

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 143-147 Liu Jinjiang, Liang Jingjing

143
Mathematical and Computer Modelling

Automatic verification of embedded system based on EFSM

Jinjiang Liu*, Jingjing Liang

School of Computer and Information Technology, Nanyang Normal University, Nanyang 473061, Henan Province, China

Received 6 July 2014, www.cmnt.lv

Abstract

To ensure the correctness of embedded system, automation of test case generation is necessary in industrial. This paper present a

technique for specifying coverage criteria and a method for generating test suites for embedded systems whose behaviours is depend

on its interactive environment. The embedded system under test can be described as extended finite state machines (EFSM) and the

coverage criteria can be specified as monitor automata with parameters, which monitor and accept traces that cover a given test criterion

of an EFSM. The flexibility of the technique is demonstrated by specifying a number of well-known coverage criteria based on control-

and data-flow information using observer automata with parameters. We also develop a method for generating test cases from coverage

criteria specified as observers. It is based on transforming a given observer automata into a bitvector analysis problem that can be
efficiently implemented as an extension to an existing state-space exploration such as, e.g. SPIN or Uppaal.

Keywords: EFSM (Extended Finite State Machine), embedded system, test case generation, model-based testing

1 Introduction

A Model based test case generation has in recent years

been developed as a prominent technique in testing of

reactive software systems. A model serves both the

purpose of specifying how the system should respond to

inputs from its environment, and of guiding the selection

of test cases, e.g., using suitable coverage criteria. Typical

notations for such models are state machines in some form,

often extended with data variables. Test cases can be

selected as individual “executions” of the model, checking

that the outputs from the system under test (SUT) conform

to those specified by the mode.

In this paper, we present a technique for specifying

coverage criteria in a simple and flexible manner, and a

method for generating test cases according to such

coverage criteria. The technique fits well as an extension

of a state space exploration tool, such as, e.g., SPIN [2] or

Uppaal [4], which performs enumerative or symbolic

state-space exploration. It can also be used to generate

monitors that measure the coverage of a specific test suite

by monitoring the test execution.

Most related work on test case generation from models

of reactive systems employs some rather specific selection

of coverage criteria. Explicitly given test purposes have

been considered, both enumerative [5-7] and symbolic [9].

Test purposes in these works can in some sense be

regarded as coverage observers, but are not used to specify

more generic coverage criteria and do not make us of

parameterization, as in our work.

Some approaches present more flexible techniques for

specifying a variety of coverage criteria. Hong et al [11-14]

describe how flow-based coverage criteria can be

expressed in temporal logic. A particular coverage item is

*Corresponding author’s e-mail: nytcc@sina.com

expressed in CTL, and a model checker generates a trace,

which covers the coverage item. In our approach, we use

monitors instead of temporal logic, which avoids some of

the limitations of temporal logic [15]. Our technique using

monitors whit parameters can let one pass of a state-space

exploration tool generate a test suite that covers a large set

of coverage items, whereas the above approaches invoke a

run of a model checker for each coverage item.

The remainder of the paper is structured as follows. We

present EFSM in the next section, and monitors in Section

3. In Section 4-5, we show how our definitions of coverage

can be used for test case generation, and report on a partial

implementation of the technique. Section 6 concludes the

paper

2 Extended finite state machine

In this section, it is assumed that a System Under Test

(SUT) interacts with its environment through events.

Whenever the SUT receives an input event, it responds by

performing some local computation and emitting an output

event. To a given SUT, we associate a set A of event types,

each with a fixed arity. An event is a term of form a(d1, . .

. , dk) where a is an event type of arity k and d1, . . . , dk

are the parameters of the event. The set A of event types is

partitioned into input event types and output event types. A

trace is a finite sequence

1 1 1 1 2 2 2 2() / () () / () ... () / ()n n n na d b d a d b d a d b d  

of input/output event pairs. Intuitively, the trace represents

a behaviour where the SUT, starting from its initial state,

receives the input event
1 1()a d and responds with the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 143-147 Liu Jinjiang, Liang Jingjing

144
Mathematical and Computer Modelling

output event
1 1()b d  . Thereafter, it receives the input event

2 2()a d and so on. An input sequence is a finite sequence

of input events.

Assume a set AI of input event types, and a set AO of

output event types. An Extended Finite State Machine

(EFSM) over (AI,AO) is a tuple < L,L0, v ,E > where:

1) L is a finite set of locations (control states).

2) l0L is the initial location.

3) v is a finite set of state variables.

4) E is a finite set of edges, each of which is of form:

(), : exp / (exp): a w g u r b re l l
   ,

where e is the name of the edge, l is the source location,

and l0 is the target location. ()a w is an input event type,

and w is a tuple of formal parameters of event a, g is a

guard, : expu r is an assignment of new values to a

subset u v of the state variables, and (exp)b r is an

expression which evaluates to an output event.

Intuitively, an edge of the above form denotes that

whenever the EFSM is in location l and receives an event

of form ()a w , then, provided that the guard g is satisfied,

it can perform a computation step in which it updates its

state variables by : expu r , emits the output event

(exp)b r and moves to location l  . We require the EFSM

to be deterministic, i.e., that for any two edges with the

same source location l and parameterized input event

()a w , the corresponding guards are inconsistent.

A system state is a tuple < ,l  > where l is a location,

and is a mapping from v to values. We can extend  to

a partial mapping from expressions over v in the standard

way. The initial system state is the tuple <
0 0,l  >, where

0l is the initial location, and
0 gives a default value to

each state variable. A computation step is of the form
()/ (), ,a d b dl l 
       consist of system state

,l   and ,l    , an input event ()a d  and an

output event ()b d .Such that there is an edge of the (above)

form (), : exp / (exp)a w g u r b rl l
   , for which ([/])g d w is

true, [(exp [/])]u r d w     and (exp [/])d r d w  .

A run of the EFSM over a trace

1 1 1 1() / () ... () / ()n n n na d b d a d b d  is a sequence of

computation steps:

1 1 1 1

2 2 2 2

()/ ()

0 0 1 1

()/ ()

()/ ()

, ,

, ,n n n n

a d b d

a d b d

a d b d

n n

l l

l

 









   



 

labeled by the input-output event pairs of the trace.

FIGURE 1 EFSM Model of the controller of a simple coffee machine

Example 1: an EFSM specifying for the simple coffee

controller: Figure 1 demonstrates an EFSM specifying the

behaviour of the controller of a simple coffee machine

which interacts with a user and a brewer unit is shown. The

controller has L = {IDLE, BUSY}, l0 = IDLE, v = {m}, AI

= {insert, coffee, display, done}, AO = {show, make}, and

E = {e1, e2, e3, e4, e5}. The parameter x and the variable m

take values that are integers in the range [0 ... 5].

3 Monitors

In this section, we present how to use observers to specify

coverage criteria for test generation or test monitoring.

As a very simple example, the coverage item “visit

location l of the EFSM” can be represented by an monitor

with one initial state, and one accepting location, named

loc(l), which is entered when the EFSM enters location l.

The coverage criterion “visit all locations of the EFSM”

can be represented by a parameterized observer with one

initial state, and one parameterized accepting location,

named loc(L), where L is a parameter that ranges over

locations in the EFSM. For each value l of L, the location

loc(l) is entered when the EFSM enters location l.

Formally, an monitor is a tuple (Q, q0,Qf,B) where:

1) Q is a finite set of observer locations

2) q0 is the initial observer location.

3) Of Q is a set of accepting locations, whose names

are the corresponding coverage items.

4) B is a set of edges, each of form
bq q , where

b is a predicate that can depend on the input event received

by the SUT, the mapping from state variables of EFSM to

their values after performing the current computation step,

and the edge in the EFSM that is executed in response to

the current input event.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 143-147 Liu Jinjiang, Liang Jingjing

145
Mathematical and Computer Modelling

3.1 OBSERVER PREDICATE

In the following we introduce a more specific syntax for

the predicates b occurring on observer edges. The

predicates will use a set of predefined match variables that

are given values at the occurrence of:

1) an event ()a d ,

2) an edge (), : exp: a w g u re l l   of the EFSM,

traversed in response to ()a d ,

3) the computation step
(), ,a dl l     

generated in response to ()a d .

For a traversed EFSM edge we use the following match

variables (with associated meaning):

1) event type is the event type a of the occurring

event;

2) event-pars is the list d of parameters of the event;

3) edge is the name e;

4) target_loc is the target location l';

5) guard is the guard expression g;

6) assignments is the set u := expr of assignments;

7) target_val is the function from EFSM state

variables to values.

To be able to express more interesting properties we

also introduce a set of operations that can be used together

with the match variables:

3.2 FUNCTION DEFINITION OF PREDICATE

With the match variables and operations above we define

new functions that can be used as tests in the observer. In

this paper, we shall make use of:

1) def (v) which is true iff the variable v is defined by the

transition in the EFSM. This can be expressed as: v

map(lhs, assignments).

2) use (v) which is true iff the variable v is used (in a

guard or assignment) by the transition in the EFSM. This

can be expressed as: vvars(map(rhs, assignments))  v

vars(guard).

3) da (v1, v2) which is true iff the variable v1 is on the

right hand side and variable v2 is on the left hand side of

the same assignment in the EFSM specification. The

function can intuitively be understood to be true if v1

directly affects v2. This can be expressed as: map (affect

(v1, v2), assignments)  .

FIGURE 2 Examples of (i) a non-parameterized monitor (ii) a

parameterized monitor, and (iii) a simple EFSM

Example 2: example for non-parameterized and

parameterized monitor: apparently, the monitor in Figure

2(i) is non-parameterized which specifies definition-use

pair coverage for a specific variable m, and specific edges

e1 and e2. Figure 2(ii) shows a corresponding

(parameterized) monitor that specifies definition-use pair

coverage for any EFSM variable Z, and EFSM edges E and

E'. This is done by parameterizing the location q1 with any

variable and any edge, and the accepting location du with

any variable and any two edges. The edges are

parameterized in a similar way. For example, there is one

observer edge from location q1(z, e) to location du (z, e, e')

for each EFSM variable z, and each pair e, e' of EFSM

edges.

4 Monitoring test generation by superposing a monitor

on an EFSM

In test case generation or when monitoring test execution

of a SUT, an observer observes the events of the SUT, and

the computation steps of the EFSM. Reached accepting

locations correspond to covered coverage items. We

formally define the execution of an observer in terms of a

composition between an EFSM and an observer, which has

the form of a superposition of the observer onto the EFSM.

Each state of this superposition consists of a state of the

EFSM, together with a set of currently occupied observer

locations.

Say that a predicate b on a monitor edge is satisfied by

a computation step
(), ,a dl l      of an EFSM,

denoted
(), ,a dl l      |=b if b holds for the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 143-147 Liu Jinjiang, Liang Jingjing

146
Mathematical and Computer Modelling

event ()a d , the computation step
(), ,a dl l      and

the edge (), : exp: a w g u re l l   from which the

computation step is derived.

Formally, the superposition of an monitor (Q, q0, Qf,B)

onto an EFSM < L,L0, v ,E >is defined as follows.

1) States are of the form , ||l Q   , where

,l   is a state of the EFSM and Q is a set of locations

of the monitor.

2) The initial state is the tuple
0 0 0, ||{ }l q   ,

where
0 0,l   is the initial state of the EFSM and q0 is

the initial location of the monitor.

3) A computation step is a triple
(), || , ||a dl Q l Q         such that

(), ,a dl l      and

()

{ |

, , | }.

b

a d

Q q q q and q Q and

l l b 

    

    
.

4) A state , ||l Q   of the superposition covers

the coverage item represented by the location qfQf if qf

Q.

0

()

0 1 0 1 1

1 0 1 0 1 1

,{ , } ||

{ , (,), (,)}

,{ , } ||{ , (,), (,)}

a

l x tt y tt

q q x e q y e

l x tt y tt q q x e q y e

   

 

    

5 Experimental results for three crucial embedded

systems

5.1 ALGORITHM

At test case generation, we use the superposition of an

observer onto an EFSM, and views the test case generation

problem as a search exploration problem. To cover a

coverage item qf is then the problem of finding a trace
() ()

0 0 0, ||{ } , ||
a d a d

tr l q l Q 
 

      , such

that fq Q .

An abstract algorithm to compute test case is shown as

below:

1) :Pass  , Max:=0,
0:maxw w

2) Wait:={
0 0 0||{ } ,s q w   }

3) while Wait  do

4) select || ,s Q w   from Wait

5) if | |fq Q Max  then

6) :maxw w , Max:= | |fq Q

7) if for all ||s Q  in Pass: Q Q then

8) add ||s Q  to Pass

9) for all ||s Q  

10) such that || ||as Q s Q     :

11) add || ,s Q wa    to Wait

12) return andmaxw Max

To improve the presentation, we use s to denote a

system of the form < ,l  > and s0 to denote the initial

system state <
0 0,l  > and a to denote an input action

().a d The algorithm computes the maximum number of

coverage items that can be visited (Max), and returns a

trace with maximum coverage (
maxw). The two main data

structures Wait and Pass are used to keep track of the states

waiting to be explored, and the states already explored,

respectively.

Initially, the set of already explored states is empty and

the only state waiting to be explored is the extended state

0 0 0||{ } ,s q w   , where
0w is the empty trace (in

Line2). The algorithm then repeatedly examines extended

states from Wait (in Line 3). If a state <s||Q> found in Wait

is included in a state <s||Q> in Pass, then obviously <s||Q>

does not need to be further examined(in Line 7-8). If not,

all successor states reachable from <s||Q> in one

computation step are put on Wait, with their traces

extended with the input action of the computation step

from which they are generated (in Line 9-11). The state

<s||Q> is saved in Pass. The algorithm terminates when

Wait is empty.

The variables
maxw and Max are initially set to the empty

trace and 0, respectively (in Line 1). They are updated

whenever an extended state is found in Wait which covers

a higher number of coverage items than the current value

of Max (in Line 5-6). Throughout the execution of the

algorithm, the value of Max is the maximum number of

coverage items that have been covered by a single trace,

and
maxw is one such trace. When the algorithm terminates

(in Line 12), the two values Max and
maxw are returned.

5.2 BITVECTOR IMPLEMENTATION

In order to efficiently represent and manipulate the set Q

of observer locations we shall use bitvector analysis [15].

Let the set Q be represented by a bitvector where each bit

represents an observer location q'. Then each bit is updated

by the following function:

, ()

()q
b q in q

f q q b
 

   ,

where in(q') = { , | bb q q q B    } is the set of pairs

of predicates b and source locations q of the edges ingoing

to the location q'. That is, given a state of the superposition

, ||l q Q   and an EFSM transition

(), ,a dl l      the bit representing q' is set to 1

if there is an monitor edge
bq q B  , such that q Q

and
(), ,a dl l      |= b. Otherwise the bit

representing q' is set to 0. It should be obvious that this

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 143-147 Liu Jinjiang, Liang Jingjing

147
Mathematical and Computer Modelling

corresponds precisely to the semantics of an monitor

superposed onto an EFSM, described in Section 4.2

Example 4: Interpreting monitor states set Q into

bitvector: when the monitor in Figure 2(ii) is superposed

onto the EFSM in Figure 2(iii), we have: E = E' = E = {e0,

e1, e2} and Z = v = {x, y}. Thus, we have that:

0 1{ } { (,) | }

{ (, ,) | }.

a a

a b a b

Q q q z e z v e E

du z e e z v e E e E

     

    

Any enumeration of the set can be used as index in the

bitvector. As the observer has three locations with

parameters we get three types of bitvector functions:

0 0 0()qf q q tt  , (1)

1 (,) 1 0

1

((,)) (())

((,) ()),

i jq v e i j i j

i j i

f q v e q def v edge e

q v e def v

    


 (2)

(, ,)

1

((, ,))

((,) ()) ((, ,)).

i j kdu v e e i j k

i j i k i j k

f du v e e

q v e use v edge e du v e e tt



    
 (3)

There is one function of Equation (1), six of Equation

(2), and 18 of Equation (3). Note that Equation (1) is

always true and that Equation (3) will remain true once it

becomes true, due to implicit self-loops in these locations.

6 Conclusion

This paper has presented a technique for testing the remote

environment control systems. Our technique have shown

to be a flexible tool in model checking and run-time

monitoring, and by this paper we have shown that they are

a versatile tool for specifying coverage criteria for test case

generation and test monitoring.

In particular, the parameterization mechanism, as used

in this paper, allows a succinct specification of several

standard generic coverage criteria. In this way, test case

generation can be transformed into a reachability problem,

which can be general used in verification of environmental

control systems.

References

[1] Hu C, Zhu L 2010 The analysis and the evaluation of complicated

network software LNCS 13(10) 1-5

[2] Yunfeng Wang, Hongde Xia, Raomei Yan 2008 The analysis of the
social network and the study of the application cases of NetDraw

Modern education technology 18(4) 85-89

[3] Pothen A, Simon H, Liou K P 1990 Petitioning sparse matrices with
eigenvectors of graphs SIAM Journal on Matrix Analysis and

Applications 11 430-6

[4] Grivan M, Newman M E J 2001 Community structure in social and
biological networks Proc Natl Acad Sci 99(12) 7821-6

[5] Newman M E J, Grivan M 2004 Finding and evaluating community

structure in networks Physical Review E 39(10) 69-84

[6] Toyoda M, Kitsuregawa M 2003 Extracting evolution of web

communities from a series of web archives Proceedings of the

fourteenth ACM conference on Hypenext and hypermedia 101 78-87
[7] Palla G, Derényi I, Vicsek T 2007 The Critical Point of k-groups

Percolation in the Erdös-Rényi Graph Journal of Statistical Physics

128(1) 219-27
[8] Palla G, Vicsek T, Barabási A-L 2007 Community dynamics in social

networks Noise and Stochastics in Complex Systems and Finance

6601(3) 273-87
[9] Xu C, Zhang Y, Yang D 2011 Ontology based Image Semantics

Recognition using Description Logics IJACT: International Journal

of Advancements in Computing Technology 3(10) 1-8

[10] Ju C, Wei J 2012 Research on Multi-interest Profile Based on
Resource Clustering JCIT: Journal of Convergence Information

Technology 7(21) 582-90

[11] Gargantini A, Heitmeyer C 1999 Using Model Checking to Generate
Tests From Requirements Specifications In Software Engineering –

ESEC/FSE’99: 7th European Software Engineering Conference held

jointly with the 7th ACM SIGSOFT Symposium on the Foundations
of Software Engineering 1687(1) 146-62

[12] Kim J-M, Porter A 2009 A history-based test prioritization technique

for regression testing in resource constrained environments In
ICSE ’09: Proceedings of the 31th International Conference on

Software Engineering 139(3) 119-29

[13] Rothermel G, Untch R H, Chu C, Harrold M J 2009 Test case
prioritization: An empirical study Proceedings of the IEEE

International Conference on Software Maintenance 168(11) 179-83

[14] Srikanth H, Williams L 2005 On the economics of requirements-
based test case prioritization Proceedings of the 7th international

workshop on Economics-driven software engineering research 153(1)

1-3

Authors

Jinjiang Liu, born in October, 1974, Nanyang County, Henan Province, P.R. China

Current position, grades: associate professor in School of Computer and Information Technology of Nanyang Normal University, China.
University studies: MSc in Computer Applications at Wuhan University of Science & Technology in China.
Scientific interests: computer modeling, data mining.
Publications: more than 6 papers.
Experience: teaching experience of 15 years, 6 scientific research projects.

Jingjing Liang, born in October, 1981, Nanyang County, Henan Province, P.R. China

Current position, grades: instructor at the School of Computer & Information Technology of Nanyang Normal University, China.
University studies: BSc in University of Electronic Science and Technology of China.
Scientific interests: software engineering, formal modelling.
Publications: more than 5 papers.
Experience: teaching experience of 10 years.

http://link.springer.com/journal/10955

