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Abstract 

Recently, the local fractional calculus theory was applied to process the non-differentiable phenomena in fractal domain. The main 

object of this paper is to present the basic set of equations in mesoscale meteorological model on the Cantor sets involving local 

fractional derivative operators and the corresponding cantor-type spherical coordinate equations. It is shown that these equations are 
efficient and accurate for describing some of atmospheric motion. 
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1 Introduction  

 

Recently, the local fractional calculus theory was applied 

to process the non-differentiable phenomena in fractal 

domain (see [6–11] and the references cited therein). 

There are some local fractional models, such as the local 

fractional Fokker-Planck equation [6], the local fractional 

stress-strain relations [7], the local fractional heat 

conduction equation [11], wave equations on the Cantor 

sets [12], and the local fractional Laplace equation [20]. 

In the different process of atmospheric motion, many 

problems of dynamics had already been described by a 

number of classic basic equations, the description of 

these equations establish on the preferable smoothness. 

However, in the different process of atmospheric motion, 

it exists both large scale turbulence and small scale 

turbulence. Therefore, the problems of dynamics is no 

longer can be describe by classic basic equation due to 

the turbulent flows may be of fractal character. 

Meanwhile, it has relevance between the fractional order 

calculus and fractal. Thus, it can use the operator with 

fractional order of gradient, divergence etc. To generalize 

the atmospheric dynamic equation in the corresponding 

fractal form. 

The main aim of this paper is present in the 

mathematical structure of the basic set of equations in 

mesoscale meteorological model in local fractional 

derivative and to propose their forms in the Cantor-type 

spherical coordination. 

 

 

2 Mathematic Tools 

 

2.1 IN THE CARTESIAN COORDINATE SYSTEM 

 

In this part, we will introduce the local fractional 

derivative. It is need to bring in local fractional 

derivative, which define as: 
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where in, 
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For a function of three variables, the vector form can 

be written in the form Ref. [2]  
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Let         
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,,,,,,,, ezyxuezyxuezyxuzyxu   a 

local fraction vector field and  zyx ,,  is a local 

fractional scalar field, the computing rules of Hamilton 

operator are valid as follows Ref. [2]. 

(1) The local fractional gradient operator defined as [2]: 
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The local fractional divergence and curl of local 

fractional vector field are written in the form [2]: 
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2.2 IN THE SPHERICAL COORDINATE SYSTEM  

 

The spherical coordinate in the three-dimensional space is 

the form  r,, , in the classic differential, the gradient 

is: 
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It can be generalized to the fractional calculus, the 

gradient of this definition is: 























 r
k

r
j

r
i
















1

cos

1
. (8) 

Similarly, it can get the divergence of this definition, 

like: 
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For above all, the following equations are valid: 
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    vuvuuv   . (11) 

2.3 THE INTERAL OF FRACTIONAL ORDER  

 

(1) The local fractional line integral of the function 

 
ppp

zyxu ,  in the local fraction vector form. 
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Along a fractal line l  is written as [2]: 
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where for p = 1,2,…,N and N elements of line 

p
I , it is 

required that all 0 

p
I  as N . 

(2) The local fractional surface integral of the given 

function across a surface  s  is defined as [2]: 

         

pp

N

p

ppp
N

ppp
snzyxudszyxus   




1

,,lim,, , (14) 

where for p = 1, 2… N and N elements of area 
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with a unit normal local fractional vector 
p
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(3) The local fractional volume integral of the given 

function in a fractal region  rv  is given by [2]: 
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where for p = 1,2,…,N and N elements of volume  r
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Let us consider a local fractional vector field 


332211
eueueuu  , the following result hold [27]. 

(4) Divergence Theorem of local fractional field states 

that:  
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3 Peculiar Properties of Fractional Operator 

 

3.1 THE PROPERTY OF MEMORY  

 

The integral of fractional order has a character of 

memorability. The role of memory functions for 

compliance retardation and modules relaxation in 

viscoelastic materials is examined. The complexity of 

viscoelastic materials that occurs in the linear domain 

was explained by the influence of modelling these effects 

using the fractional calculus, such as Heat equation with 

memory is established, under some general and 

reasonable conditions in Ref. [17]. 

At this point, we can use a brief description to explain 

the memorability of fractional order, take Newtonian 

equation as an example, for the particle of unit mass, 

),,( tvrF
dt

dV
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In this expression, r as displacement vector, v as 

speed, t as time, transform the expression (14), it can get 

a new expression like below: 
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t
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0

),,()(  . (18) 

In the expression, the )( tk  is given kernel 

function with memory. The characteristic of non-locality 

in (17) can be obtained from locality. Where in the 

retardation effects are taken into account, this kind of 

equations can open new possibilities of understanding the 

classical mechanics. 

 

3.2 THE PROPERTY OF GENERALIZED FLUX  

 

The traditional diffusion motions use the second order 

convection - The classical case of Fick’s second law 

equation - to describe, like below: 
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In the expression,  txC ,  is the particle concentration 

in the space x at the time t; v is convection velocity; D is 

diffusion coefficient. 

The characteristic of Fick’s law is local diffusion, 

Flux J which in the space of a point is proportional to the 

concentration gradient in a small area, however, The 

Fick’s law don’t consider the affection from particle 

migration by other particle, also, without considering the 

impact from history.  

However, in the complicated system, the particle 

movement in different time and the particle movement in 

different spatial point have influence each other, 

therefore, when it study the particle movement at one 

time in one spatial point, it is need to consider the 

influence of particle movement at other time in other 

spatial point. 

Thus, it is need to consider the relevancy from 

spatially and temporally respectively, but do not consider 

the spatially and temporally coupling effect of spatially 

and temporally, then use the limitation processing method 

to process the traditional second-order diffusion equation 

in spatially and temporally, and get the fractional order 

fluxional anomalous diffusion equation. 

In case of one-dimensional, the flux expression of 

limited particle can be modified to the equality of the 

relation between particle flux and particle concentration 

[4]. 
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In this expression, ),;,( txxk   is the kernel function 

with the property of diffusion, due to it is not need to 

consider the coupling interaction of spatial and temporal, 

the kernel function with the property of diffusion can be 

express as: 
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Without loss of generality, we assume that the process 

of diffusion in space is uniform on statistics and 

stationary random process on time, so the spatial 

diffusion kernel function  ', xxk
x

 is a function of 

 'xx  , and the diffusion kernel function  ,tk
t

 of time 

is a function of  t . 

If we assume  ', xxk
x

,  ,tk
t

 with the property of 

negative power law, 

 
    1

'

1
',







 xx

D
xxk

x
, (22) 

 
    








1

11
,

t
tk

x
. (23) 

In this expression, D ,  ,   are constant,   , 

   are gamma function. Substituting the expression 

(19) and (20) to expression (18), then derivative the t and 

x of both side of equality sign in expression (18), it can 

get the expression like below: 
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Further, bring in the definition of the Riemann-

Liouville fractional derivative, the result is like below: 
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Then, we can get the diffusion equation with 

fractional order, 
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Comparing to the classical diffusion equation, the 

diffusion equation of fractional order has more 

implications: the property of generalized flux, it can 

describe the physical phenomenon more accurate. 

In turn, we will study the basic set of equation of 

atmospheric dynamic with fractional order, although 

these equations already have no application in practice, 

however, we can apply one of which when simulation 

and gradually introduce, we may get some useful results. 
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4 The Cantor-Type of the Basic Set of Equation in 

Mesoscale Meteorological Model 

 

4.1 COVERSATION OF MASS WITH FRACTIONAL 

ORDER  

 

In this section, we start with conversation of mass on 

Cantor Sets with fractional order. The mass of fractal 

fluid in  v  is defined through [2]. 
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Using Divergence Theorem of local fractional field, 
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This is called continuity equation with fractional order 

on fractal materials, which also have the formulation (31): 
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Where in the fractal material derivative of the fluid 

density   is expressed as: 
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If the fractal fluid is incompressible, we also get: 
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The corresponding form of the equation of 

conservation of mass in spherical coordination as below, 
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Can simplify as, 
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4.1.1 Remark 

 

Similarly, we can get the expression like below: 

(1) Conservation of heat with fractional order. 
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In this expression, 


S  represent the source and sink of 

heat. 

(2) Conservation of motion with fractional order. 

  VgkvVV
t

V





2

1










. (35) 

(3) Conservation equation of energy with fractional 

order. 

Similarly, fractional order energy conservation 

equation in fractal media can be express like below: 
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In the expression (36) above, k is the coefficient of 

thermal conductivity of fluid. 
n

s  is the thermal source in 

fluid.   called dissipation coefficient is the part of 

which thermal energy transformed from mechanical 

energy. uPdiv  is the force to work on the fluid. 

 

4.2 VORTICITY AND VORTICITY AND EQUATION 

WITH FRACTIONAL ORDER  

 

Vorticity, that is to describe the feature of tiny clumps in 

air rotative-field. Due to the Earth's rotation, we can often 

see that the vortex of motion often occur in the process of 

movement, such as cyclone, anticyclone, typhoon etc. 

In non-uniform three dimensional flow field, air tiny 

clumps at the same time would rotate around the X, Y, Z 

axis, that is, there are three vorticity components:  ,, , 
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the sum of these three vector known as the speed of 

vorticity in three-dimensional space, We represent it as 

rotation. 

Based on above, we can get the form of speed 

vorticity with fractional order: 































 

32

1321

e
y

u

x

u
e

x

w

z

u

e
z

u

y

w
eeeVrot

























































. (37) 

Take a further step; we can get the vortex equation 

with fractional order by using vector operation, which 

describe the vortex motion. 

The vector form of equations of motion with 

fractional order like below: 

FVpg
dt

Vd





2
1 






. (38) 

According to 

V
V
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V
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 2
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





. (39) 

Therefore, equation of motion (39) would rewrite as: 
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
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
 . (40) 

Do the rotation operation to (40), we can get: 
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And using (42), (43), 

       ABBAABBA   , (42) 

       
       VVwVV

VVwVV
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aaaa
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


. (43) 

And (44), 

    022  V
a

  . (44) 

Therefore, we get the vorticity equation with 

fractional order as below: 

    FBVV
dt

d
aa

a  








. (45) 

5 Conclusions 

 

In the present work, we present some basic set of 

equations in mesoscale meteorological model on the 

Cantor sets derived from local fractional vector calculus. 

These could be applied to describe atmospherical flow. 

The later used fractional calculus is continuous and 

differential quantities as classical result; what’s more, the 

latter is local fractional continuous and no differential 

quantities. The classical result is obtained in case of 

fractal space-time dimension, which is equal to (1). 
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