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Abstract 

To ensure the correctness of embedded system, automation of test case generation is necessary in industrial. This paper present a 

technique for specifying coverage criteria and a method for generating test suites for embedded systems whose behaviours is depend 

on its interactive environment. The embedded system under test can be described as extended finite state machines (EFSM) and the 

coverage criteria can be specified as monitor automata with parameters, which monitor and accept traces that cover a given test criterion 

of an EFSM. The flexibility of the technique is demonstrated by specifying a number of well-known coverage criteria based on control- 

and data-flow information using observer automata with parameters. We also develop a method for generating test cases from coverage 

criteria specified as observers. It is based on transforming a given observer automata into a bitvector analysis problem that can be 
efficiently implemented as an extension to an existing state-space exploration such as, e.g. SPIN or Uppaal. 

Keywords: EFSM (Extended Finite State Machine), embedded system, test case generation, model-based testing 

 

1 Introduction  

 

A Model based test case generation has in recent years 

been developed as a prominent technique in testing of 

reactive software systems. A model serves both the 

purpose of specifying how the system should respond to 

inputs from its environment, and of guiding the selection 

of test cases, e.g., using suitable coverage criteria. Typical 

notations for such models are state machines in some form, 

often extended with data variables. Test cases can be 

selected as individual “executions” of the model, checking 

that the outputs from the system under test (SUT) conform 

to those specified by the mode. 

In this paper, we present a technique for specifying 

coverage criteria in a simple and flexible manner, and a 

method for generating test cases according to such 

coverage criteria. The technique fits well as an extension 

of a state space exploration tool, such as, e.g., SPIN [2] or 

Uppaal [4], which performs enumerative or symbolic 

state-space exploration. It can also be used to generate 

monitors that measure the coverage of a specific test suite 

by monitoring the test execution. 

Most related work on test case generation from models 

of reactive systems employs some rather specific selection 

of coverage criteria. Explicitly given test purposes have 

been considered, both enumerative [5-7] and symbolic [9]. 

Test purposes in these works can in some sense be 

regarded as coverage observers, but are not used to specify 

more generic coverage criteria and do not make us of 

parameterization, as in our work. 

Some approaches present more flexible techniques for 

specifying a variety of coverage criteria. Hong et al [11-14] 

describe how flow-based coverage criteria can be 

expressed in temporal logic. A particular coverage item is 
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expressed in CTL, and a model checker generates a trace, 

which covers the coverage item. In our approach, we use 

monitors instead of temporal logic, which avoids some of 

the limitations of temporal logic [15]. Our technique using 

monitors whit parameters can let one pass of a state-space 

exploration tool generate a test suite that covers a large set 

of coverage items, whereas the above approaches invoke a 

run of a model checker for each coverage item. 

The remainder of the paper is structured as follows. We 

present EFSM in the next section, and monitors in Section 

3. In Section 4-5, we show how our definitions of coverage 

can be used for test case generation, and report on a partial 

implementation of the technique. Section 6 concludes the 

paper 

 

2 Extended finite state machine 

 

In this section, it is assumed that a System Under Test 

(SUT) interacts with its environment through events. 

Whenever the SUT receives an input event, it responds by 

performing some local computation and emitting an output 

event. To a given SUT, we associate a set A of event types, 

each with a fixed arity. An event is a term of form a(d1, . . 

. , dk) where a is an event type of arity k and d1, . . . , dk 

are the parameters of the event. The set A of event types is 

partitioned into input event types and output event types. A 

trace is a finite sequence 

1 1 1 1 2 2 2 2( ) / ( ) ( ) / ( ) ... ( ) / ( )n n n na d b d a d b d a d b d    

of input/output event pairs. Intuitively, the trace represents 

a behaviour where the SUT, starting from its initial state, 

receives the input event 
1 1( )a d  and responds with the 
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output event 
1 1( )b d  . Thereafter, it receives the input event 

2 2( )a d  and so on. An input sequence is a finite sequence 

of input events.  

Assume a set AI of input event types, and a set AO of 

output event types. An Extended Finite State Machine 

(EFSM) over (AI,AO) is a tuple < L,L0, v ,E > where: 

1) L is a finite set of locations (control states). 

2) l0L is the initial location. 

3) v  is a finite set of state variables. 

4) E is a finite set of edges, each of which is of form: 

( ), : exp / (exp ): a w g u r b re l l
   , 

where e is the name of the edge, l is the source location, 

and l0 is the target location. ( )a w  is an input event type, 

and w  is a tuple of formal parameters of event a, g is a 

guard, : expu r  is an assignment of new values to a 

subset u v  of the state variables, and (exp )b r  is an 

expression which evaluates to an output event. 

Intuitively, an edge of the above form denotes that 

whenever the EFSM is in location l and receives an event 

of form ( )a w , then, provided that the guard g is satisfied, 

it can perform a computation step in which it updates its 

state variables by : expu r , emits the output event 

(exp )b r  and moves to location l  . We require the EFSM 

to be deterministic, i.e., that for any two edges with the 

same source location l and parameterized input event 

( )a w , the corresponding guards are inconsistent.  

A system state is a tuple < ,l  > where l is a location, 

and is a mapping from v to values. We can extend   to 

a partial mapping from expressions over v in the standard 

way. The initial system state is the tuple <
0 0,l  >, where

0l  is the initial location, and 
0  gives a default value to 

each state variable. A computation step is of the form 
( )/ ( ), ,a d b dl l 
        consist of system state

,l    and ,l    , an input event ( )a d   and an 

output event ( )b d .Such that there is an edge of the (above) 

form ( ), : exp / (exp )a w g u r b rl l
   , for which ( [ / ])g d w  is 

true, [ (exp [ / ])]u r d w     and (exp [ / ])d r d w  . 

A run of the EFSM over a trace 

1 1 1 1( ) / ( ) ... ( ) / ( )n n n na d b d a d b d  is a sequence of 

computation steps: 

1 1 1 1

2 2 2 2

( )/ ( )

0 0 1 1

( )/ ( )

( )/ ( )

, ,

, ,n n n n

a d b d

a d b d

a d b d

n n

l l

l

 









   



 

 

labeled by the input-output event pairs of the trace.  

 

 

FIGURE 1 EFSM Model of the controller of a simple coffee machine 

Example 1: an EFSM specifying for the simple coffee 

controller: Figure 1 demonstrates an EFSM specifying the 

behaviour of the controller of a simple coffee machine 

which interacts with a user and a brewer unit is shown. The 

controller has L = {IDLE, BUSY}, l0 = IDLE, v = {m}, AI 

= {insert, coffee, display, done}, AO = {show, make}, and 

E = {e1, e2, e3, e4, e5}. The parameter x and the variable m 

take values that are integers in the range [0 ... 5]. 

 

3 Monitors 

 

In this section, we present how to use observers to specify 

coverage criteria for test generation or test monitoring. 

As a very simple example, the coverage item “visit 

location l of the EFSM” can be represented by an monitor 

with one initial state, and one accepting location, named 

loc(l), which is entered when the EFSM enters location l. 

The coverage criterion “visit all locations of the EFSM” 

can be represented by a parameterized observer with one 

initial state, and one parameterized accepting location, 

named loc(L), where L is a parameter that ranges over 

locations in the EFSM. For each value l of L, the location 

loc(l) is entered when the EFSM enters location l. 

Formally, an monitor is a tuple (Q, q0,Qf,B) where: 

1) Q is a finite set of observer locations 

2) q0 is the initial observer location. 

3) Of Q is a set of accepting locations, whose names 

are the corresponding coverage items. 

4) B is a set of edges, each of form 
bq q , where 

b is a predicate that can depend on the input event received 

by the SUT, the mapping from state variables of EFSM to 

their values after performing the current computation step, 

and the edge in the EFSM that is executed in response to 

the current input event. 
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3.1 OBSERVER PREDICATE 

 

In the following we introduce a more specific syntax for 

the predicates b occurring on observer edges. The 

predicates will use a set of predefined match variables that 

are given values at the occurrence of: 

1) an event ( )a d ,  

2) an edge ( ), : exp: a w g u re l l   of the EFSM, 

traversed in response to ( )a d , 

3) the computation step 
( ), ,a dl l       

generated in response to ( )a d . 

For a traversed EFSM edge we use the following match 

variables (with associated meaning): 

1) event type is the event type a of the occurring 

event; 

2) event-pars is the list d of parameters of the event; 

3) edge is the name e; 

4) target_loc is the target location l'; 

5) guard is the guard expression g; 

6) assignments is the set u := expr of assignments; 

7) target_val is the function from EFSM state 

variables to values. 

To be able to express more interesting properties we 

also introduce a set of operations that can be used together 

with the match variables: 

 

3.2 FUNCTION DEFINITION OF PREDICATE 

 

With the match variables and operations above we define 

new functions that can be used as tests in the observer. In 

this paper, we shall make use of:  

1) def (v) which is true iff the variable v is defined by the 

transition in the EFSM. This can be expressed as: v

map(lhs, assignments). 

2) use (v) which is true iff the variable v is used (in a 

guard or assignment) by the transition in the EFSM. This 

can be expressed as: vvars(map(rhs, assignments))   v

vars(guard). 

3) da (v1, v2) which is true iff the variable v1 is on the 

right hand side and variable v2 is on the left hand side of 

the same assignment in the EFSM specification. The 

function can intuitively be understood to be true if v1 

directly affects v2. This can be expressed as: map (affect 

(v1, v2), assignments)  . 

 
FIGURE 2 Examples of (i) a non-parameterized monitor (ii) a 

parameterized monitor, and (iii) a simple EFSM 

Example 2: example for non-parameterized and 

parameterized monitor: apparently, the monitor in Figure 

2(i) is non-parameterized which specifies definition-use 

pair coverage for a specific variable m, and specific edges 

e1 and e2. Figure 2(ii) shows a corresponding 

(parameterized) monitor that specifies definition-use pair 

coverage for any EFSM variable Z, and EFSM edges E and 

E'. This is done by parameterizing the location q1 with any 

variable and any edge, and the accepting location du with 

any variable and any two edges. The edges are 

parameterized in a similar way. For example, there is one 

observer edge from location q1(z, e) to location du (z, e, e') 

for each EFSM variable z, and each pair e, e' of EFSM 

edges. 

 

4 Monitoring test generation by superposing a monitor 

on an EFSM  

 

In test case generation or when monitoring test execution 

of a SUT, an observer observes the events of the SUT, and 

the computation steps of the EFSM. Reached accepting 

locations correspond to covered coverage items. We 

formally define the execution of an observer in terms of a 

composition between an EFSM and an observer, which has 

the form of a superposition of the observer onto the EFSM. 

Each state of this superposition consists of a state of the 

EFSM, together with a set of currently occupied observer 

locations. 

Say that a predicate b on a monitor edge is satisfied by 

a computation step 
( ), ,a dl l      of an EFSM, 

denoted 
( ), ,a dl l      |=b if b holds for the 
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event ( )a d , the computation step 
( ), ,a dl l      and 

the edge ( ), : exp: a w g u re l l    from which the 

computation step is derived. 

Formally, the superposition of an monitor (Q, q0, Qf,B) 

onto an EFSM < L,L0, v ,E >is defined as follows. 

1) States are of the form , ||l Q   , where 

,l    is a state of the EFSM and Q is a set of locations 

of the monitor. 

2) The initial state is the tuple 
0 0 0, ||{ }l q   , 

where 
0 0,l    is the initial state of the EFSM and q0 is 

the initial location of the monitor. 

3) A computation step is a triple 
( ), || , ||a dl Q l Q          such that

( ), ,a dl l       and  

 
( )

{ |

, , | }.

b

a d

Q q q q and q Q and

l l b 

    

    
. 

4) A state , ||l Q   of the superposition covers 

the coverage item represented by the location qfQf if qf

Q. 

0

( )

0 1 0 1 1

1 0 1 0 1 1

,{ , } ||

{ , ( , ), ( , )}

,{ , } ||{ , ( , ), ( , )}

a

l x tt y tt

q q x e q y e

l x tt y tt q q x e q y e

   

 

    

  

 

5 Experimental results for three crucial embedded 

systems 

 

5.1 ALGORITHM 

 

At test case generation, we use the superposition of an 

observer onto an EFSM, and views the test case generation 

problem as a search exploration problem. To cover a 

coverage item qf is then the problem of finding a trace 
( ) ( )

0 0 0, ||{ } , ||
a d a d

tr l q l Q 
 

      , such 

that fq Q . 

An abstract algorithm to compute test case is shown as 

below: 

1) :Pass  , Max:=0,
0:maxw w  

2) Wait:={
0 0 0||{ } ,s q w   } 

3) while Wait   do 

4) select || ,s Q w    from Wait 

5) if | |fq Q Max   then  

6) :maxw w , Max:= | |fq Q  

7) if for all ||s Q  in Pass: Q Q then 

8) add ||s Q   to Pass 

9) for all ||s Q    

10) such that || ||as Q s Q     : 

11) add || ,s Q wa     to Wait 

12) return andmaxw Max  

To improve the presentation, we use s to denote a 

system of the form < ,l  > and s0 to denote the initial 

system state <
0 0,l  > and a to denote an input action 

( ).a d  The algorithm computes the maximum number of 

coverage items that can be visited (Max), and returns a 

trace with maximum coverage (
maxw ). The two main data 

structures Wait and Pass are used to keep track of the states 

waiting to be explored, and the states already explored, 

respectively.  

Initially, the set of already explored states is empty and 

the only state waiting to be explored is the extended state

0 0 0||{ } ,s q w   , where 
0w  is the empty trace (in 

Line2). The algorithm then repeatedly examines extended 

states from Wait (in Line 3). If a state <s||Q> found in Wait 

is included in a state <s||Q> in Pass, then obviously <s||Q> 

does not need to be further examined(in Line 7-8). If not, 

all successor states reachable from <s||Q> in one 

computation step are put on Wait, with their traces 

extended with the input action of the computation step 

from which they are generated (in Line 9-11). The state 

<s||Q> is saved in Pass. The algorithm terminates when 

Wait is empty. 

The variables
maxw and Max are initially set to the empty 

trace and 0, respectively (in Line 1). They are updated 

whenever an extended state is found in Wait which covers 

a higher number of coverage items than the current value 

of Max (in Line 5-6). Throughout the execution of the 

algorithm, the value of Max is the maximum number of 

coverage items that have been covered by a single trace, 

and 
maxw is one such trace. When the algorithm terminates 

(in Line 12), the two values Max and 
maxw are returned. 

 

5.2 BITVECTOR IMPLEMENTATION 

 

In order to efficiently represent and manipulate the set Q 

of observer locations we shall use bitvector analysis [15]. 

Let the set Q be represented by a bitvector where each bit 

represents an observer location q'. Then each bit is updated 

by the following function: 

, ( )

( )q
b q in q

f q q b
 

   , 

where in(q') = { , | bb q q q B    } is the set of pairs 

of predicates b and source locations q of the edges ingoing 

to the location q'. That is, given a state of the superposition 

, ||l q Q    and an EFSM transition 

( ), ,a dl l       the bit representing q' is set to 1 

if there is an monitor edge 
bq q B  , such that q Q  

and 
( ), ,a dl l      |= b. Otherwise the bit 

representing q' is set to 0. It should be obvious that this 
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corresponds precisely to the semantics of an monitor 

superposed onto an EFSM, described in Section 4.2 

Example 4: Interpreting monitor states set Q into 

bitvector: when the monitor in Figure 2(ii) is superposed 

onto the EFSM in Figure 2(iii), we have: E = E' = E = {e0, 

e1, e2} and Z = v  = {x, y}. Thus, we have that: 

0 1{ } { ( , ) | }

{ ( , , ) | }.

a a

a b a b

Q q q z e z v e E

du z e e z v e E e E

     

    
 

Any enumeration of the set can be used as index in the 

bitvector. As the observer has three locations with 

parameters we get three types of bitvector functions: 

0 0 0( )qf q q tt  , (1)

1 ( , ) 1 0

1

( ( , )) ( ( ) )

( ( , ) ( )),

i jq v e i j i j

i j i

f q v e q def v edge e

q v e def v

    


 (2) 

( , , )

1

( ( , , ))

( ( , ) ( ) ) ( ( , , ) ).

i j kdu v e e i j k

i j i k i j k

f du v e e

q v e use v edge e du v e e tt



    
 (3) 

There is one function of Equation (1), six of Equation 

(2), and 18 of Equation (3). Note that Equation (1) is 

always true and that Equation (3) will remain true once it 

becomes true, due to implicit self-loops in these locations. 

 

6 Conclusion 

 

This paper has presented a technique for testing the remote 

environment control systems. Our technique have shown 

to be a flexible tool in model checking and run-time 

monitoring, and by this paper we have shown that they are 

a versatile tool for specifying coverage criteria for test case 

generation and test monitoring. 

In particular, the parameterization mechanism, as used 

in this paper, allows a succinct specification of several 

standard generic coverage criteria. In this way, test case 

generation can be transformed into a reachability problem, 

which can be general used in verification of environmental 

control systems. 
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