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Abstract 

This paper investigates the dynamics and control aspects of the linear motion of a pendulum-driven spherical rolling robot. The dynamic 

model is deduced for the linear motion of a spherical robot by using the Euler-Lagrange formulation. By appropriate definitions the 

equations of motion for the robotic system are transformed into the state space form. A novel decoupled sliding mode control approach 

is proposed to achieve set-point regulation of the linear motion. This approach consists of the construction of a cascade sliding mode 

controller and the design of a nonlinear reaching law by using a switching component that dynamically adapts to the variations of the 

controlled system. The asymptotic stability of the robotic system is verified through Lyapunov analysis, and the validity of the proposed 
approach is illustrated through numerical simulations. 
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1 Introduction 

 

A spherical robot is a robotic device without wheels or legs, 

which has a single spherical form that scrolls by itself to 

conduct missions. The spherical shape of this class of mo-

bile robots offers several advantages over other forms of 

surface-based locomotion such as wheels, tracks or legs. 

The sphere is a strong shape providing a high level of robus-

tness with no major weakness points on its surface, whereas 

wheels, tracks or legs can be damaged, potentially disabling 

the mobility of the robot. The outer shell can also be resilient 

and serve as a protective barrier between the outside envi-

ronment and the inside equipments. A spherical robot is by 

nature non-invertible further limiting the risk of becoming 

disabled, while most other mobile robot designs are vul-

nerable to tipping over or becoming stuck on the terrain 

where their means of locomotion lose contact with the 

ground. These advantages indicate that a spherical robot is 

appropriate for many different applications such as sur-

veillance, reconnaissance, hazardous environment assess-

ment, search and rescue, as well as planetary exploration. 

Spherical rolling robots can be categorized into different 

types according to their internal driving mechanisms [1-9]. 

Compared with other types of spherical rolling robots [1-6], 

a pendulum-driven spherical rolling robot [7-9] has a simp-

ler structure further making it easier to be manoeuvred. The 

schematic diagram of a pendulum-driven spherical rolling 

robot with dual inputs is illustrated in Figure 1. Linear mo-

tion is a basic form of locomotion of pendulum-driven sphe-

rical rolling robots, and it is realized by moving a motor-

controlled pendulum forwards or backwards. In this paper, 

a new decoupled sliding mode control approach based on a 

novel exponential reaching law is presented for stable cont-

rol of the linear motion. In the proposed controller, a double 
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layer structure is used to guarantee the stability of the whole 

system, and the sub-sliding surfaces are utilized to drive the 

tracking errors to zero. 

 

FIGURE 1 Structure of a pendulum-driven spherical robot 

 

2 Dynamic analysis 

 

We start with a simplified planar model, only considering 

no slip linear motion on flat surfaces. Figure 2 illustrates the 

simplified model with a side view of a pendulum-driven 

spherical rolling robot. It represents the spherical shell with 

its centre of mass B, the internal mechanism with its centre 

of mass D, which coincides with that of the spherical shell, 

and the pendulum (composed of a massless link and a coun-

terweight at its end) with its centre of mass E and the axis 

attached at the centre of the sphere. The definition of the 

model parameters is listed in Table 1. 
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FIGURE 2 Simplified model of the linear motion 

TABLE 1 Parameter definition of the planar model 

m1, m2, m3 mass of the spherical shell, the internal mechanism 

and the pendulum, respectively 

r, l radius of the spherical shell and length of the 
pendulum, respectively 

θ,  roll angle of the spherical shell and sway angle of 

the pendulum, respectively 

I1, I2, I3 moment of inertial of the spherical shell, the internal 

mechanism and the pendulum, respectively 

τ torque applied to the pendulum 

We first choose the roll angle of the sphere   and the 

sway angle of the pendulum   as the generalized coor-

dinates of the robotic system, and then we develop the equa-

tions of motion by calculating the Lagrangian L T P   of 

the system, where T  and P  are the kinetic energy and po-

tential energy of the system respectively. 

The kinetic energy and potential energy of the whole 

robotic system are given by 

2 2
1 2 3 3

1 1
cos cos

2 2
T J J m rl P m l       + g , (1) 

where g  denotes the gravitational acceleration; 

2
1 1tJ M r I  , 1 2 3tM m m m   , 2

2 3 2 3J m l I I   . 

It is assumed that the viscous friction operates between 

the sphere and the pendulum. The loss due to the viscous 

friction is written in an energy dissipation function that 

depends on the velocities of the system and the damping 

coefficient   associated with the pendulum-sphere bearing. 

 
21

2
R     . (2) 

Using the Euler-Lagrange Equations [10], the dynamics 

of the linear motion can be expressed as 

     , τ M q q N q q E q ,  (3) 

where  M q  is the inertia matrix,  , N q q  is the 

nonlinear terms, and  E q  is the input transformation 

matrix. 
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Using the control input u τ  and the state vector 

 
T

,  ,  ,     X , we can rewrite Equation (3) as follows 
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where
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, .X X  

Here ijm  denotes the element in the i-th row and j-th 

column of the matrix  M q , and kn  represents the k-th 

component of the vector  , N q q . 

 

3 Controller design 

 

In this section, we investigate the set-point regulation 

scheme of the linear motion of a spherical robot, and a 

decoupled sliding mode controller based on a new 

exponential reaching law is derived to asymptotically 

stabilize the robot around its desired equilibrium. 

Considering the system represented by Equation (4), we 

first divide the whole system into two subsystems as 

       
3 41 2

2 1 1 4 2 2

x xx x
A B

x f b u x f b u

  
 

     
: , : .

X X X X
 

Then we construct the following first layer sliding 

surfaces for the two subsystems 

1 1 1 1 2 2s e e s      , ,  (5) 

where 1  and 2  are positive constants; 1 1
de x   , and 

 d  is the desired value of  . 

We define an intermediate variable z  which represents 

the information from subsystem B , and it is incorporated 

into the sliding surface 1s . Therefore, the second layer 

sliding surface S  is designed as 

   1 1 1 2tanhuS e z e z z s     , (6) 

where 
uz  is the upper bound of  abs z , 0 1uz  ; 

 tanh   is the hyperbolic tangent function defined as 

follows  
2 2

2 2
2tanh

s s

s s

e e
s

e e









. 

Since 
uz  is less than one, z  presents a decaying signal. 

As 2s  decreases, z  decreases too. When 2 0s  , we have 

0z  , 1 0e  , and then 1 0s  , and the control objective 

will be achieved. 

Differentiating Equation (6), we can calculate z  as 

Y

X
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 2 2uz s ,z s  ,  (7) 

where    2

2 2sechu us ,z z s   ,  
2 2

2

2
sec h

s s
s

e e





. 

Differentiating Equation (6) and using Equation (7) yields 

 

   
1 1 1

1 2 1 1 2 4 2 1 1 2

S e z e

x f x f b b u



   

   

    
. (8) 

Then we can obtain the equivalent control as 

 1 2 1 1 2 4 2

1 2 1

eq

x f x f
u

b b

  



  



. (9) 

The control input of the system is assumed to take the 

following form 

eq swu u u  , (10) 

where swu  is the switching control. 

To construct the switching component swu , we propose 

the following exponential reaching law 

 
 sgnS S S

N S


   , (11) 

where   and   are positive constants 

   0 01
p

S
N S e


 


   . 

Here 0  is a positive constant that is less than one, p  is 

a positive integer, and   is also a positive constant. 

The proposed ERL given by Equation (11) is composed 

of a variable rate reaching term [12] and an exponential term. 

Comparing with the conventional exponential reaching law 

[13], we can see from Equation (11) that if S  increases, 

 N S  approaches 0 , and therefore  N S  converges 

to 0  , which is larger than  . This means that  N S  

increases in the reaching phase, and consequently the 

attraction to the sliding surface S  is faster. On the other 

hand, if S  decreases, then  N S  approaches one, and 

 N S  converges to  . This means that, when the 

system state approaches the sliding surface S ,  N S  

gradually decreases to reduce the chattering. Therefore, the 

proposed ERL allows the controller to dynamically adapt to 

the variations of the switching function S  by letting 

 N S  vary between   and 0  . 

Using Equation (8) to Equation (11), we can obtain the 

switching control as 

   

1 2 1

sgn
sw

N S S S
u

b b

 







, (12) 

where  
 

N S
N S




 . 

Substituting Equation (12) into Equation (10), we can 

obtain the following sliding mode control law 

     1 2 1 1 2 4 2

1 2 1

sgnx f x f N S S S
u

b b

   



    



. (13) 

Theorem 1: Supposing that the robotic system 

represented by Equation (4) is controlled by the sliding 

mode controller given by Equation (13). Then the system 

defined by Equation (4) is asymptotically stable. 

Proof: Considering the Lyapunov function candidate 

21

2
V S , then V  can be given by 

  2 2 0V SS N S S S S S           . (14) 

Integrating both sides of Equation (14), we have 

   

   

2

2

0

1
0

2

lim d 0
t

t

V t S V

S S V  


   

   

. (15) 

According to Equation (15), we have S L , 2S L . 

According to Equation (14), we have S L . Consequently, 

by applying Babalat’s lemma we can conclude that the 

sliding surface S  is asymptotically stable, i.e. 0
t
lim S


 . 

Then the system can be guaranteed to be asymptotically 

stable. 

 

4 Simulation study 

 

In this simulation, the following physical parameters of the 

spherical mobile robot [14] and design parameters of the 

sliding mode controller are used. 

1 2 31 2 kg, 1 85 kg, 2 05 kg, 0 15 m,m m m R   . . . .
 

2 2
1 20 12 m, 0 018 kg m 0 0017 kg ml I I    . . , . ,

 

 
12

3 0 0006 kg m 0 03 N m rad sI 


    . , . ,
 

2
1 29 81 m s 0 96 4 0 6uz     . , . , , . ,g

 

03 0 1 10 1 7 8p       , . , , , .
. 

In addition, the initial and desired values of the system 

states are chosen as  0 0 0 0 0
T

x ,  ,  ,   , 

 0 0 0
Tdx ,  ,  ,   . 

The simulation results are depicted in Figure 3 to Figure 

6. As it is theoretically expected, we can find that both the 

roll angle of the sphere and the sway angle of the pendulum 

are asymptotically stabilized to their desired values, and the 

anti-sway control is achieved in a rapid manner after only 

one oscillation. 
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FIGURE 3 Tracking result of the roll angle of the spherical shell FIGURE 4 Tracking result of the sway angle of the pendulum 

   
FIGURE 5 Time evolution of the angular rate of the roll angle FIGURE 6 Time evolution of the angular rate of the sway angle 

 

5 Conclusions 

 

In this paper, we present a variable structure strategy for set-

point regulation of the linear motion of a spherical rolling 

robot. The control development is based on the construction 

of a cascade sliding mode controller and a novel exponential 

reaching law, and the proposed control approach consists of 

designing a nonlinear reaching law by using a switching term 

that dynamically adapts to the variations of the system state. 

The asymptotic stability of the sliding surface of the whole 

system is theoretically proved, and the simulation results 

further verify the effectiveness of the proposed controller. 
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