple IPF model based on simulated anthrax attacks, 

and obtain implications from aligning these two models.  

The remainder of this paper is organized as follows. 

Background information about the two models is given in 

Section 2. The comparison of the two modes and the 

results are given in Section 3. Finally, conclusions and 

future research are summarized in Section 4. 

 

2 The Compartment-B and Simple IPF Models based 

on System Dynamics  

 

2.1 THE COMPARTMENT-B MODEL BASED ON 

SYSTEM DYNAMICS 

 

When an anthrax attack occurs, the population in that 

area is divided into mutually exclusive and collectively 

exhaustive compartments, and there are three disease 

stages: incubation, prodromal, and fulminant. In the 

incubation stage, an individual is infected with anthrax 

but is asymptomatic. The prodromal stage is when the 

disease is symptomatic with flu like syndrome. The 

fulminant stage is when the disease is severely 

symptomatic and is characterized by respiratory distress 

and followed by death within 24 to 48 hours. There are 

four categories of awareness and treatment: unaware of 
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exposure, aware of exposure but not receiving 

prophylaxis or treatment, in prophylaxis, and in 

treatment. According to the three stages and four 

categories, any individual can fall into one of the 22 

compartments (or states). Note that the first 21 states are 

established by the study of [4] and the last state – the 22nd 

state (death) is added in this paper. Individuals move 

between compartments according to a set of transition 

rates. We assume that Ritoj (i, j∈(1, 2, 3, 22)) is the 

transition rate from compartment i to j, the value of 

which can be shown in Table 1 [8-9]. In addition, the rate 

of entry into prophylaxis is assumed to be 
1 , and the 

rate into treatment is assumed as 
1 . 

 
TABLE 1 All of the transition rates in the compartment model 

Rate Value Rate Value Rate Value 

R1to4 0.014 R8to10 0.022 R16to17 0.00005 

R2to5 0.014 R9to11 0.022 R6to22 1 

R3to6 0.021 R13to14 0.024 R10to22 0.968 
R19to20 0.021 R7to17 0.002 R11to22 0.968 

R1to2 0.012 R8to17 0.0004 R12to22 0.968 
R4to5 0.012 R9to17 0.0003 R14to22 0.968 

R7to8 0.012 R13to17 0.00005 R15to22 0.968 

R2to3 0.028 R14to17 0.00005 R16to22 0.968 
R5to6 0.022 R15to17 0.00005   

According to the anthrax progression rule, the 

simulation model can be shown below:  
22 22
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In the above equations, Xi(t) is the number of people 

in stage i at time t. DP1 (t) are denoted as the demand of 

medicine during prophylaxis, and DT1 (t) are during 

treatment. DPi, DPp, and DPf represent a person’s length 

of treatment in incubation, prodromal, and fulminant 

stages, respectively, DPP is the daily amount of medicine 

needed for treating one person during the prophylaxis 

period, and DTT are during the treatment period. 

 

2.2 THE SIMPLE IPF MODEL BASED ON SYSTEM 

DYNAMICS 

 

According to [4], the total population exposed to anthrax 

spores is divided into nine states, which are described as 

follows: E (exposed but not yet infected), I (incubation), 

P (prodromal), F (fulminant), IT (incubation with 

treatment), PT (prodromal with treatment), FT (fulminant 

with treatment), R (population that recover), and D 

(population that die). We can calculate the transition rate 

from the incubation to prodromal stage (Tip), from 

prodromal to fulminant stage (Tpf), and from fulminant to 

death stage (Tpd), and these are 0.012, 0.028, and 0.083[9-

10]. The transition rate from the incubation, prodromal and 

fulminant stages to the recovery stage, named as Tir, Tpr, 

and Tfr, respectively, is set equal to zero [11]. Based on the 

results published in [10], the recover rate from incubation 

(Titr), prodromal (Tptr), and fulminant stage (Tftr) are 1, 

0.14, and 0.032. In addition, we define the transmit rate 

from the prophylaxis, prodromal and fulminant stages to 

the treatment stage are 
2 , 

2 p  and 
2 f , respectively, 

and the amount of medicine needed for prophylaxis and 

treatment are DP2 (t) and DT2 (t). Hence, we can establish 

the equations as follows: 
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2.3 THE PROCESS OF MODEL ALIGNMENT 

 

We align the compartment-B model with the simple IPF 

model and compare the outputs from both models. To 

make our comparisons manageable and meaningful, we 

choose some example values for the following 

parameters: detection time (td) = 0, 48, 120, 240, 

treatment capacity (V) = 5000, 10000, 20000,
1 ,

1  = 0, 

0.4, 0.8, 1,
2 ,

2 p , 
2 f = 0, 0.4, 0.8, 1, S1 = I = 100000, 

200000, 300000, 500000. In addition, Dpi = DPp = Dpf = 

60, DPP = 0.2, DTT = 0.8[11]. Thus, we can have 192 

cases (4 x 3 x 4 x 4) of numerical problems. We align the 

components of the two models in the 192 numerical 

cases, and the model is implemented by a system thinking 

software, iThink 9.0. We define the following parameter, 

w, as the percentage of difference between the two 

models 

( / )*100%w IPF B B  , (3) 

where IPF and B represents the output results, such as the 

number of death and the medical demand for treatment. 

According to Sterman [7] and Oliva & Sterman [12], the 

output results in the two models are the cumulative value 

over the entire time series.  

 

3 Simulation results  

 

In this section, the final outputs of the simulated attack, 

including death rate, stabilization time, and medical 

demand over time are presented and discussed. 
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3.1 DEATH RATE AGAINST TIME 

 

3.1.1 The impact of the treatment rate 

 

Table 2 shows the average number of deaths in the 

compartment-B and simple IPF models in a simulation 

scenario when the number of exposed people and the 

treatment rate change. In Table 2, E represents the 

exposed people, D is the average number of death, R is 

the treatment rate, B represents the compartment-B 

model, and IPF refers to the simple IPF model. Figure 

1(a) shows the number of deaths against time with full 

prophylaxis and treatment, from which we see that about 

95,342 people suggested by the compartment-B model 

would die, whereas only 834 people in the simple IPF 

model would die. This large difference is due to a time 

lag between the unaware exposed state and the aware 

exposed state, which delays many exposed people’s 

timely treatment. If we suppose that all of the unaware 

exposed people search for treatment, we can arrive at a 

new plot shown in Figure 1(b), from which we see that 

the number of deaths suggested by both models is very 

close.  

Table 2 reports the quantities of deaths suggested by 

both models as well as the percentages of difference 

when E = 100,000; 200,000; 300,000; 500,000, and R = 

0, 0.4, 0.8, 1, respectively. As indicated by Table 2, 

almost all of the exposed people will die when the 

treatment rate is 0. When the treatment rate is 0.4, about 

8.36% of people in the B model will die, whereas 7.28% 

of those in the IPF model will do. If the treatment rate is 

0.8, then 6.86 % and 1.85% of exposed people in the B 

and IPF model respectively will die. Interestingly, at the 

full treatment rate (R = 1), 6.55% of people in the B 

model will die, but only 0.16% of those in the IPF model 

will die. Consequently, we conclude that the difference 

between the two models in terms of number of deaths 

increases with the treatment rate; especially when the 

treatment rate increase to 0.8 or even 1, the two models 

differ significantly.  

  
FIGURE 1(a) The Number of Deaths against Time with Full 

Prophylaxis and Treatment 
FIGURE 1(b) The Number of Deaths against Time with Full Prophylaxis 

and Treatment When all of the Unaware Exposed People Search for 

Treatment 
 

TABLE 2 Average number of death under different treatment rates 

 
100000 200000 300000 500000 

B IPF w B IPF w B IPF w B IPF w 

0 99942 99951 0.01% 199884 199902 0.009% 299827 299853 0.008% 499712 499756 0.009% 

0.4 7843 6468 17.53% 16277 13882 14.71% 25304 22190 12.31% 45022 41600 7.6% 
0.8 6674 1541 76.91% 13564 3444 76.41% 20660 5688 72.47% 35426 11167 68.47% 

1 6550 149 97.93% 13101 317 97.58% 19652 486 97.53% 32753 823 97.49% 

3.1.2 The impact of the detection time 

 

We change the detection time to examine its impact on 

the death rate. As indicated in Table 3, on average 

25.54%, 27.78%, 30.83%, 37.56% of the population 

suggested by the B model, and 25.67%, 26.36%, 27.36%, 

29.86% of the same population in the IPF model will die 

when the anthrax is detected at 0, 12, 24 and 48 hours, 

respectively. In addition, we observe that the quantities of 

deaths produced by the two models are very similar if the 

attack is detected within 12 hours.  

 

TABLE 3 Average number of deaths under different detection times 

 
100000 200000 300000 500000 

B IPF w B IPF w B IPF w B IPF w 

0 25298 25354 0.22% 50894 51097 0.4% 76752 77178 0.56% 129135 130196 0.83% 
12 27590 26054 5.57% 55498 52473 5.45% 83440 79229 5.05% 140078 133665 4.58% 

24 30671 27085 11.69% 61520 54478 11.45% 92550 82163 11.22% 155114 138568 10.67% 
48 37449 29616 20.92% 75004 59496 20.68% 112701 89646 20.46% 188587 150917 19.97% 

Under the same assumption, we examine the impact 

of treatment capacity on the average number of deaths, 

and the relevant results are reported in Table 4. From this 

table we can see that the value of w are very close, which 

suggests that increasing treatment capacity is not more 

effective and cost-effective at the margin to reduce the 

death rate.  
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TABLE 4 Average number of death under different treatment capacity 

 
100000 200000 300000 500000 

B IPF w B IPF w B IPF w B IPF w 

5000 30326 27156 10.45% 60987 54832 10.09% 91960 83041 9.70% 154815 141170 8.81% 

10000 30327 27007 10.95% 60656 54312 10.46% 91255 81860 10.30% 152941 137730 9.95% 
20000 30194 26918 10.85% 60477 54015 10.69% 90867 81260 10.57% 151931 136110 10.41% 

3.2 STABILIZATION TIME 

 

We define stabilization time as the number of days 

elapsed when at least 99% of infected population either 

die or recover, and we obtain these under the different 

treatment rate, detection time, and treatment capacity, 

which are summarized in Table 5. We can see that the 

values of w are very large, implying that the two models 

are very different in terms of stabilization time when the 

treatment rate, the detection time and treatment capacity 

are considered simultaneously. In addition, Table 5 

suggests that the stabilization time has a relationship with 

the treatment rate and the detection time; specifically, if 

the treatment rate is lower, the stabilization time will be 

longer. Additionally, if the attack can be detected earlier, 

the stabilization time will be shorter. However, we cannot 

find the relationship between the stabilization time and 

the treatment capacity.  
 

TABLE 5 Stabilization time under different conditions 

 
100000 200000 300000 500000 

B IPF w B IPF w B IPF w B IPF w 

0 384 360 6.25% 384 360 6.25% 384 348 9.38% 384 378 1.56% 

0.4 240 118 50.83% 244 122 50% 268 130 51.49% 228 160 29.82% 
0.8 242 108 55.37% 240 206 14.17% 252 130 48.51% 242 160 33.88% 

1 210 94 55.24% 221 120 45.70% 234 124 47.01% 234 140 40.17% 
0 212 152 28.30% 210 162 22.86% 228 164 28.07% 176 162 7.95% 

12 254 162 36.22% 265 260 1.89% 274 174 36.50% 272 210 22.79% 

24 286 174 39.16% 288 184 36.11% 292 188 35.62% 318 212 33.33% 
48 324 192 40.74% 326 202 38.08% 344 206 40.12% 322 244 24.22% 

5000 272 171 37.13% 271 255 5.90% 282 197 30.14% 273 225 17.58% 
10000 265 170 35.85% 274 178 35.04% 287 179 37.63% 263 206 21.67% 

20000 270 170 37.04% 271 172 36.53% 285 174 38.95% 281 191 32.03% 

3.3 MEDICAL DEMAND AGAINST TIME  

 

When the parameters such as the detection time, 

treatment rate and exposed people are changed, different 

average medical demands can be obtained and 

summarized in Table 6. It can be seen that when the 

treatment rate is increased to 1, the medicine for 

treatment in the IPF model reduces almost to 0. Since 

there are lots of people who aren’t exposed but seek 

prophylaxis, the medicine demand for prophylaxis in the 

B model is higher than that in the IPF model. In addition, 

the medical demand for treatment in the B model is 

higher than that in its counterpart. All in all, the average 

quantities of medicine are totally different in the two 

models in all simulation cases. 

 
TABLE 6 Medical Demand under Different Conditions 

# of Exposed People Treatment Rate 
Compartment-B model Simple IPF model Comparison 

Prophylaxis Treatment Prophylaxis Treatment w 

100000 0.4 15153881.08 100423.6 280128.8 72214.05 28.09% 
100000 0.8 30309525.3 186815 630691.9 65316.81 65.04% 

100000 1 37885494.53 220989.8 840000 0 100% 

200000 0.4 15181983.34 225798 542529.51 173769.2 23.04% 
200000 0.8 30384672.22 392978 1245563.65 157562.7 59.91% 

200000 1 37985901.92 441979.5 1680000 0 100% 
300000 0.4 15202172.03 372919.62 789662 300201 19.50% 

300000 0.8 3086448.41 617196.49 1845563 274992 55.44% 

300000 1 38086448.41 662969 2520000 0 100% 
500000 0.4 15219257.96 720701.3 1245768.48 612308.99 15.04% 

500000 0.8 30587078.94 1115901.04 3004362.63 579089.00 48.11% 

500000 1 38287644.53 1104948.81 4200000 0 100% 

4 Conclusions 

 

In this paper, we develop a methodology to align two 

models of simulating disease progression after a 

biological attack. From this alignment study, we have 

shown that the average number of deaths and the 

stabilization time in the simple IPF model are comparable 

to the compartment-B model to some extent, on the 

condition that all of the unaware exposed people in the 

compartment-B model know they are exposed and seek 

prophylaxis and treatment. But if the detection lag is long 

and the treatment rate is large, the average number of 

death people and the stabilization time of the two models 

will be different. As for the medical demand, the two 
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models have a different performance because of their 

different model structures. In addition, the simulation 

results indicate that the longer detection time delay will 

result in more deaths, and increasing the treatment 

capacity is not more effective and cost-effective at the 

margin for the community. 

It is necessary to point out some limitations of this 

research. Firstly, we can assume that different age group 

people will use different dose medicine in the two 

models. Secondly, we can consider that the transition rate 

from the incubation stage to prodromal stage in the two 

models followed a lognormal distribution with a mean of 

10.95 days and dispersion factor e-0.713 [13]. Thirdly, we 

can validate the two models in the actual case of anthrax 

attack in order to develop an efficient response and 

control strategies. All these areas represent our future 

research directions.  
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