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Abstract

We give direct detailed proofs for the connection between powerdomains and logic models which can be made
about nondetermin- istic computations. In the proceeding of proofs, we prove some algebraic properties of
them at the same time. Meanwhile, we take up some trick for constructing the finite branching tree, which can

also be used into the other areas.
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1 Introduction

Powerdomains were originally proposed to model the
semantics of nondeterministic programming languages [1,
2]. They can be taken as the domain analogues of powersets
with elements which represent the sets of different courses
a nondeterministic computation can follow. Winskel gives a
simple connection between powerdomains and modal
assertions that can be made about nondeterministic
computations in [1]. He considers three kinds of
powerdomains: the Smyth powerdomain, the Hoare
powerdomain and the Plotkin powerdomain. Two kinds of
modal operators are taken: = for "inevitable" and § for
"possible”. It is shown in a precise sense how the Smyth
powerdomain is built up from assertions about the inevitable
behaviour of of a nondeterministic computation, the Hoare
powerdomain is built up from assertions about the possible
behaviour of of a nondeterministic computation, while the
Plotkin powerdomain is built up from both kinds of
assertions taken together. In [3], the detailed proofs are not
given. It is also a little fuzzy to understand the sketch of
proofs. We give here detailed direct proofs of thee results.
On the way, we establish some algebraic properties of
powerdomains and of nondeterministic computations. In
particular, we spell out the construction of nondeterministic
computations associated to the elements of the respective
powerdomains.

We present the preliminaries on powerdomains and
nondeterministic computations. To know more, see [4].

We first give some knowledge of domain theory. Let D be
a partial order. A directed set of (D, <) is a non-null subset
S(u D)suchthatvs,t € S Jue Sst. s<u bt <u A
left-closed of (D;-) is a subset A(u D) such that
Va,be Da<be A= ac A. Anideal of (D, <}isa
non-null subset A(C 1) such that A4 is a directed and left-
closed set. A complete partial order( c.p.o. for short) is a
partial order (D, <) which has a least element L and all least
upper bounds of directed subsets. A partial order { D, <) which
has a least element L and all least upper bounds of directed
subsets. A firite element of a c.p.o.(D, <) is an element
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x € D such that for any directed subset & C D when
x < US there is an s € S such that x < s. We write DY for
the set of finite elements of D. Intuitively, the finite elements
are that information which a computation can realize in finite
time. The c.p.o. (D, <) is algebraic if and only if for all
x € Dwehaver = L{e <z | e € D). The c.p.o. (D, <)
is said to be countably algebraic or simply w-algebraic if and
only if 7 is algebraic and Y is countable.

In the sequel, (D, <) always stands for an w-algebraic
c.p.o.. Let M [1)] be the set of non-null finite subsets of V.
There are three natural ways to preorder M [ ). We consider
these three kinds of order: for 4, 13 in A [1], write

A<sB <= VYbeBdacAst. a<b
AxyB +<— VacAdbeBst.a<hbh

where <5, =<y and =p are called the Smyth order ,
the Hoare order and the Plotkin order respectively.
There is a standard way to get an algebraic domain from
a preorder with least element, often called
completion by ideals [5]. Let {I°, <) be a preorder with a
least element L. /(?) is the set of ideals of P. It is easy to
prove that (I(P, <), C) is an algebraic domain, with finite
elements {g € P | g < p}for p € P. In this way, we can
obtain three different powerdomains by completing by
ideals the three preorder (g, <7, <p On M [D]. We name
them respectively the Smythpowerdomain, the Hoare
powerdomain, and the Plotkin powerdomain.

(R[D], <o) = (I(M[D],<s),©)
(PD],<1) £ (I(M[D], <), <)
(Po[D],<2) £ (I(M[D),<p), <),

Now, we define the notion of nondeterministic 77 -
computation. A tree is finitely branching if it has a finite
number of branches at each fork.

A nondeterministic 7> -computation has the form
(T, —,val) where (7', —) is a finitely branching tree and
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val s a map to n%  such that
Vit eT, t =t = val(t) < val(t').

A hranch is a sequence fg,ty, - , 1y, - where t; is
the root node and ¢,, — ¢,,41 for each n 4 1 at which the
sequence is defined. By a maximal branch of (1, —) we
mean a branch which is either infinite, or finite of the form

to,t1, - 1o With £, 7.
2 The Smyth Powerdomain

We define a modal logic Lg including DY, for all s € Lg, s
is any formula built by the following syntax;
su=alls|sVs (ae D).

Let (7', —, val) be a nondeterministic 7>-computation.
Define =, to be the least relation included in 1" x L such
that

tEa if  a<wal(t)
teE(svs) if tkEs o t=s
t=Os  if teEs or (VW1 —t=1t=0s)

Definition 1. Let 7" be a finitely branching tree. A coupe
of 7 is afinite set ' of the nodes of 1" such that

((tl,tg cC & -val(tl) < ’Ual(tg)) =1 = tg)
and (Vs € T3t € C s.t. val(s) < val(t)
or val(t) < val(s))

Another way to define satisfaction for [J-statements is as
follows.

Lemma 1. Let 7" be a finitely branching tree with the
root ¢. We have,

t=0s < 3C (Cisacoupe of T) s.t. (Vt' € C,t' | s)

Proof. Suppose that t=0s o prove it, we are only
allowed to use the following rules,
(2)

t=s (1) vt ,t—t' t'=0s
t=0s t=lls

The basic case is that from ¢}=,s we can get t}=,s.
Let ' be {¢}. It is clear that C" is a coupe, and ¢ |= s. The
other case is that if for all #' satisfying ¢ — #', we have
t'=0s then we can get ¢t=0s. By the assumption of
induction, for any ' =[]s, there exists a coupe . such that
Vi € Oy, t" = s. Let C be the disjoin union of the coupes
Cs. Then it is easy to prove that ' is also a coupe of 7" and
vi'" € Ct" = s.

On the other hand, suppose that there is a coupe & of 7’
suchthat Vt" € C.t" = s 1§t € C thent F Us ft € C
for any ' satisfying t — £

Lemma?2. Let T = (T, —, val) be a nondeterministic
D-computationwith root nodet. Write =15 for ¢ =1 5.
Let T be the class of nondeterministic D-computations.
Define s = " iff (=,5 & =56, VT € T).

We have

1) sv(s'vs)=(svs)vs
2) svs =svs

(3) O(0Os) =0s;

4) OsvOs)y=0O(s Vs

(B) s=¢ = Os=0s;
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6) s=s" = svs' =5 Vs
Proof (1), (2), (5), (6) Itis clear

(3) Forany 7" e T, if =rs, then |={Os). On the
other hand, we assume that =,(Cls), then for every
maximal branch i in the subtree out of t, there is a node +’
which satisfies (ls. Let A be the finite branch fromz to ¢
Define that ¢ — A as ¢ from which A has been cut. It is
clear that i — A is a maximal branch in the subtree out of +’.
So ¢ — A has a node +” which satisfies s, that is, v has the
node " which satisfies s. By lemma 1, =[s.

(4) For any 7' €T, if =;0(s v &), then for every
maximal branch in the subtree out of t, there is a node '
which satisfies s v &', that is, t'|=7.s or t'=.s". It follows
that t'|=rs or #'=r0¢ , then t'=;sv s’ . So
=,0(s v Os’). On the other hand, if |=,.00(s v Os’), then
for every maximal branch ¢ in the subtree out of t, there is
a node #' which satisfies =,.s v Os’, that is, =55 or
t'= 08" (i) If t'=rs, then =8 v 87 (i) I =50
let A be the branch from t to ¢/, then v — A is a maximal
branch in the subtree out of #, so ¢ — A has a node +”
which satisfiess’, hence ¢ |=,s V s’. Then ¢ has the node
which satisfies s vV s". Therefore, =,.00(s V §').

Such properties make us can get the normal forms of the
logic model Ly .

Lemma 3. 15 € Lojs = — equivalent o normal form
D((I(] Voeee (Ln) for some g, - Y a, € D( .

Proof. By definition of Lo sis any formula built with
the following syntax, s ::= a|0s|s V s.

It suffices to consider the following cases;

The basic case is that s = a. Then (s = [la, that is, Cls
is = — equivalent the normal form Cla. Another case is
that s = [Js’. Suppose that (s’ is = — equivalenta normal
form OagV -V ay,) Then Os=0(0s") =0
(O(ap vV ---Vay))=0(ag V- --Vay) by the lemma 2.
Another case is that s = s’V s” . Suppose that (s’ is
= — equivalent a normal form O(agy V/ - - - V a,,) and s” is
= — equivalent a normal form O(bg V -+ V by, ). Then
Os =0(s"vs") =0(s' vOs") = 0O(0s” v ') = 0(0
s'vOs )Y =00 V- V) VO(ag V- Vay)) =
O0Obg V- Vb)) ViagV---Vay)) =0((ag vV - -V
an) VOV - Vb)) =0(agV---Vay VbyV---V
b, ) by lemma 2.

We are interested in the statements which are inevitably
true. Define the following set of assertions with
nondeterministic computations.

Definition 2. Let 7 = (7,—,val) be a
nondeterministic D-computationwith root node t. Define
Vo(T) = {DS € Ly ‘ |=TDS}

Based on this assertions, we define an obvious preorder
on nondeterministic computations

T<0T" == Vo(T) € Vo(T7)

Quotienting the preorder = on, nondeterministic
computations by the equivalence ~p = <, N <o ', wWe
obtain the Smyth powerdomain by th eorem 1. Before we
prove that, we give some algebraic properties of
nondeterministic computations.

Let Vo(T)={0(aoV---Va,)|ErO@V---Vay)
L0, .. py € DO}
Lemma 4. Let 7 and 7' be nondeterministic

computation. t is the root of 7"and 7" is the root of 7", we
have Vo (T) C Vo(T") < V(T) C Vi (T").
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Proof. Firstly, we assume that Vo(7) € Vo(T") Let
Ofao V- Van) € Vi(T) . Then t=r0(ag V- Vay),
because J(ao V -+~ Vay,) € V(1) € %(T), then O(aoV

< Voan) € Vo(T') since Vo(T) € Vo(T") . Therefore '
= O(ag V- Vay,),and Dlao V- Vag) € VG(T),

On the other hand, we assume that Vg (T") € Vi (T"). Let
Os € Vo(7) . By lemma 3, there is a normal form
O(ag V--- Va,) =Us, then t=7p0(ag V - - V ay), then
we have t'|=,,0(ag V - -+ V a,,) since Vy' (T ) C W'(T.
Therefore, t' =, [s.

Assume that A = {a1,a2,--- ,a,}, we write {=,0A4
standing for ¢/=,.O(ag V - -+ V ay).

Lemma 5. Assume that A= {ap,a1, - ,a,} ,
B ={by, b1, -+ ,bp}, and B=<gA. If t=,0A4, then
t 0B,

Proof. Because that t}=..LJA, then for every maximal
branch ¢ in the subtree out of t, there is a node ¢+’ WhICh
satlsfles agV---Va,, that is, duo; € A, s.t. 'Era;. |
follows that a; g val(t'). So there is b; € B, b; < ai
< wval(t') since BxgA, then t'l=1b;, and t'}=1(by V - - -
Vb, ). By lemma 1, =B,

The following theorem show how the Smyth
powerdomain is built up from assertions about the inevitable
behavior of a process. Winskel gave the sketch of the proof
[1, but it is fuzzy to understand. Here we give a kind of direct
proof. The ideal is very simple, but there is a new trick to
construct a finite branching tree by an element of Smyth
powerdomain.

Theorem 1. Let T be the class of nondeterministic D-
computations. The Smyth powerdomain Pg[D] is
isomorphic to the quotient (T'/~y, <p/~0), and to the
order ({Vo(17)|T € T}, Q).

Proof. By the lemma 4, it suffices to prove that ;[ D] is
isomorphic to ({V;(T)|T € T},<). Define f: ({Vy(T)
|T € T},C) — (Po[D], C) as follows; for any 7" € T,

Vo (1) = {{ao,a1.- - ,a,} | O(agV

-~ Vay) € VI(T)} 2 I(T).

Firstly, we prove that I(T') € (Po[D], C). Itisclear that
{ti el(Ty . so I(Th+#0 Assume  that
—{bo,bl ,bp}ﬁs A={(?,(),(11:"' ,G-q}, and AE

1(T). By the Iemma 5, t)=,0B. Then B € I(T). On the
other hand, let A = {aq,...,an}, B ={bo,....bjpt €T
(1), that is, =, 0(ag V - -V a,) and =,0(bg V - - - V by,
). Then every maximal branch iz in T has a node # which
satisfies ag Vv ---Va, and a node #’ which satisfies
bo V- -V by,. So, just like lemma 1, we can construct two
finite subtrees 74 and Ty of 7" where the leaves of 774
satisfy apV---Vva, and the leaves of 7T} satisfy
bo V- -V by, Let C be a set as follows; for every maximal
branch of 7, if the leave ¢ 4 of 74 is less than the leave (g
of 17, then wal(tp) € C', otherwise, val(ta) € C .
Because 1’4 and 175 are finite, C' is a finite set. €'  [(T)is
clear. For any wal(t) e C , tEqao V- Vi, and
t=pbo V- Vb, so there exist a;, by so that tEpa;,
te=rby, that is, a; < wal(t)and b; < ml( ). Hence C'is a
upper bound w.r.t < of A and B

Secondly, if Vi(71) = V{(T»), then the fact that
f(Vo(Th)) = f(V5(T2)) is clear.

Thirdly, the fact that f is one-one is clear.

Next, we prove f is onto.
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Assume that A € Po[D]. Since DY is countable, then
we can know that .4 is countable and nonempty ({ L} € A).
Sowe canassume A = {By, -, B,,, - }.Let Ay be BU,
let A; be an upper bound w.r.f. 45, of Ag and By; - --; let
A,, be an upper bound w.r.f.<g of A,_; and B,,;-A
Hence, we get a ., —chain Ag<gA1<g - —<5,An =g
Define a function ¢, : A,y —> A, where for any
a < An+l> ’\071(&) < a.

When ™ > 1 denote ¥n ((Pn.ﬂ (- ('\mel(rom) T )) :

Am+l — n A4S Pnm
A;; — ﬂ Pnm (A"m-t—l)
Let m>n yn=10,1,2,---

We construct 7" as follows;
let L be the root of T.

A, is the set of nodes of T at the height n+1
Unk —* Ang 1k’ iff Qnk = on(an1r

So (T, —,d) js a nondeterministic D-computation
(T", —, id) has the following properties;
(1) A=) 0
For any a;, ., € A}, that is, for any m > n + 1,a,,

€ Ontim(Ams1), there is an a1 € A1 Such that

a‘:H_l = 8911+1m(am+l) Then pn(”‘;xirl) =
on(Prtim(@m+1)) = nm(@m+1) € Pam(Am+1) C
Pn¥n+1 (A?1+2)' So, ‘f’/‘n-(”';r,irl) € ﬂ an(Am-t—l)v that
m>n

is, ¢n(ay,,) €Ay, and ¢n(ay,,y) < a5, - Hence,
Anﬁq‘ArH»l

(2) For any n Al € A

Al = G [ Aen If for any ", there is an
m' > S[]Chnthat Prm’ (L A1) # Pnm (2 m+1 , that is,

Prm (Amri1) € Prm(Ami1), Let ¥1 > 7+ 1pe 3 least
number so that¥nk: (Aki+1) C @nm (Am1),
Let C1 = @nm(Ams1) — :10751‘:1(Ak1+l) # 0; Let ko > ky
be a least number so that vk, (Ar,+1) C @nk, (Ak, +1)-
Let Co = @k, (Ak,+1) — ks (Aky 1) # 0

Let ¢ = |J C;. So C is an infinite set which
contradicts the>fact that C' C ¢,,(A4,+1) is a finite set.
Hence, there exists an m, for any m’ > ., wpm (Amrs1)
= ©nm(Am=1). Then for any n, there is an m so that
Ar “n m(Am+l)- Because ‘an(Aqul )45‘Am+1: then
A’ € A.

'(3) Forany node “n of 7" atthe height 7 + 1, there is
a node a,y . Of T at the height n+ 2 such that
Unj —* Qp 1k

According to property (2), there is an m > n + 1 such
that Afn = ‘Pﬂm(Am—t—l) and A;1+1 = Wn-t—lm(Am+l) .
Because a,, € A, there is an a,,+1 € A,,4+1 such that
ank = Pnm(@m+1) = Pn(Pntim(@m+1))-

Let apqip = Sﬁn+lttt(am+1) € Ail 1. SO Gnbik s
node in the T at the height n+2. We have @nk = @n(@n 1),
that is, @nk — (1n+1k'

(4) Forany 4%, te=OAL

According to property (3), for any maximal branch ¢ in
the subtree out of ¢, there is an element of A!, is one of the
node of ¢. By the lemma 1, #=,0A,

Now we prove that f (V5 (T)) = A

For any O(ag V- -+ V a,) € V§(T'), because =,.[(ay
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V- -V ay ), then for any maximal branch in the 7, there is
anode which satisfies ay Vv - - - V a,,. According to the proof
of the lemma 1, there is a finite subtree 7’ whose leaves
satisfy ag Vv - - - V a,,. Assume that the height of the highest
leave is m. According to property (3), the set of leaves of T/
is less than A, wrt <s , then {ag, -,
apt<gA,,. From A] < A, we get {ag,...,a,} € A.On
the other hand, for any A = {ao,...,a,} € .4, by the
construction of w—chain, there is a A4,, such that
A=gA,. Since A,=(gA! , then A={gA! . From the
property (4) and the lemma 4, t|=-JA. So we can prove
that A € f(V(T)).

Finally, the fact that Vi, (T)) € Vy/(T") <= f(V'(T))
C f(Vo'(T7))is clear.

3 Hoare Powerdomain

To get Hoare powerdomain, we look at assertions built
using the logic model which standard ‘possibly’ operator. In
fact, Hoare powerdomain has an even simpler construction.

Lemma 6. Let £(D") consist of the non-null, left-
closed subsets of DY, then (£(D"), C) is isomorphic to
(P, [D], <), the Hoare powerdomain. _

Proof. Let F be a function from £(D) to 11[D] as
follows.

Firstly, F(X) # D since X is non-null. For any A B e
MI[D] it A=<y B and B € F(X) thenforany @ € 4 there
isal € B S X gychthat @ < b so ¢ € X py definition of
X Therefore A € F(X), For any 4. B € F(X) then
A%IIAUBaHdB#HAUB and AUB«¢ F(X) .

Secondly, if X1 = X2, then £'(X1) = F(X2), Therefore,
" is well-defined. _

Let 7™ be a function from 71[D]to £(D") as follows,
Fr(A) = U{A | Ae A}

Firstty, (A €L(D’) |n fact, since
{L} e A F*(A)#0 Forany @:0,a <be F*(A) then
there is an 4 in A such that b € A go {a}<p{b}<nA,

then we have {a} € A hence, @ € I'*(A), Secondly, if
A = Az then F* (A1) = F*(A2) | Therefore, F™ is also
well-defined.

Next, we prove that the follow results.

(1) FF*(A)= A, VA< P [D],

It follows that FF*(A)={X|X C F*(A),X is
Jinite} = {X | X CU{A| A€ A}. X is finite} =
{A|Ac A=A

(2 F*F(X)=X,VX € £(D")

It follows that F*F(X)=U{A| Ae F(X)} =U{A|
Ae{A|ACX,Ais finite}} = X

Now, we define this logic model and the satisfaction
relation.

Let (7', —,val) be a nondeterminstic D-computation.
Define |=, to be the least relation included in 7" x 7., such
that tEa if a<wal(t) ,
teEGs if tEs or 3,1t =t | {s).

Here we are interested in those possible statements.

Definition 3. Let 7T = (7,—,val) be a
nondeterministic D-computation with root node . Define

Vo(T) = {0s € Ly | F=p0s}.
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Based on this assertions, we define an obvious preorder
on nondeterministic computations,
T<,T" <= Vi(T) € Vi(T")

Quotienting the preorder =, on, nondeterministic
computations by the equivalence ~; = <, N=<; ', we
obtain the Hoare powerdomain by theorem 2.

Lemma 7. For all 8 € L1, Os € Ly jg =-equivalent 5

normal form ¢@, for @ € D°,

Proof. By definition of Ly, s is any formula built with the

following syntax,
su=al Qs

We proceed by induction on s

(1) The basic case is that s = «. Then $s = ¢a, that
is, {:s is =-equivalent the normal form ¢a.

(2) The other case is that ¥ = Os’, Suppose that 05’ s
= -equivalent a normal form {a Then
Os = 0(08") = ¢’ = Oa.

Let V'1(T) = {0a | Epa,a € DD}_

Lemma 8. Let T and T’ be nondeterministic -
computations. The node * is the root of T, and the node t” is
the root of T, we have
Vi(T) € Wi(T") < V{(T) € VI(T").

Proof. We assume that V1(7) € Vi(T"), For any ©a €
VI(T) we have j=,0a. Then 0o € Vi(T) € Vi(T") sg
= Oa. Therefore, @ € VI(T") On the other hand, we
assume that Vi(T) © VI(T") For any s € Vi(T) | we
have =0, then there is an @ € D" such that ¢s = ©a py
the lemma 7, that is, =,.0a, so ¢a € VI(T) € VI(T7),
Then we have =, $a . Therefore, =, ¢s, that is,
Os e Vi(T"),

Theorem 2. Let T be the class of nondeterministic D-
computation. The Hoare powerdomain 7% [ ] is isomorphic
to the quotient (7/~;,<,/~1), and to the order
{V(T) | T € T}, C).

Proof. By lemma 6, and lemma 8, we just need to prove
that (£(D°), €) is isomorphic to ({V{(T) | T € T}, ).
Define f : ({V{(T) I T € T}.C) — (L(D™M. C) A

Forany 7" € T, f(V{(T)) = {a € D" | |zr0a} = 1.
Firstly, we prove that 7 € £(D?). Itisclearthat | ¢ 7,so
I+ Q. Assume that o, b= DY a < band b c {, then we
have =0b, that is, there is a finite branch from the root ¢
to t' which ¢’ satisfies b . So b < wal(t') . Since
a < b < wval(t'). # also satisfies «. Hence =4Ca, a € 7.
Secondly, if V{(T') = V{(1"), then f(V{(T)) = f(V/(T")).

Thirdly, the fact that f is one-one is clear.

Next we prove that f is onto.

Assume that X € £(D") since L € X we assume

that X ={L,a0,a1,"- ,an,--} We construct T as
follows;

The fact that f(V{(T)) = X is clear.

Finally, the fact that

Vi'(T) C V(T < fF(V\'(T)) C f(V\'(T")) is clear.
4 Plotkin Powerdomain

From the two sections above, we can find the same way to
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obtain the plotkin powerdomain. In fact, it is obtained by
considering information about both the inevitable and
possible behaviour of a computation.

We define a logic modal 7., including D°, for all
s € L, sisany formula built with the following syntax;

su=a|0s|sVsVOs (ae DY)

Let (7', —,val) be a nondeterminstic D-computation.
Define = to be the least relation included in 7" x L5 such
that

tEa if a<walt)
tE(svs) if tEs or tES
t=Os if tEs or (V¢ 5t =t EDOs)
tEOs if tE=s or (A, st=1tFE 0s)

In our proofs, the following properties are also needed.
Lemma 9. t}=1¢s if and only if there is a finite branch
from ¢ to ¢’ with the node #’ satisfying s.

Proof. Suppose that t=,{s. To prove it, by the
definition of =, we are only allowed to use the following
rules.

The basic case is that from t=,s we can get t=,0s.
Then of course, there is a finite branch from ¢ to ¢ and the
node ¢ satisfies s. The other case is that if there is a #’ such
that # — ¢’ and we have #'={s, then we can get t=,0s.
By induction we may assume that for ¢/, there is a finite
branch ¢ from # to #” with the node # satisfying s. Let ¢’
be a branch which ¢ — ¢’ has been added to ¢. Then ¢’ is a
finite branch from ¢ to #" with the node " satisfying s. On
the other hand, suppose that there is a finite branch ¢ from
4 to ' with the node # satisfying s. Let the height of the
branch ¢ be . For any node #, of the branch ¢, let  be the
height from #;, to #' in ¢. When i = 0, #;, = #, then from
t'=1.5, we have #;, =,Cs by rule (1). Assume when i < n,
tyf=,Os, then when i = n, we have ¢, }=(s by the a rule
(2). Hence, t}=70s.

Lemma 10. Let " = (7', —, val) be a nondeterministic
D-computation with root node ¢. Write |=.s for t}=rs. Let
T be the class of nondeterministic D-computations. Define
s=s iff (FrseEps' VI eT).

We have

(1) s=§iff (Eps © Eps' VT e T);
2) svs =svs;

(3) O(0s) =0s;

4) O(svOs)=0(s Vv sy,

(5) ¢(svs)=0sVOs,

6) ¢(¢s) = 0s =0(0s) = O(0s);
(7) O(s Vv (¢s")) = (Us) vV (Os');
(8) s=s = 0s =0

9) s=¢ = 0s=05,
(10)s=s" = svs' =g vs"

Proof. The proofs of (1), (2), (3), (4), (8), (10) are seen
at lemma 2.

(5) Forany T e T, if t)=,(s VV §), then there is finite
branch from ¢ to +' with the node #’ satisfying s v s". If #
satisfies s, then t=,0s, of course, t=,{s V ¢s’. The case
is similar if # satisfies <’ . On the other hand, if
t=,0s vV Q5’| then t=,0s or t=,.08". If f=,0s, then
there is a finite branch from ¢ to # with the node #
satisfying s, so t'=,s \V s'. The case is similar if t}=104".
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Hence, t=,0(s V ).

(6) Forany 7" e T, if t}=,0(Qs), then there is a finite
branch ¢ from t to + with the node # satisfying $s. So
there is another finite branch ¢ from ¢’ to +"* with the node
" satisfying s. Define that ¢ + ¢ as @ to which @' has
been added. It is clear that ¢ + ' is a finite branch from t to
" with the node #” satisfying s. Then #l=,$s.

Forany 1" T, if tFTOS, then tFEr0(0s),

For any 7" e T, if t'ZTD(OS), then !'Fr0s, Hence,
tEr0(0s),

For any T € T, if t%TO(DS), then there is a finite
branch from ¢ to ¢ with the node ¢’ satisfying [ls. So any
maximal branch in the subtree out of #/ has a node which
satisfies s, of course, there is a finite branch from +’ with a

node satisfying s, that is, =10, Hence, tET0(05),

So far, we have $(0s) = ¢s = $(Os).

(7) Forany 7" e T, if t=,0(s v (0s')), then for any
maximal branch ¢ in the subtree out of # there is a node ¢,
which satisfies s v ({s"). If there is a maximal branch @
such that t,[=,¢s’, then there is a finite branch from ¢, to
" with the # satisfying s. Hence, there is a finite branch
from i to ¢’ via ¢, with ¢’ satisfying s, namely, t|=+¢s, of
course, t=..(0s) v (¢s'). If for any maximal branch ¢,
te =78, then t=s, of course, t}=(0s) v (Os').

On the other hand, if t/=.(Cs) v ({s”), then t=,Cls or
t=, 8 If =3, then any maximal branch in the subtree
out of ¢ has a node which satisfies s, of coure satisfies

sV (Os'). Hence, t=,0(sV (¢s")). If t=;0s", then
t=ps V (0s), hence, ti=,0(s v ((s)).

(9) Itis clear.

In the logic model L5, the normal forms are following;
Lemma 11. For all s € .5, (s € L3 is = — equivalent a
normal form O(apV---Vay)VOby V-V &by, for
SOMe aq, - - -, G, B0, - - - B € DU,

Proof. By definition of 7., s is any formula built with
the following syntax, s ::= a|Us|0s|s V s.

We proceed by induction on s

(1) The basic case is that s = a. Then Cs = [a, that

is, Os is = — equivalent the normal form Ce.

(2) Another case is that s = [s’. Assume that (s’ is
=- equivalent a normal form
O(ag V- Vay,) VObyV--- VOb,, Then

Os=0(0s")=0s"=0(ag V- Vay)V
Obg V - -+ V Oby,by the lemma 10.
(3) Another case is that s = s’V ¢”". Suppose that

(s’ is = — equivalent a normal form
Olag V- Vap)VoboVv -V Ob,, and s is = —
equivalent a normal form

Oco V- Vep)VOdo V-V Odg. Then Os = O(s'v
s =0(s"vOs") =0(0s" v s') =0(0s"” v Os') =
O0(co V- Vep) VOdo V-V Ody VDO(ag V- Vay)
VOby V-V Qb)) = 0(0(cp V- V) VO(ag V- -V
an)VOdo V-V Ody vV Obg V-V Qby) = O0(0(egV
Ve Ve) VO(ag V- Voag) V Odo V-V Ody V ObgV
cV Oby ) VO(ag V- Vay)) V Ody V- -V Qdy V Obg
Voo VObyn =0(0(co V- V) V(ag V- Vag))V
Odo V-V Ody vV Oby V-V Qb = Oag V- -+ V apV
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D(C[)\/"'\/Cp))VOd(JV"'VOquObO\/"'\/Obm
ED(CL()\/"'VQn\/Cu\/'"\/Cp)\/Odu\/"'\/Odq\/
Obg V- -+ V Oby,by the lemma 10.

(4) Another case is that s = ¢’

=-equivalent a normal form C(agV ---
Y 0b,, . Then Os =0(0s") = ¢(0s") = ¢(0(anV
NV an) VOV eV Oby) = $(0(ag V- Vag)) VO

(Qbo V-V Obyy) = Olag V -V ay) VObo V -+ V Qb

=Qag V-V Qay V Qby V -+ - by, by the lemma 10.

The same as Smyth powerdomain, here we are only
interested in that information C(({a) Vv b).

Definition 4. Let 7 =(7,—,val) be a
nondeterministic /-computation with root node t. Define
Va(T) = {0s € Ly | [=p0s}

Based on this assertions, we define an obvious preorder
on nondeterministic computations,
T<,T" = Vo(T) C Vo(T")

Quotienting the preorder =, on_ nondeterministic
computations by the equivalence ~» = <, N <5~ 1, we
obtain the Plotkin powerdomain in theorem 3.

Let Vi(T)={B(aoVar Vv - Van} |y
O(ag V---Vay,), t=p0a,i=0,...,n}.

Lemma 12. Let 7" and 7" be nondeterministic /-
computations. The node t is the root of T, and the node #’ is

Suppose that s is
\Y Cbn) vV Obo\/

the root of T . We have
Va(T) C Va(T") & V3(T) € V5(17)

Proof. We assume that V2(7) € V2(T") . For any
O(aoV -+ Van) € Vi(T), we have t=rO(ag V-V oay,),
and tj=,0(0a,) (Since O($a;) = Cay ), i=0,---n
Then we have laoV---Van)eVa(T) gng
O(0a;) € Va(T) | since Va(T) € V2(T") | we have
' O(ag V- Vay,) and =, 0(0a;), =0 n,

Then #'}=7, Ga; (Also since Qa; = D((}ai)), i=0,-.n
so dlag V- Vayp) € V5(T")

On the other hand, we assume that V2 (7) € V3(T"), et
Os € Va(T), we have t=,Os. By the lemma 11, Hs =
Olag Vv ---Vag) VQagsr V-V <>(},,1' where @0, +@n
€D 8oty D(ag V-V ag) V Qaggr V-V Oay. If
t=r0(ag V - -+ V ag), there is a finite subtree T" \where the

leaves satisfy @0V -Var o Let {bi,b2, o b} C
{ao, -+, ax} where for anyb;,j =1,--- 1, there is some
leave of T’ satisfy b; . Then t}=,00(by V--- V) and
t=pObj,j =1, b, SoOB1 Vb2 Ve Vi) € VE(T),
Since V2(T) € V’ '), t'=p,0(by Vv by V- VB and
Ve Objj=id,---,1 , of course, t'=r
D(ﬂ-o VARERY ffk) v Oﬂk+1 VoV (}an_

If t=10ay, there is a finite branch from t to s; with the
node s; satisfying ;. Let / be the height from ¢ to s;. Let
T' be a subtree of 7" where the nodes of 7" are the nodes of
7" which height is less than and equal to /. Assume that the
set of leaves of 7" is {51,582, ,8;, - ,5,}, then it is
easy to prove that t=, 0(val(s)V---val(s;)
Ve Voual(sy)), and t=pQval(s;),i=1,---,n, So
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O(val(s1) VvV ---Vwal(sy)) € Vi(T)
V(T , t’I:T, (val(s1) V- -val(s;) V- Voal(sy))
and t'|=,,Qval(s;),i=1,---,n . Specially, 'k,
Qual(sy), So, t'=q.0a; . Therefore, t'f=,,0(ag V- --
Vag) V Qagy1 V-V Qay. Hence Vo (T') C Vo (7).

Lemma 13. Let B = {bo.....bm} A ={ao....;an},
B=<pA If t=,0A4 and t=p0a;, for any @ € A then
t=,0B and t|=,0by, forany b; € B.

Proof. Because t=,(agV---Va,) , and
t=r0a;,i =0, ..., n. So for every maximal branch ¢ inthe
subtree out of ¢, there is a node ¢’ which satisfies
ag V -+ -V ay,, thatis, there isa a; € A such that t'l=ra;. It
follows a; < val(t'). Because B=gA, then there is a
b; € B such that b; < a; <wal(t'), that is, t'=5b; .
Therefore t=,(by V - -- V' b,,). On the other hand, for
any b; € B, because B=, A, there is a; € A such that
b; < a;. Because t=,¢a;, there is a finite branch from ¢ to
" where ¢ satisfies a;, that is , a; < val(t”). Hence,
b; < a; <wval(t"), that is, t"[=;b; . So we have
t=r0bj. j=0,..,m

Theorem 3. Let T be the class of nondeterministic D-
computations. The Plotkin powerdomain P»[D] is
isomorphic to the quotient (T /~4, <, /~) and to the order
({Va(T)|T € T}, C).

Proof. By lemma 12, it suffices to prove that P, [D] is
isomorphic to ({V4(T)|T € T}, <) Define f: ({V3(T)]
T T}, C) — (P2[D], C)as follows;

forany 7" e T, f(V5(T )} = {{ag al, e} | tEp
O(ag V-~ Van). tEpQa i = n} 2 I(T).

Firstly, we prove that 1(7T") € (P2[D], ).

Itis clear that { L} e I(7), so I{T)  §. Assume that
B = £ {b[J1 bm}ﬁPA = {aUa o an} and A € I( )
Since A € I( D, from the lemma 13, we have B < I(T) .
Assume that A 2 {ag, - ,an}, B & {bg, - by} and
A Bel(T) . So from t=,O(agV---Va,) and
t=,0(by V- - - V by, ), we can construct two finite subtrees
T4 and Ty of 1 where the leaves of 71, satisfy
agV---Va, and the leaves of T satisfy by Vv ---b,,
From t=,¢a;, and t=,0b; (i =0,...,n,j =0,...,m),
we have at most n + n finite branches where each leave
satisfies some «; or some b; respectively. Let C' be a set of
val(t) where, for every branch of ", ¢ is the highest node of
the leave ¢4 of T4, the leave ¢5 of 7};, the leave which
satisfies some «,( if it exists), and the leave which satisfies
some b (if it exists). Because 7’4 and 7 are finite, then C
is a finite set, and ¢ € /{T") is clear. For any val(t.) € C,
there are some a,, b; such that #.f= a;, t.[=;b;, that is,
a; < wval(t.)and b; < val(t.). Hence, A<sC, B<sC.On
the other hand, for any a;,7 = 0., ..., n, because t=,¢a;,
there is a finite branch from ¢ to ¢, where 1, =;a;, from
the definition of ', there is a wal(#) € C such that
val(ty,) < wval(t.), so a; <wval(t,,) <wval(t.). Hence,
A=<y C. Similarly, we can prove that B= ;. Therefore,

since Vj{(T) C
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' is an upper bound of A and 73 w.r.¢<p.

Secondly, if Vi(7)=V;(T>), then f(Vy(T})) =
FV3(Tz)) .

Thirdly, the fact that f is one-one is clear.

Next, we prove that f is onto.

Assume that A € P,[D], since DV is countable, A is
countable and nonempty({ L} € .4). So we can assume that
A={By, By, - ,B,,...}. Let A, be By; let A, be an
upper bound of A, and 13y w.rt.<p;---; let A,, be an
upper bound of A,,_; and 13,_; w.r.t=p, - --. Hence, we
geta w-chain A1 <pAs=<p - <pAp=<p -

Let Ao = Ao; Let AT = Ao U Ars -+

Let A7 = Ao U Ay -+

The set {40: A% AL .} has the following
properties;

(1) A;].%PA{H-FI'
Proof. An+1 = AnUAni1 we have An<uAnis

’ / ' / '
i A, € An+l_ For any Opi1 € An+1, that is, @n+1 €

A, or W1 € Ant1 |f i1 € A% then there is the
a;H‘l € A, such that a';H‘l = ”’iﬂ‘*l; if a‘il+l = A'?'i#l,since
Ap<pAni1, there is an a, € A, C A such that
an < @41 5o An<sAni1 Hence, An =P Ani1,
‘4;%1)*4?‘?.
Proof. We show this claim by induction. When # = 0,
Af, = Ag then the fact that A=< p» Ay is clear. Suppose that

!
when & <n, A=<PAk Then when k=n, Al =
AL-1U A We have A7, <gA, since A, C A’ On the
other hand, let a/, € A}, that is, ai, € A ior ar, € Ap. If

an € A1 since An—1=PAn—1 4 <, A, then there
is an a,, € 4, such that a/, < a, ; if a}, € A,, then of
course, there is the af, € A, such that af, <a, . SO
Al =< A Hence, AL <pA,.

AnspAni1

Proof. We show this claim by induction. When rn = 0,
the fact that Ay=;; A} is clear since 4y C AgU A; = Al
Let af € A}, thatis, aj € Agoraf € Ay If a} € Ag, there
is the af € Ap such that o} <a}; if aj € Ay, since
A=Ay, then there is an ag € Aq such that ag < af. So
Ao=g A}, Hence, Ag=pAY. Suppose that when k& < n,
Ap=<pAj, - Then when k = n, Alr = AU A, We
have “n=HAni1 since A, CA C Aust | Let
a41+1 € AIn-}—l, that is, n’;1+1 € A;l or a’::L+l € Aﬂ+l_ If

’ ’ .
anp1 €45 then there is an

ap—1 € Arr,fl g A;L—l g An such that Upn—1 S a';l-{—l; if
a’:;L+l € A

since A, _1=<pA

n o

n+lsince A, <pA,+1, thenthereisan a,, € A,

A'n. #SA’

!
such that @ = @ni1, Sg n+1, Hence, A,<pA’,.
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If A;hLl - A;z 7é w, then A::L#SA;L-FJ.#SA:;L‘FI - A;l
since A;1+1 - Ail - A';1+1_

Define a function ¢, : A, -A;, — A},, where for
any a € A}, -A), pn(a) < a.

We construct 7" as follows;

Let | be the root of 17;

Al is the set of nodes of 7~ at the height n + 1;

L — ag;, forany ag; € A},

Ak — Upp1g 1T apge = (ani1rr) OF Gnke = Apgi1pr.
So (T, —,id) is a nondeterministic D-computation.

It is easy to check that (T, —,id) has the following
properties:

(i) Forany n, A}, € A.

Since A/ <pA,, and 4,, € A, then A € A.

(ii) For any node a,,; of 7" at the height »n + 1, there is a
node a,. - Of 7 at the height n+2 such that
Apje —F O 1k

Because A) ., = A, UA,.1 , that is, for any
ank € A, | anp € A, . By the construction of,
Upk — Qpk-

(iii) For any n, OA! € V3 (T).

According to the property (ii), for any maximal branch
@ in the subtree out oft, there is an element of A’ is one
of the node of ¢. Then t=,0A],. tl=10a; is clear, for any
a; € Al Hence A, € Vi(T).

Next we prove that (V3 (1)) = A.

Let O(ag V- Vay) € Vi(T) , then
tEpO(ag V- -+ V ay,), and t=p0a;, i = 0, ..., n, then there
is a finite subtree 7" whose leaves satisfy ag Vv -+ V a,,.
And there is at least a leave of 7" which satisfies «,,
i =0, ..., n. Assume that the height of the highest leave of
T"is m. According to property (ii), the set of leaves of 7" is
less than A/, w.rt. <p, then {ap,--- ,a,}<pA,,. From
Al € A, we have {ag,--- ,a,} € .A. On the other hand,
forany A = {ag,--- .a,} € A, by the construction of w-
chain, there is an A,, such that A<, A,,. From the property
(3), we have A,=3A;,,, so, by the lemma 13,
A e f(V3(T)) since DA/, € V5(T). Finally, the fact
that V{(T') € V{(T") & f(V3(T)) C f(V4(T"))is Clear.

5 Conclusions

We give direct detailed proofs for the connection between
powerdomains and logic models which can be made about
nondeterministic computations. We believe there must be
the other proofs. The cause that we chose this kind of proofs
is that the ideals of proofs are simple but clear. In the
proceeding of proofs, we prove some algebraic properties of
them at the same time. Meanwhile, we take up some trick
for constructing the finite branching tree, which can also be
used into the other areas.

Parallel Programming Language. Mathematical Foundations of
Computer Science Springer Berlin Heidelberg
[3] Huet G 1993 An analysis of Bohm's theorem Theoretical Computer



COMPUTER MODELLING & NEW TECHNOLOGIES 2016 20(3) 24-31 Zhou Xiang

Science 121(1-2) 145-67 languages 306-19 ACM
[4] Gunter C A 1990 Relating Total and Partial Correctness Interpretations [5] Amadio R M, Curien P L 1998 Domains and lambda-calculi 46
of Non-Deterministic Programs Proceedings of the 17th ACM Cambridge University Press

SIGPLAN-SIGACT symposium on Principles of programming

Xiang Zhou, 1974, Jiangsu Province, PRC

Current position, grades: Network Supervisor of East China Normal University, Assistant Engineer

University studies: Business Administration, East China Normal University(ECNU)

Scientific interest: Computer Network and Information Security

Publications: Several papers published in various conferences and journals

Experience: 1993 - 2000. 1 Shanghai East China Computer Co., Ltd. Network administrator; 2002 - Information Center, East China Normal
University Network administrator

31



