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Abstract 

In this paper, we present the end-to-end performance of a dual-hop amplify-and-forward (AF) relaying system over independent non-

identical (non-i.i.d) composite Nakagami-lognormal (NL) fading channels by using mixture gamma (MG) distribution. Novel closed-

form expressions for the probability density function (PDF) and the moment-generation function (MGF) of the end-to-end signal-to-

noise ratio (SNR) are derived. Moreover, the average error rate and the diversity order are found based on the above new expressions, 

respectively. These expressions are more simple and accuracy than the previous ones obtained by using generalized-K (KG) 

distribution. Finally, numerical and simulation results are shown to verify the accuracy of the analytical results. These results show 

that it is more precise to approximate the composite NL distribution by using the MG distribution than using the KG distribution in 
the performance analysis of cooperative relaying systems. 
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1 Introduction 

 
Multihop cooperative transmission has emerged as a 

promising technique for extending coverage, enhancing 

connectivity, and saving transmitter power in wireless 

communication networks. In the past decade, the 

performance analysis of the multihop cooperative system 

in term of outage probability and average bit/symbol 

error rate (BER/SER) has been widely studied over 

various multipath fading models, such as, Rayleigh [1], 

Nakagami-m [2], Rician [3], Weibull [4] and Generalized 

Gamma [5]. 

 Recently, as an approximation fading model of 

composite multipath/shadowing fading channels, the 

generalized-K (KG) channel model has attracted 

considerable attention in the performance analysis of the 

multihop cooperative system. In [6], the performance of a 

dual-hop relaying system with fixed-gain relays was 

obtained. In [7], authors studied the error rate 

performance of multiple dual-hop relaying with 

maximum ratio combining. In [8], the performance of 

dual-hop relaying with best relay selection are evaluated. 

Authors in [9, 10] presented also their analysis of a dual-

hop system. 

 Unfortunately, since their probability density 

functions (PDF) include modified Bessel functions, their 

cumulative distribution functions (CDF) and moment-

generation functions (MGF) usually include some more 

complicated special functions, such as Meijer’s G 

functions. To avoid mathematical difficulties, some 

further approximation has to be used. In [5] and [8], the 

Padé approximants (PA) method has been employed to 

obtain the BER/SER. [6-9] adopted minimum SNR 

approximation model under amplify-and-forward (AF) 

strategy. 

 In [11, 12], the authors have developed an alternative 

approach by using the Mixture Gamma (MG) distribution 

to approximate the Nakagami-lognormal (NL) 

distribution. This distribution avoids the above-

mentioned problems, and some exact and simple results 

obtained are possible by adjusting some parameters. To 

the best of our knowledge, there are few papers in 

performance analysis of cooperative relaying systems 

over independent non-identical (non-i.i.d) NL fading 

channels by using MG distribution. 

 In this paper, we examine the end-to-end performance 

of a dual-hop AF relaying system over non-i.i.d MG 

fading channels. Firstly, some novel closed-form 

expressions for the PDF and MGF of the end-to-end SNR 

are derived over MG fading channels, and some 

approximate results are obtained over KG fading 

channels for the purpose of comparison. Secondly, these 

new statistical results are used to evaluate the 

performance criteria of the dual-hop relay system. 

Finally, the numerical and simulation results are 

discussed and compared over MG and KG fading 

channels, and these results demonstrate the validity of the 

proposed analysis. 

 The remainder of this paper is organized as follows. 

In the next section, three models of composite fading 

channels are described, respectively. In section 3, a dual-

hop relaying system is presented and the statistics of the 

end-to-end SNR are derived, such as the PDF and the 

MGF. Section 4 gives several important performance 
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criteria. Numerical and simulations results are presented 

in Section 5. Finally, we conclude our paper in section 6. 

 

2 The Composite Fading Channel Model 

 

2.1 NL FADING CHANNEL MODEL 

 

For the NL channel, the composite NL distribution is a 

mixture of Nakagami and lognormal shadowing. Let X 

be the fading amplitude, which is a random variable. 

Assuming that the transmitted symbol energy is Es and 

single sided power spectral density of the complex 

additive white Gaussian noise is N0, the instantaneous 

SNR per symbol is 2X  , where 
0sE N   denotes the 

un-faded SNR. 

 The PDF of   over NL channel, ( )
NL

f  , is given by 

[13]: 

1 2

20

exp( ) (ln )1
( ) exp[ ]

( )( ) 22
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m m

m

m m y y
f dy

m y y


   


 
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 



. (1) 

where m is fading parameter in Nakagami fading, μ and λ 

are the mean and the standard deviation of lognormal 

shadowing, respectively, Γ(∙) is the gamma function. 

Since a closed-form expression of (1) is not available in 

the literature, some approximations or simple forms of (1) 

have been given a great attention recently, such as, KG 

and MG distribution. 

 

2.2 KG FADING CHANNEL MODEL 

 

As an approximation of NL distribution, KG distribution 

is a mixture of Nakagami-m and Gamma distributions, 

where Gamma distribution approximates lognormal 

distribution. For KG fading, the PDF of  , ( )
KG

f  , is 

given by [14] 

( )/2 ( )/2 1( ) 2 (2 ) ( ) ( )
KG

k m k m

k mf K m k     

     , (2) 

where k is the distribution shaping parameter reflecting 

shadowing effect, km   , k   , Ω is the local mean 

power, ( )K   is the second kind modified Bessel function 

of order α defined in [15]. 

 For integer values of m and arbitrary values of k, The 

CDF of   over KG channel, ( )
KG

F  , can be expressed 

as in [6]: 

1 ( )/2

0
( ) 1 2( ) (2 ) ( ) !

KG

m k i

k ii
F K k i   

 
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     . (3) 

Moreover, the MGF of   over KG channel is given by 

[6]: 

 1,2

2,1

1 ,1
     0

( ) ( ) ( )
KG
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M s G s m k
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where ( )G   is the Meijer’s G-function defined in [15]. 

 

2.3 MG FADING CHANNEL MODEL 

 

By using Gaussian-Hermite quadrature sum, an 

alternative approximating approach of (1) is firstly given 

by [12], named as MG distribution. As in [12], the PDF, 

CDF and MGF of   over MG channel can, respectively, 

be written as: 
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(7) 

 

where 2 exp[ ( 2 )] ( )m

i i ia m w m t m      , 

exp[ ( 2 )]i ib m t    , C is the normalization factor, 

defined as 
1

N

jj
C w


  , wj and tj are abscissas and 

weight factors for Gaussian-Hermite integration. wj and tj 

for different N values are available in [16, Table(25.10)] 

or can be calculated by a simple MATLAB program. 

( ; )  is the incomplete gamma function defined in [15]. 

For the corresponding relationships between 

parameters (μ and λ) in NL/MG model and parameters (k 

and m) in KG model, two approximating expressions can 

be derived as [17], i.e., 2 '( )k   , ( ) ln( )k     , 

where '( )  is the first derivative of psi function defined 

in [15]. 

 

3 The Dual-hop AF Relaying System Model 

 

We consider a wireless dual-hop AF relaying system, 

which the source-destination link is unavailable. The 

source node (S) communicates with the destination node 

(D) over a relay node (R). It is assumed that nodes are 

synchronized and the channel state information is 

available at the receivers (R and/or D). 

Let the instantaneous SNR of each hop link be 

denoted by i , {1,2}i . Similar as in [1] and [2], the 

instantaneous equivalent end-to-end SNR of the dual-hop 

link at the destination node can be expressed as: 
 

1 2 1 2( 1)SRD       , (8) 

 

where 2

i iX  , Xi is the fading amplitude of the ith-hop 

link. The corresponding average SNR is defined as 

i i   . Due to capture the path-loss effect, 

2[ ]i iE X 
0( )id d  , 

id  denotes the distance of the ith-

hop link, 
0d  denotes the distance between S and D, and 

  is the path-loss exponent. 
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In order to simplify the performance analysis of (8) 

over Nakagami-m, Weibull and KG fading, its upper 

bound is often adopted in many recent literature as [4, 6-

9]: 

 

1 2min( , ).SRD b      (9) 
 

This upper bound has been shown to be accurate 

enough at medium and high SNR values. For the purpose 

of comparison, we consider some statistics of (9) in this 

paper. 

 

3.1 STATISTICS OVER MG FADING MODEL 
 

Based on (9), the CDF of b  can be expressed as 

1 2 1 2
( ) ( ) ( ) ( ) ( )

b
F F F F F           , (10) 

where ( )
i

F  , {1,2}i , is the CDF of the ith-hop link. By 

substituting (6) into (10) and taking the derivative of (10) 

with respect to  , the PDF of 
b  over non-i.i.d MG 

fading can be found as: 

1 2
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By using (11), the MGF of 
b  can be expressed with the aid of (6.621.3) in [15] as:  
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, (12) 

where 
2 1( , ; ; )F a b c z  is the hypergeometric function defined in [15]. 

 

3.2 STATISTICS OVER KG FADING MODEL 
 

Similar as (11), and using (2) and (3), the PDF of 
b  over non-i.i.d KG fading channel can be found as: 
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(13) 

 
where ki (i=1,2) is the distribution shaping parameter of 

the i-th-hop link,
i i i ik m   . 

In order to reduce the difficulty and complexity in 

finding the closed-form expression of the MGF of 
b  

directly using (13), PA method can be an alternative and 

efficient way to approximate the MGF. Its main 

advantage is that due to the form of the produced rational 

approximation, the error rates can be calculated directly 

using simple expressions. The PA of the MGF is a 

rational function of a specified order M for the 

denominator and L for the nominator, whose power series 

expansion agrees with the (M+L)-order power expansion 

of the MGF. Thus, the MGF of 
b  over non-i.i.d KG 

fading channels can be expressed as: 

10
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where ( )
b KG

n 

 is the nth moment of 
b , the coefficients 

ic  and bi are real constants, O(sn+1) is the remainder after 

truncation. In order to obtain an accurate approximation 

of the MGF, we assume sub-diagonal PA(M=L+1). For 

(13), by using [18, (03.04.26.0009.01)] and [18, 

(07.34.21.0011.01)], ( )
b KG

n 

 can be expressed as: 
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4 Performance Analysis 

 

In this section, using the previously derived closed-form 

expressions of the MGF over MG and KG fading 

channels, the average BER/SER and the diversity order 

of the dual-hop relaying system are obtained, 

respectively. 

 

4.1 AVERAGE BER/SER 
 

Using the MGF-based approach, we can obtain the 

closed-form expression of average BER/SER for the 

dual-hop relaying system over MG and KG fading 

channel. For many coherent demodulation schemes, the 

average SER of M-ary phase-shift keying signals (M-

PSK) can be given by [17]: 

( 1) /

20

1
( ) ( )

sin

M M
M

e MPSK

g
P s M d



 
 



   , (16) 

where gM=sin2(π/M). Similarly, the average SER of other 

modulations, such as M-ary quadrature amplitude 

modulation (M-QAM), can also be evaluated, which have 

to be neglected due to limited space in this paper. 

The above BER/SER of the dual-hop relaying system 

over MG and/or KG fading channels can be numerically 

evaluated by substituting (12) and/or (14) into (16). This 

can be done with some elementary numerical integration 

techniques. 

 

4.2 DIVERSITY ORDER 

 

The diversity order is the magnitude of the slope of 

the error probability versus SNR curve (log-log scale) in 

the high SNR region. The array gain measures the shift of 

error probability curve to the left. The diversity order and 

the array gain relate to the asymptotic value of the MGF 

near the infinity, i.e., if the MGF, Mγ(s), can be written as  

( 1)
( ) ( ),    as  

b b
M s a s O s s

  
   , (17) 

where a and b are defined as the array gain and diversity 

order in [19], and O(|s|-(b+1)) represents the terms of order 

higher than b. 

When s→∞, using the asymptotic series expansions of 

Meijer-G function in [18, (07.34.06.0018.01)], the 

approximate expression of (4) when k≠m can be given as: 

 

min( , ) 1( ) ( )
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When k m , (4) can be rewritten by using [18, 

(07.34.03. 0392.01)] as: 
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, 
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where ( , , )U a b z  is the confluent hypergeometric 

function defined in [15]. When s→∞, by using the 

asymptotic series expansions of ( , , )U a b z  in [18, 

(07.33.06.0004.01)], the approximate expression of (4) 

when k m  can be given as 
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By using the binomial series expansion in [15, 

(1.110)], the approximate expression of (7) can be written 

as in [13]: 

( 1)( )
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Since the values of ( )
i

F   in (10) range between 0 

and 1, the last two terms may be much less than their 

addition when 𝜌→∞. Hence, we can derive an 

approximating MGF of 
b  by neglecting the product 

term in (10) over MG fading channel, as: 

1 1 2 2

21
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Similar as (21), (22) can be further approximated when s→∞, as: 
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(23) 
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By using the same approach as (23), the 

approximating MGF of 
b  over KG fading channel can 

be expressed as (24). Based on the difinition of diversity 

order in (17), the diversity orders of the single-hop and 

the dual-hop link over KG fading channel are min(k, m) 

and min(m1, k1, m2, k2), respectively. For MG fading 

channel, they are m and min(m1, m2), respectively. Note 

that the diversity order over KG fading channel is 

determined by the value of m or k, not just the value of m 

in [12], and the diversity order over MG fading channel is 

determined only by the value of m as same as that over 

NL fading channel in [12]. 
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5 Numerical and simulation results 

 

In this section, various performance evaluation results 

derived by numerical and simulation techniques are 

presented. 

 Firstly, Figure 1 illustrates the BER of BPSK of 

single-hop link over NL, KG and MG fading, 

respectively, where N=10 for MG distribution. It can be 

seen from Figure1 that the performance over MG fading 

has almost the same as the one over NL fading. However, 

from Figure 1(a), it can be seen that the performance over 

KG fading almost approaches to the one over NL fading 

as the value of k increases. From Figure 1(b), it can be 

seen that the former is more deviation from the latter as 

the value of m increases at high SNR region. Moreover, 

for discussing their diversity orders, we give the 

approximate performance over MG and KG fading 

channel by using (18) and (21) at high SNR, and the case 

of m=1 and k=1. It can be seen that the diversity order 

over NL and MG fading is determined by the value of m, 

and the diversity order over KG fading is determined by 

the minimum value between k and m.  
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FIGURE 1 Average BER of BPSK for the single-hop link versus un-faded SNR (ρ) 
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In Figure 2, we give the average SER of 16PSK over 

i.i.d fading channels. In this case, an symmetric network 

geometry is assumed where R is located at the middle of 

a straight line between S and D, and d0=1, 2  . Each 

hop has the same fading parameters (k and m), N =10 for 

MG distribution. From Figure 2, it is evident that the 

performance of the dual-hop link (dash line) is improved 

with an increase of m and/or k over MG fading.  

0 10 20 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

S
E

R
 o

f 
1

6
P

S
K

 MG

 MG(simulation)

 KG

 Single-hop

k=1,m=1

k=2,m=2

k=2,m=4

k=4,m=2

k=8,m=4

 

 

SNR (dB)  
FIGURE 2 Average SER of 16PSK for the dual-hop link versus unfaded SNR (ρ) over i.i.d fading channels 

 

They outperform the performance of the single-hop 

(dot line) due to the path loss reduction, and the 

difference become more evident as the value of m (or k) 

increases. For the difference between MG (dash line) and 

KG (line with circle mark) fading, it can be found that 

they have almost similar performance when k is more 

than m and/or at low SNR region, but they show more 

deviation when k is not more than m at medium and high 

SNR region. Moreover, for the diversity order, it can be 

seen that the diversity orders over MG fading depend on 

the value of m. However, the diversity orders over KG 

fading depend on the minimum value between k and m. 

At the same time, the simulation results of the dual-hop 

link (line with triangle mark) show agreement with the 

analytical results (dash line) at medium and high SNR 

region, and verify the mathematical accuracy. 

Finally, Figure 3 shows the average SER of 16PSK of 

the dual-hop link over non-i.i.d MG and KG fading 

channels, where each hop has different channel 

parameters, N=10 for MG distribution. 
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FIGURE3 Average SER of 16PSK for the dual-hop link versus unfaded SNR (ρ) over non-i.i.d fading channels 
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In Figure 3, their approximation results are also given 

by using (23) and (24). These results are similar as the 

ones in Figure 1 and Figure 2. From these figures, it can 

be seen that they show agreements between the 

composite NL distribution and the MG distribution if the 

value of N is enough large, however, only some results 

match well between the MG distribution and the KG 

distribution, for example, the case that the value of k is 

more than the value of m, and/or the case of low SNR 

region. 

 

6 Conclusion 
 

In this paper, the end-to-end performance of a dual-hop 

AF relaying system is investigated over non-i.i.d NL 

fading channels by using MG distribution and KG 

distribution, respectively. We derived some novel closed-

form expressions for the PDF and MGF of the end-to-end 

SNR, and evaluated some performance criterion. 

Numerical and simulation results are shown to verify the 

accuracy of the analytical results. These results show that 

it is more precise to approximate the NL distribution by 

using the MG distribution than using the KG distribution 

in the performance analysis of cooperative relaying 

systems. These works in this paper can be helpful to 

analyse the performance of cooperative relaying systems 

with co-channel interference over composite NL fading 

channels in the future. 
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